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ABSTRACT: Phosphine selenides are introduced as an alternate class of selenium-based catalysts for the aza-Heck reaction of
alkenes. Using these catalysts, a range of terminal alkenes react with NFBS to give oxidative amination products. Judicious choice
of phosphine ligands gives greater regio- and stereoselectivity than with diphenyl diselenide, enabling the selective formation of £
terminal enimides in high yields. Isotope labeling experiments and measurements of kinetic isotope effects reveal that the reaction
occurs stereospecifically via irreversible anti addition, followed by rate-determining syn elimination.

The aza-Heck' and aza-Wacker? reactions are powerful meth-
ods for the formation of new C-N bonds from alkenes. The vast
majority of these reactions are catalyzed by palladium, proceed-
ing via aminopalladation of the alkene, followed by beta-hy-
dride elimination. Though many intramolecular aza-Wacker
and aza-Heck reactions have been reported, only a few intermo-
lecular versions are known.>* One of the major challenges in
the development of an intermolecular aza-Wacker or aza-Heck
reaction is the need to control the regioselectivity of both the
aminopalladation and the beta-hydride elimination steps. The
combination of these steps can give up to 4 different isomeric
products. This regioselectivity issue is further compounded by
the propensity of palladium complexes to promote alkene isom-
erization reactions, resulting in even more isomeric products.’
In addition to reducing the yield of the desired product, these
isomers are often difficult to separate from it. Of the four po-
tential products arising from unactivated terminal alkenes, only
two have been reported to be accessed in reasonable selectivity.
Stahl>® has reported the selective formation of the internal en-
amide, and Liu’ and White'® have reported the selective for-
mation of terminal allylamine (Scheme 1, eqs 1 and 2).

Recently, Breder!! and Zhao'> have shown that diphenyl
diselenide can function as a promising alternative catalyst for
the aza-Heck reaction of alkenes, presumably via a mechanism
conceptually similar to palladium (eqs 3 and 4). The regioselec-
tivity is high for styrenes and allylic alcohols and a few cyclic
alkenes. However, control of regioselectivity was again a prob-
lem for simple terminal alkenes; complex mixtures of four re-
gio- and stereoisomers were formed under both sets of condi-
tions (see below). To date, understanding of the mechanistic de-
tails that control this selectivity is rather limited.

Scheme 1. Intermolecular Aza-Wacker/Aza-Heck Reactions.
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Though promising, further development of catalysts based on
diphenyl diselenide is hindered by the difficulty of rapidly syn-
thesizing an electronically and sterically diverse library of
diselenides. Though Breder proposes that the Se-Se bond is cru-
cial for the catalytic activity, we wondered whether other mon-
oselenides might also be effective catalysts. Along these lines,
we hypothesized that the selectivity of this and other reactions
catalyzed by selenium compounds could be improved by con-
ceiving of the phenyl group as a ligand for selenium rather than
a substituent (Scheme 2). Replacement of this group by com-
mon ligands such as phosphines and N-heterocyclic carbenes
(NHC) would suggest that phosphine selenides and selenoureas
might also function as catalysts for these transformations.!*> An
advantage of this strategy is that phosphine selenides and sele-
noureas are easily prepared in a single step from the correspond-
ing phosphine'* or NHC," providing convenient access to a
large library of sterically and electronically diverse catalysts
that could enable more control over reactivity, regioselectivity,
and stereoselectivity. Herein, we report that phosphine seleni-
des indeed serve as active catalysts for the aza-Heck reaction of
terminal alkenes, and provide higher levels of regio- and stere-
oselectivity than diphenyl diselenide.



Scheme 2. Phosphine Selenides as Catalysts via Analogy to Ar-
ylselenides.
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Treatment of terminal alkene 1a under the conditions previ-
ously reported by Breder (Table 1, entry 1) and Zhao (entry 2)
gave similar results to those reported by Zhao for 1-hexene, i.e.,
a mixture of four regio- and stereoisomers was formed in
roughly equal amounts. When Ph;PSe was used in place of di-
phenyl diselenide, the E/Z ratio improved slightly, but notably,
the formation of internal regioisomer 4a was suppressed (entry
3). A screen of other phosphine selenides revealed that a steri-
cally hindered trialkylphosphine slightly improved the isomer
ratios (entry 5). Ultimately, tri(o-tolyl)phosphine selenide was
found to give the highest yield and selectivity for (£)-2a (entry
6). Unfortunately, the reactivity of the phosphine selenide cata-
lysts under these conditions was substantially lower, giving
only ~50% conversion after 65 h. A brief screen of reaction con-
ditions revealed that simply adding 1 equivalent of a benzene-
sulfonimide salt restored the reactivity, giving full conversion
in 24 h (entry 7). As a final improvement to the procedure, we
found that extending the reaction time for an additional 24 h
further aminated all of the allyl sulfonamide isomer 3a to
bis(sulfonimide) 5a'® (entry 8), without affecting the yield of
2a. This allowed isolation of the desired terminal vinylamine
product 2a in 74% yield with only minor isomeric products. We
also found that the phosphine selenide catalyst could be gener-
ated in situ by stirring Se powder with the phosphine for 3 hours
prior to addition of the remaining reagents (entry 9). Selenium
powder in the absence of phosphine did not catalyze the reac-
tion, emphasizing the need for a stabilizing ligand (entry 10).

Table 1. Effects of Selenium Catalyst and Additives
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These optimized conditions were applied to the amination of
a variety of terminal alkenes (Scheme 3). Yields and E/Z selec-
tivities were generally high. The reaction is compatible with es-
ters, ethers, electron-rich aromatics, silyl ethers, sulfonamides,
and nitriles. Notably, aliphatic and aromatic halides could also
be successfully used as substrates (2¢, 2d, 2j). The reaction of
1a was performed under an ambient atmosphere on 4 mmol
scale and gave 2a with no significant loss of yield or selectivity.

Scheme 3. Alkene Scope?®
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To investigate the mechanism of this transformation further,
the stereoisomeric deuterium labeled substrates (E)-1t-d and
(Z)-1t-d were subjected to both our reaction conditions and the
diphenyl diselenide-catalyzed conditions reported by Breder
(Scheme 4). In all cases, we found that the hydrogen at the ter-
minal carbon atom was substituted stereospecifically, which is
consistent with an anti addition, followed by a syn elimination
(see Scheme 5). Furthermore, we found that the £/Z ratio of the



products was strongly influenced by the geometry of the start-
ing alkene, with the Z deuterated alkene giving substantially
higher E/Z product ratios and the E deuterated alkene giving
substantially lower E/Z ratios. By comparing these ratios with
that of the closely related undeuterated substrate 1q (7.6:1), it is
apparent that the E/Z ratios increase by about a factor of 3 to 4
when using (Z)-1t-d, while they decrease by a roughly equiva-
lent amount when using (E)-1t-d.

Scheme 4. Deuterium Labeling Experiment.
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We propose the following mechanism based on these results
(Scheme 5). The mechanistic experiments in Scheme 4 reveal
that the basic mechanistic outline is the same for both diphenyl
diselenide and phosphine selenide catalysts. Oxidative addition
of NFBS to the phosphine selenide pre-catalyst gives selenium
reagent A. Similar structures have been isolated and character-
ized by X-ray crystallography!” and may be thought of as phos-
phine complexes of Se(IT). Dissociation of benzenesulfonimide
and addition to the alkene generates seleniranium ion B. Attack
of benzenesulfonimide on this species gives the alkylselenium
fluoride C, which can eliminate in a process that is isoelectronic
to the well-known selenoxide elimination to give the product 2.
This anti addition/syn elimination would result in the deuterium
labeling patterns observed in the experiments in Scheme 4. Fur-
thermore, the changes in E/Z ratios can be rationalized by a pri-
mary kinetic isotope effect in the elimination step (ku/kp ~ 3-4),
which slows the formation of (Z)-2 from the Z deuterated alkene
(see structure C’ in Scheme 5), and equivalently slows the for-
mation of (E)-2 from the E deuterated alkene. This isotope ef-
fect is comparable to that measured for the selenoxide elimina-
tion (kH/kD = 5.2).18
Scheme 5. Proposed Catalytic Cycle.
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To learn more about the individual steps of the catalytic cy-
cle, we measured the kinetic isotope effect (KIE) of deuterium
substitution at the terminal position in two different ways
(Scheme 6). First, we performed a competition experiment be-
tween unlabeled compound 1t and dideuterated 1t-d,. Under

these conditions, we found a small inverse KIE (ku/kp ~ 0.95,
see Supporting Information for details). We also monitored the
consumption of starting alkene in separate reactions of com-
pound 1t and compound 1t-d>. Under these conditions, the deu-
terated compound was consumed significantly more slowly, in-
dicating a primary KIE (ku/kp ~ 2).!° The inverse isotope effect
in the competition experiment is typical for alkene addition re-
actions,?’ and indicates that the product-determining step is the
addition to the alkene, i.e., the initial addition of selenium to the
alkene is irreversible. The primary isotope effect observed on
the overall rate, however, indicates that the elimination of
fluoroselenide C is the overall rate-determining step.

Scheme 6. Kinetic Isotope Effects.
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In summary, we have demonstrated that phosphine selenides
may be used as a new class of catalysts in place of dia-
ryldiselenide catalysts for the functionalization of alkenes.
Proper choice of the phosphine allows enhanced regio- and ste-
reoselectivity in the aza-Heck reaction of terminal unactivated
alkenes with N-fluorobenzenesulfonimide. Mechanistic studies
have revealed that the mechanism proceeds by an irreversible
stereospecific anti addition, followed by a rate-determining syn
elimination and that the syn elimination occurs with substantial
C-H bond-breaking in the transition state.
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