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Abstract

Non-covalent interactions govern many important areas of chemistry, ranging from
biomolecules to molecular crystals. Here, an accurate and computationally inexpensive
dispersion-corrected second-order Mgller-Plesset perturbation theory model (MP2D)
is presented. MP2D recasts the highly successful dispersion-corrected MP2C model
in a framework based on Grimme’s D3 dispersion correction, combining Grimme’s
D3 dispersion coefficients with new analogous uncoupled Hartree-Fock ones and five
global empirical parameters. MP2D is faster than MP2C, and unlike MP2C, it is
suitable for geometry optimizations and can describe both intra- and intermolecu-
lar non-covalent interactions with high accuracy. MP2D approaches the accuracy of
higher-level ab initio wavefunction techniques and out-performs a widely-used hybrid
dispersion-corrected density functional on a range of intermolecular, intramolecular,

and thermochemical benchmarks.



1 Introduction

Non-covalent interactions govern protein folding, chemistry in solution, molecular crystal
polymorphism, and many other important phenomena. Simulating such systems requires
theoretical models capable of accurately reproducing the often delicate balances among the
different types of non-covalent interactions both within molecules and between them. Large-
basis coupled cluster methods can achieve this accuracy for small systems,! but they are
computationally prohibitive for larger ones. Dispersion-corrected density functional theory
(DFT) models provide a much more affordable option,? though DFT cannot always provide
the requisite accuracy due to self-interaction error and other inherent limitations in the
functionals.® Here, we report a new, computationally practical dispersion-corrected second-
order Mgller-Plesset perturbation theory (MP2) model which provides high-quality energetics
and structures in systems where non-covalent interactions are important, filling an important
gap between DFT and higher-level techniques.

With formal computational cost scaling with the fifth power with system size (though this
scaling can be reduced via Laplace transform, local correlation models, etc?), MP2 provides
a valuable and computationally affordable alternative to DFT for organic systems, but it
has well-known problems describing van der Waals dispersion interactions. It overestimates
the interaction energy in the m-stacked benzene dimer by a factor of two, for example.®
From the perspective of intermolecular perturbation theory, this deficiency in MP2 stems
from its uncoupled Hartree-Fock (UCHF) treatment of intermolecular dispersion®’ which
approximates the excited states and excitation energies that contribute to the dispersion
energy using unrelaxed ground-state Hartree-Fock orbitals.

Various models empirically scale the same-spin and opposite-spin correlation components
in MP2 to improve its performance,® '3 though the optimal parameters often vary with the
nature of the chemistry being modeled. The very successful non-empirical MP2C method ™14

replaces the problematic UCHF dispersion with an improved coupled Kohn-Sham (CKS)



treatment of dispersion,

EMP2C _ pMP2 _ (zlJiSCpHF i E(ggjs (1)
effectively using time-dependent density functional theory to obtain an improved descrip-
tion of the excited states. The excellent performance of MP2C for intermolecular interactions
earned it “the bronze-standard of quantum chemistry” moniker.'® Unfortunately, MP2C has
two major limitations. First, the dispersion correction is derived from intermolecular pertur-
bation theory and is not defined for intramolecular interactions. Intramolecular dispersion
can be crucial in larger molecules. Second, MP2C is not currently used for structure opti-
mization due to the complexity of its analytical nuclear gradients.

Here, we combine the ideas of MP2C with Grimme’s DFT-D3 dispersion correction !¢ to
develop a new dispersion-corrected MP2D model. Recasting MP2C in terms of atom-centered
two-body dispersion coefficients offers clear advantages. Atomic dispersion coefficients can
be applied to both intra- and intermolecular atom-atom interactions. Furthermore, both the
energy and analytical gradients of the dispersion correction can be computed with trivial
computational cost. On the other hand, it introduces some empiricism to the model in the
form of five global parameters. MP2D is also similar to the MP2+AvdW model,!” but it
improves upon that model in several important ways. It includes both the Cg and Cy terms,
instead of only Cj like MP24+AvdW. More significantly, MP2D solves the problem of how
to determine the atomic Cj dispersion coefficients for different chemical environments by
adopting the D3 dispersion correction approach. !¢

The following sections present the MP2D model, including how the dispersion coefficients
were obtained, modifications to the short-range damping necessary to treat both covalent-
and non-covalent chemistry, several minor changes to the D3 procedure, and the strategy
used to ensure physically appropriate parameters were obtained. We then demonstrate that

MP2D performs very well across thousands of benchmark energies, including intermolecular



interactions, conformation energies, and thermochemistry. We examine in detail the per-
formance of MP2D on the challenging anthracene photodimerization, in which inter- and
intramolecular interactions compete strongly. Finally, we study several examples of geome-
try optimization where dispersion effects play a major role. Throughout these tests, MP2D
significantly improves MP2 in cases where van der Waals dispersion is important, and it
does so with negligible additional computational cost. At the same time, the MP2D dis-
persion correction has little impact on MP2 in cases where dispersion does not contribute

significantly.

2 Theory

2.1 MP2D overview

MP2D corrects MP2 by subtracting out the pairwise interatomic UCHF dispersion energy

and replacing it with the equivalent contribution calculated at the CKS level of theory,

EMP2D _ [pMP2 _ E(%SC;)HF i Eggs 2)
where
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In these expressions, Cg and Cy are the interatomic two-body dispersion coefficients calcu-
lated at either the UCHF or CKS levels of theory, Rsp is the distance between atoms A
and B, f, are short-range damping functions, and s, are empirical scaling factors. One
might further augment MP2D with a 3-body dispersion term,!® since those contributions
are missing in MP2' and can become significant in large systems,?%?! but that is not done
here.

MP2D adopts Grimme’s D3 model'® to compute the UCHF and CKS dispersion contri-

butions. In fact, MP2D uses Grimme’s existing D3 Cy coefficients for the CKS dispersion
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energy. New UCHF dispersion coefficients are computed here. Several other minor modifi-
cations are made to the D3 approach with regard to the damping at short non-covalent and
covalent distances and the evaluation of the continuous coordination approach, as described

below.

2.2 Review of the D3 approach

It is worthwhile to review Grimme’s D3 approach briefly before discussing the MP2D-specific
changes. D3 computes frequency-dependent dipole-dipole polarizabilities a(iw) for a series
of different hydrides with different coordination numbers (CNs). For carbon, for instance,
it computes them for C (CN = 0), CH (CN =~ 1), CoHy (CN = 2), CoH, (CN = 3), and
CoHg (CN = 4). The Cy dispersion coefficients for all possible pairwise combinations of
atoms and coordination numbers are calculated via Casimir-Polder integration with these
polarizabilities after subtracting out the approximate hydrogen contribution,
Coa(CNE,CN?) = 2 / Tl ot ) - Zat (i) 1 [aBkHl (i) — Lat(iw)| (4)
T Jo m 2 k 2
In this expression, at=#n (iw) and P+ (jw) are the frequency dependent polarizabilities for
the reference hydrides, and o?(iw) is the corresponding value for Hs.
Key to the success of the D3 model is how it interpolates the pre-tabulated Cy coefficients
to adapt them to the current chemical environment via these coordination numbers. It

computes continuous coordination numbers for each atom a in a given system as,

. 1
CN“ =3 (15 1) ©)

where R{j” are sums of pre-tabulated, modified covalent radii for each element pair. Re-
fer to the original D3 paper for details on the set of the radii used.'® The Cg dispersion

coefficients for atom a interacting with atom b in their current coordination environments



is then computed via a weighted average of the Cy values from the tabulated coordination

environments,

Zi Zj Cg,ea];(CNiav Cij)Lij
> 2 Lij

Cls.ap = 4[(CNe—CN#)2+(CN*—CN?)? (6)

where L;; = e~

Indices ¢ and j sum over the all reference hydrides for the given element. Once the Cg

coefficients are obtained for an atom-pair, the Cy coefficients are estimated according to,

CS,ab = 306,(111 V QaQb (7)

and

_ 1
Qu= 5V 2y, (8)

where Z, is the nuclear charge, and (r*), and (r?), are pretabulated multipole expectation
values for the element. See Grimme’s original work for more details.
In MP2D, Grimme’s reference hydride Cy coefficients (as implemented in Cuby42?) are

used for the CKS portion of the model. Other D3 parameters, such as the multipole expec-

COv

: n .
tation values (r"),, covalent radii R%",

and cutoff radii Ry, are also employed in MP2D
without modification. However, several modifications and new ingredients were added in the

development of MP2D, as described in the following sections.

2.3 UCHTF dispersion coefficients

Before adding the CKS dispersion to MP2, one must subtract out the UCHF dispersion that
is already present. This requires computing UCHF dispersion coefficients that are analogous
to the existing D3 CKS ones. The general expression for the frequency dependent dipole-

dipole polarizability tensor a),(iw) from intermolecular perturbation theory is,

) = 3 2 (O M0 + Ol 1) (1]

= h(w3, + w?)



where 0 and M refer to ground and excited states, wy, is the excitation energy, and A and o
refer to different Cartesian components of the dipole operator 1. The resulting polarizability
tensor o, (iw) is a symmetric 3 X 3 matrix with unique zx, xy, xz, yy, yz, and zz elements.

At the UCHF level of theory, the excited state wavefunctions involve vertical excitation
of an electron from occupied orbital ¢ to virtual orbital a with no orbital relaxation. In
that case, the matrix elements simplify to matrix elements of the dipole operator involving
occupied orbital ¢ and virtual orbital a, and the excitation energy wj; reduces to the energy
difference between orbitals i and a, wy; = €; — €, = €;,. Employing these simplifications and

recognizing that the molecular orbitals are real, Eq 9 becomes,

o (tw) = QZ i \éh\| j_%g;Aw (10)

where the sums run over all spin orbitals ¢ and a. Spin integration yields the following

spin-unrestricted expression,

a spin B spin

_ €ia \MA\ (alfis|7) ea(2lfin|a) (al i [2)
o) =2 Z o D Dl 0 et (11)

a

where ¢ and a refer to « spin orbitals and 7z and a refer to § spin orbitals. In the spin
restricted case, the expression for the frequency-dependent polarizability further simplifies

to,

Qe (iw) = 42 Cia Flél/\‘ _f_(ZL[;Um (12)

Finally, the isotropic frequency-dependent polarizabilities used as inputs for the D3 model
are computed as the trace of the frequency dependent polarizability tensors o, (iw).

From these isotropic UCHF polarizabilities, the Cg coefficients were computed by sub-
tracting out the approximate hydrogen contribution and performing Casimir-Polder inte-

gration over imaginary frequency according to Eq 4. The integration was performed via



quadrature at ten frequencies given by,

Z'Wj == ! (13)

tan [ (25 — 1)]

for j =1,2,---,10 and with integration weights g;:

9 N sin® [£(2) — 1)] 1)

Empirical testing indicates that ten quadrature points is sufficient to obtain well-converged
dispersion coefficients.

The frequency-dependent polarizabilities a(iw) were evaluated using a modified version of
Molpro 2012.2% While most of the hydrides used in the D3 model involve closed-shell species
(spin restricted wavefunctions), there are some open-shell species for which the unrestricted
spin formalism is necessary. Open-shell species include many bare elements (e.g. H, C, N, O)
and low-coordination number hydrides (e.g. CH, OH). The spin-restricted expressions were
already available in Molpro as part of the MP2C implementation, and the spin-unrestricted
variant was implemented in a local version of Molpro.

At present, UCHF frequency-dependent polarizabilities have been computed for all nec-
essary hydrides of H, B, C, N, O, F, Ne, P, S, Cl, Ar, and Br. These represent some of
the most common elements occurring in organic chemistry. Extending the list of elements
further would be straightforward, though not all elements would be well-described with an
MP2-based model (e.g. transition metals). The hydride geometries and basis sets used to
obtain these frequency-dependent polarizabilities are identical to those used in the original
D3 work. ¢

Table 1 presenets several sample Cy coefficients for C-C interactions. Broadly speaking, as
the level of hydrogen saturation decreases, the atomic polarizability and therefore magnitude
of the contribution to the dispersion energy should increase. Accordingly, the dispersion

coefficients increase in magnitude from ethane to ethene and ethyne. The dispersion energy



Table 1: Sample UCHF and CKS Cg coefficients for carbon-carbon interactions between two
identical carbons for different species/coordination environments as computed according to the D3
scheme.

UCHF Cs CKS Cg

Ethane 24.1 18.3
Ethene 34.9 25.7
Ethyne 41.2 29.5
Benzene 34.8 25.6

for such systems is typically overestimated at the UCHEF level. This manifests in the UCHF
coefficients listed in Table 1, which are 30-40% larger than the CKS ones.

It is notable that the local coordination number scheme used to interpolate the Cy coeffi-
cients for the given chemical environment barely differentiates between the aromatic bonds in
a species like benzene and the double-bond environment of ethene. The resulting dispersion
coefficients are nearly identical for both cases. In reality, the dispersion coefficients should
be somewhat larger for the aromatic species. This translates to MP2D underestimating the
magnitude of the dispersion correction in the benzene 7 dimer at the S66x8 equilibrium
separation, for example. MP2D reduces the MP2 binding energy from 4.9 kcal/mol to 3.3
keal/mol, versus 2.8 kcal/mol for MP2C and 2.7 kcal/mol for the CCSD(T) benchmark. The
dispersion correction here also would not capture the sorts of system-size-dependent changes
in the Cy coefficientss observed for large carbon nanotubes or graphene,?* for example. Nev-
ertheless, the results in Section 4 will demonstrate that MP2D performs well overall across

a broad range of chemical systems.

2.4 Short-range damping

The MP2D dispersion correction must be damped at short-ranges to avoid unphysical be-
havior. Here, Tang-Toennies damping,?® is used to attenuate the dispersion correction at
short interatomic separations instead of the Becke-Johnson or zero-damping used in D326
The physically-motivated Tang-Toennies damping function is well-suited for reproducing the

dispersion energy in correlated methods.?” The Tang-Toennies damping expression is given
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(s Ra
fn(Rap) =1 — exp(spRap) Y~ b) (15)
k=0

where NNV is the order of the dispersion term, i.e. 6 and 8, and sg is a distance scaling factor
calculated from the cutoff radius Ry 4 (taken from the D3 dispersion correction) using two
empirical parameters:

sr = a1Roap + as. (16)

Fitting the damping functions to UCHF and CKS dispersion energies separately, we
found that optimal damping parameters a; and as for the UCHF dispersion energies differ
from those for the CKS ones. This would give rise to four parameters, a/“H¥ oJCHE  q¢KS
and a§%%. However, the number of parameters can be reduced as described in Section 2.6
below.

Although the Tang-Toennies damping provides a physically sound treatment in the non-
covalent regime, it damps insufficiently at covalent distances. This leads to deteriorated
MP2D description of reaction energies, for example. We thus introduce a secondary short-
ranged damping that ensures that dispersion correction becomes constant at covalent dis-

tances. This damping is achieved by modifying the value of the interatomic distance Ry,

that enters Eq 3 as

(

rcutRO,ab if Rab <= RO,ab(rcut - w/2)

/

o =\ Rap if Ryp >= Roap(rew +w/2)  (17)

rcutRO,ab + f(Rab> Rﬂ,abrcuh RO,abw) otherwise;
\

f(Rap; s, w') = (—2-5378 + 1027 — 142% + 72°) x w'; (18)
Rap — w'/2

where two more parameters are introduced, r.,; and w, which are defined as dimensionless

factors scaling the radius Ry, taken from the D3 correction. Eq 17 leaves R4, untouched
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Figure 1: Example of how the secondary short-range damping modifies the effective C-C inter-
atomic separation based on a cutoff radius of Ry ., = 2.9103 A, reut = 0.72, and w = 0.2.

for distances greater than R q(7ewt + w/2), and it fixes Ry, at a constant fraction of Ry 4
for distances that are shorter than R 4 (7c: — w/2). The third portion of the function in
Eq 17 smooths the transition between these two regimes. The high-order polynomial ensures
smooth first, second and third derivatives at the end points of the switching interval.

This damping is applied at very short distances so that it practically does not affect
intermolecular non-covalent interactions. For example, using the final optimized parameters
described in Section 2.6, this damping smoothly alters the effective interatomic separation for
two carbon atoms from the actual separation to a fixed value near 2 A and below (Figure 1).
The fractional nature of r.,, and w means that these distances adapt depending on the
threshold radius Ry, for the given atom pair. The overall dispersion energy is therefore
doubly damped: first by Tang-Toennies in the non-covalent regime, and second by this

short-range damping in the covalent regime.

2.5 Modified C interpolation

In D3, the Cg coefficients are interpolated using a continuous coordination number C'N
calculated from distances to all other atoms using a switching function (Eq 5). Although

this switching function decays quickly, it yields small but nonzero contributions even at non-
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covalent distances. This makes the Cy coefficients in a dimer slightly different to these in
isolated monomers in the same geometry, and this propagates also to the Cy coefficients.
This proves problematic at short distances (where the Cg term becomes important) when
a weaker damping function is used.?” In MP2D, we eliminated this issue by replacing the
switching function with one that drops exactly to zero at larger separations. Again, the
polynomial interpolating between the short- and long-range regimes was designed to have
smooth first and second derivatives at the end points of the switching interval. The scaling
factors in this function were fitted to closely reproduce the original D3 one. The MP2D

coordination number is now calculated as,

N
CN = f(RS Ra); (20)
B#A
(
1.0 if Ry, <= 0.95R
FRGY, Ray) = 0.0 if Ry, >=1.75R%" (21)
f'(x) otherwise;
\
f'(z) = 1.0 — (=202" 4 702° — 842° + 352%); (22)

Rg, — 0.95R%"

* T 17BR% — 0.95R%Y

(23)

In the geometry optimizations reported here, we used integer coordination numbers to sim-
plify the calculation of the gradient. All the studied systems have well-defined geometries
where the continuous valence numbers differ only negligibly from integer ones, so this as-
sumption does not introduce any appreciable error. One could implement gradients for the

continuous valence coordination numbers if desired.

2.6 MP2D Parameterization

The MP2D model described thus far could conceivably employ up to ten potential global

parameters: separate sg and sg scaling terms for each of the UCHF and CKS Cg and Cy
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dispersion energies (four parameters), two parameters for the UCHF Tang-Toennies damping

function (aV“HF and aY“HF), two parameters for the CKS Tang-Toennies damping function
(a$ES and a$%9), and two parameters for the secondary short-range damping (r.,; and w).

To obtain correct dispersion energies at long distances, the sg parameter is set to unity for
both UCHF and CKS dispersion. In exploring the parameterization, we found that the value
of the sg parameter is similar in both the UCHF and CKS cases, so we use a single global
sg parameter for both. This reduces the number of possible global fitting parameters from
ten to seven. At this point, we tested multiple variants of the parameterization protocol,
and analyzed the results obtained with different parameter sets, exploring the possibilities
to simplify the method further.

First, we tested fitting the CKS and UCHF Tang-Toennies terms separately to the corre-
sponding CKS and UCHF energies from MP2C calculations performed on the S66x8 bench-
mark data set.?® The resulting dispersion coefficient model reproduced the original CKS
and UCHF energies rather well. The optimal parameter values in the CKS and UCHF
Tang-Toennies damping functions differed significantly. Next, to capture some higher-order
contributions not covered by MP2C, the Tang-Toennies fit parameters were refined against
CCSD(T)/CBS interaction energies on the same S66x8 data (i.e. fitting to the energy differ-
ence between MP2 and CCSD(T) instead of the raw MP2C energy components). When the
parameterization was started from the UCHF and CKS parameter values fitted to the CKS
and UCHF dispersion energy components separately, the resulting Tang-Toennies damping
parameters changed only very slightly.

However, further testing found that an equally good fit to the post-MP2 correlation
energy can be obtained when the same values of the parameters are used in both the CKS
and UCHF damping functions. Using common parameters reduces the fidelity with which
MP2D reduces the individual UCHF and CKS dispersion energy components, but it has
no appreciable negative impact on the quality of the net dispersion correction. We decided

that reduction in the number of adjustable parameters was more useful than reproducing
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the individual dispersion energy components. Setting

aVOHE = 955 — 1 and (24)
adCHE = q§KS = g, (25)

reduces the number of global parameters down to five (sg, a1, as, rew, and w). Figure S1
in the Supporting Information provides an sample comparison for MP2D with and without
constraining the Tang-Toennies parameters to be identical.

During the parameterization procedure thus far, the S66x8 data set proved sufficient for
a robust and transferable parameterization of the correction at non-covalent distances. The
three parameters affecting the dispersion energy in this range of distances (a1, as and s8)
were thus optimized first on the S66x8 data set with the short-ranged damping disabled.
Subsequently, the initial values of the remaining two parameters in the short-range damping
(rewe = 0.7 and w = 0.2) were manually chosen to yield the best compromise between short
intermolecular interactions (in the S66x10 data set) and conformation energies (using all the
conformer data sets considered later in the paper). Overall, a fairly broad range of values for
rewr and w provide comparably good performance. Larger values of r.,; would be obtained
if the method was optimized on thermochemistry data, but the description of non-covalent
interactions at short distances would be compromised while reaction energies would improve
only by about 0.5 kcal/mol.

Finally, all the five parameters were fitted again to the S66x8 data set, resulting in only
small change to the values of r.,;. The resulting parameters thus represent a minimum with
respect to non-covalent interactions around and above equilibrium distance (represented by
the S66x8 data set) which can be expected to be the main application targets for the method.
At the same time, the formulation of the model and the choice of the initial values of the
parameters used additional information from conformational energies needed to provide a

seamless connection between the covalent and non-covalent regime.
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Table 2 lists the final values of the parameters. Figure 2 plots the MP2D dispersion
correction energy (Cg contributions only for simplicity) for two carbon atoms as a function
of distance with no damping, just Tang-Toennies damping, and finally the actual doubly-

damped model that also includes the covalent regime short-range damping.

Table 2: Optimized values of the five global parameters used in the MP2D method.

Sg 1.187 dimensionless
a; 0.944 dimensionless
az  0.480 Angstrom

rewt 0.72  dimensionless
w 0.20 dimensionless

4 — — :
— | MP2D Correction Damping
2 |
3
g 3 \
S \
S \ No Damping
o 2 Tang- \
5] Toennies\
o Damping \
5 \
e 1 \
g —\
@ Double Damping
a
O 1
0 1 2 3 4 5

C-C Distance (Ang)

Figure 2: Behavior of the MP2D dispersion correction (Cg only here) without damping, with Tang-

Toennies damping, and the double Tang-Toennies/shorter-range damping for two sp?-hybridized
carbon atoms.

The MP2D dispersion correction has been fitted to reproduce the counterpoise-corrected
ACCSD(T) energy correction. The remaining question is how to treat the basis set superpo-
sition error (BSSE) in the MP2 part of the calculation. When the MP2 energy is calculated
in a large basis set or extrapolated to the CBS limit, the MP2D method should be universally
applicable to both inter- and intramolecular energies because the BSSE would be smaller
than the error of the dispersion correction.

This can be demonstrated on the calculations of the interaction energies in the S66

data set performed with and without counterpoise (CP) correction. At the CBS limit, using
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MP2D without CP correction yields smaller RMSE (0.19 kcal/mol) than when CP correction
is applied (0.26 kcal/mol). The good performance without CP correction results from error
cancellation, but it shows that the energy changes associated with the CP correction are
several times smaller than the overall error. In the aug-cc-pVQZ basis, the CP-corrected
and uncorrected results are very similar (RMSE 0.35 and 0.37 kcal/mol). In smaller basis

sets, the CP uncorrected interaction energies become significantly worse.

3 Computational Methods

The dispersion correction was implemented in the freely available Cuby4 framework,?? which
interfaces multiple computational chemistry packages that could provide the MP2 calcula-
tion. The MP2D dispersion correction implementation, including the dispersion coefficients
for the 13 common first- and second-row elements noted above, documentation, and input
examples, are provided at the Cuby website.

Electronic structure calculations were carried out using a mixture of PSI4,3° Molpro
2012.1,%% and TURBOMOLE.?!¥? All single-point MP2, MP2D, MP2C, MP2.5, and CCSD(T)
results reported here were extrapolated to the complete basis set (CBS) limit,3? typically
from the Dunning aug-cc-pVXZ basis sets. 3! For MP2.5 and CCSD(T), the CBS limit was es-
timated using the standard focal point technique which combines MP2/CBS with post-MP2
correlation estimated in a smaller basis set.3 B3LYP-D3(BJ) results employ the nearly-
complete def2-QZVP basis. Geometry optimizations were performed in the def2-TZVP basis
with no counterpoise correction. Integer coordination numbers of the atoms were employed
for the dispersion coefficients in MP2D geometry optimizations. All calculations here em-
ployed density fitting with standard auxiliary basis sets throughout. Counterpoise correc-
tions for basis set superposition error were employed in the MP2-based methods (excluding
the geometry optimizations). Because the DFT-D3(BJ) damping parameters were fitted

36

without counterpoise correction,® no counterpoise corrections were applied to the DFT re-

16



Performance on S66x10

MP2 —=—
MP2D —e—
MP2C —+—
B3LYP-D3(BJ) —+—

RMS Error (kcal/mol)
n

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Intermolecular Separation (n*R;)

Figure 3: Performance of MP2 and other methods on the S66x10 benchmark test set used in
fitting the empirical parameters.

sults here.

4 Results and Discussion

4.1 Energetics

The results here will demonstrate that MP2D performs very competitively with other tech-
niques across a wide variety of systems, including intermolecular interactions, conformational
energies, and thermochemistry. For comparison purposes, B3LYP-D3(BJ) was chosen as a
representative, widely used density functional that generally performs well for non-covalent
interactions.3”1® Comparison against other functionals (particularly double-hybrid density
functionals®) would make for an interesting subject of future work.

Non-covalent interactions at short range. Consider first the sixty-six dimers at
ten intermolecular separations comprising the S66x10 benchmark test set.*! The eight largest
intermolecular separations are identical to the S66x8 set used in the parameter fitting, while
the shortest two distances (0.7Ry and 0.8Ry) were not part of the final fit. Figure 3 plots
the root-mean-square (rms) errors versus intermolecular distance. At equilibrium distances
1.0Ry, the 0.18 kcal/mol rms error for MP2D is much better than MP2 (1.24 kcal/mol),
appreciably smaller than B3LYP-D3(BJ) (0.44 kcal/mol), and almost as good as MP2C
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(0.16 kcal /mol).

The MP2D performance improves further relative to the other methods at shorter sep-
arations. As the dimer separation decreases, the fraction of the MP2C UCHF and CKS
dispersion energies captured by MP2D decreases, with the short-range damping effectively
mimicking some of the repulsive exchange-dispersion terms which are not corrected in MP2C.
At 0.7Rq for instance, which was not included in the training data, the MP2D error is only
0.82 kcal/mol, versus 1.03 kcal/mol for MP2C and 2.36 kcal/mol for BSLYP-D3(BJ). Even
the recently proposed B3LYP-D3M(BJ), which seeks to improve the short-range behavior of
D3, exhibits a significantly larger error of 1.57 kcal/mol at this separation (those reported
results were counterpoise corrected).!

Of course, MP2D is only useful if it also performs well broadly, beyond the systems the
empirical parameters were fitted for. Figure 4 reports box plot error distributions for MP2,
MP2D, MP2C, and B3LYP-D3(BJ) across 10 different benchmark sets consisting of several
thousand diverse examples and lists the rms errors.

Interaction energies in more diverse systems. For the 3380 protein side chain-side
chain interactions in SSI,*® the MP2D errors are two-thirds smaller than MP2, comparable
to MP2C, and half those for B3LYP-D3(BJ) (Figure 4a). For the halogen-containing dimers
in X40*? (excluding iodine-containing species for which the Molpro MP2C implementation
fails) and the S22 set,*3** MP2D reduces the MP2 errors 2-4-fold, though they are larger
than the MP2C ones and only moderately better than B3LYP-D3(BJ). Some of the largest
MP2D errors occur for m-stacked cases, for which it corrects much of the MP2 error, but not
as effectively as MP2C. Such 7-stacked cases make up a disproportionately large fraction
of the S22 set compared to S66x8 or SSI, which helps explain the larger difference between
MP2C and MP2D for that set.

Conformation energies. Figure 4b examines conformational energy benchmarks for
alkanes (ACONF ), amino acids (Amino20x4%), sugars (SCONF?), and short peptides

(from MPCONF196%6). MP2D improves upon MP2 in all cases, reducing the rms errors
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Figure 4: Performance of MP2D and other methods for benchmark sets focusing on (a) inter-
molecular interaction energies, (b) conformational energies, and (c) thermochemistry. MP2C is only
defined for the intermolecular interactions. Boxes and whiskers contain 50% and 95% (or 99.9%
for part (a)) of the data, respectively. The table lists root-mean-square errors for all methods and
sets.

and generally narrowing the width of the error distributions. The largest improvements
occur for the amino acids and peptides where van der Waals interactions are relatively
large. Dispersion plays the smallest role the sugar conformers (SCONF), and the MP2D
improvement there is correspondingly small. MP2D outperforms B3LYP-D3(BJ) appreciably
for Amino20x4, SCONF, and the Peptides.

Thermochemistry. While intermolecular interactions and conformational energies rep-
resent traditional applications for methods like MP2D, it is equally important that MP2D
should not interfere with thermochemistry. Figure 4c plots errors for small-molecule isomer-

izations (ISO34%7) and Diels-Alder reactions (DARC*®). Dispersion plays a minimal role in
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covalent m-dimer (near 3.6 A). B3LYP-D3 employs def2-QZVP basis; all other methods at extrap-
olated CBS limit.

the small-molecule isomerization reactions found in ISO34, and the MP2D correction only re-
duces the MP2 error by 8%. Dispersion is much more important in the Diels-Alder reactions
(DARC), and MP2D cuts the MP2 error in half and substantially out-performs B3LYP-
D3(BJ). Also impressive, however, is the MP2D performance for IDISP,*® which consists of
four chemical reactions and two conformational changes involving intramolecular dispersion.
MP2D reduces the 7.0 kcal/mol rms error for MP2 to only 1.4 kcal/mol, compared to 5.5
kcal/mol for BSLYP-D3(BJ).

While a thorough comparison of density functionals is beyond the scope of this letter,
many of the test sets considered here are part of the GMTKN55 suite,° for which results from
many density functionals have been reported. Analysis of those results suggests that MP2D
is competitive with or better than the best dispersion-corrected hybrid functionals. The best
double hybrid functionals sometimes perform moderately better (with similar computational
cost to MP2D), but those functionals frequently employ empirical spin-component scaling
of the MP2 correlation (e.g. DSD-BLYP-D3(BJ)*), which is not exploited here.

Anthracene dimerization. For further insight on how MP2D performs, consider the
anthracene photodimerization reaction, which is the most challenging case in the IDISP set.

This reaction includes both a non-covalent w-stacked dimer with intermolecular separation

20



~3.6 A and a covalent photoreacted dimer with intramolecular separation ~1.6 A. It proves
problematic for many electronic structure methods.®® Whereas the MP2C dispersion cor-
rection is defined only for the intermolecular dimer, MP2D can describe both regimes. A
benchmark CCSD(T)/CBS potential energy scan was created for this reaction, as shown in
Figure 5 and described in the Supporting Information.

Figure 5 shows that various methods perform well for the intermolecular dimer energy
basin, with MP2 performing the worst due to its overestimation of the m—r interactions.
MP2D and MP2.5515% perform very similarly, overbinding the m-dimer by 1.2-1.5 kcal/mol
relative to CCSD(T). BBLYP-D3(BJ) does even better, underbinding it by 0.2 kcal/mol. The
real challenge, however, occurs in modeling the covalent basin and the competition among
the long covalent bonds between the two anthracenes, the anthracene ring distortion, and
the very short-range dispersion interactions between the anthracene rings. Unsurprisingly,
MP2 overbinds by 9.1 kcal/mol. At the other extreme, B3LYP-D3(BJ) underestimates the
stability of the covalent dimer by 13.4 kcal /mol, predicting the photodimerization reaction to
be significantly endothermic instead of slightly exothermic. In contrast, MP2.5 and MP2D
reproduce CCSD(T) nicely across most of the potential energy surface, with 1.2-1.5 kcal /mol
errors at the minima. Both methods reproduce the energy difference between the two minima
to within less than 0.1 kcal/mol. Only near ~2.5 A does MP2D perform appreciably worse
than CCSD(T) or MP2.5, where the increasingly significant static correlation arising from the
stretching of the two inter-anthracene covalent bonds is ill-described by spin-restricted MP2.
The ability to accurately describe both intra- and intermolecular interactions simultaneously

is a key feature of MP2D.

4.2 Geometries

Facile geometry optimization represents another advantage of MP2D over MP2C for systems
with significant non-covalent interactions. Consider the challenging example of [7]helicene—

seven fused benzene rings arranged in a helix. Figure 6 overlays the structures optimized with
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Figure 6: Overlay of [7]helicene crystal structure® with that predicted by MP2 (green), MP2D
(red), and BSLYP-D3(BJ) (purple) in the def2-TZVP basis. Single-point energies relative to linear
heptacene as a function of the distance R.

MP2, MP2D, and B3LYP-D3(BJ) in the def2-TZVP basis with the X-ray crystal structure.
MP2 overestimates the van der Waals interactions and artificially compresses the helical
spacing R at 3.72 A, versus ~4.4-4.6 A from the experimental crystal structures.? 5> MP2D
significantly corrects this to 4.08 A, and B3LYP-D3(BJ) predicts a seemingly even better
4.32 A.

However, the potential energy surface for compressing [7]helicene is very flat, and the ex-
perimental crystal structure may differ from the gas-phase electronic energy one due to solid-
state packing forces. To investigate, a one-dimensional B3LYP-D3(BJ)/def2-TZVP relaxed
scan over R was performed (see Supporting Information for details). Large-basis single-point
energies were computed with B3LYP-D3(BJ), MP2, MP2D, and MP2.5 and plotted relative
to the energy of the isomeric linear heptacene in Figure 6. Linear heptacene provides a useful
reference structure, since the planar molecule has no significant non-covalent interactions.
Taking MP2.5 as the reference energy, MP2 significantly overestimates the interactions and
underestimates the optimal R. B3LYP-D3(BJ) underestimates the interaction energy by
a quarter, and it overestimates the distance R, while MP2D reproduces MP2.5 quite well
and drastically lower computational cost. These results imply that the MP2D optimized

structure is actually closer than the B3LYP-D3(BJ) one to the true gas-phase structure.
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Table 3: Root-mean-square deviations (rmsd) in pm for the optimized geometries for 10 benzene
dimer stationary points relative to reference structures obtained with a mixed DFT/CCSD(T)
approach.®® Structure S4 causes significant problems for MP2 and B3LYP-D3(BJ), so the rmsd is
reported with and without S4 included. Counterpoise corrections were not employed.

Structure MP2 MP2D B3LYP-D3(BJ)
def2-TZVP def2-TZVP def2-TZVP

M1 114 3.1 2.7

M2 6.2 2.3 0.7

S1 7.2 4.9 1.2

S2 11.7 3.4 2.9

S3 8.3 3.9 2.7

S4 90.5 3.5 12.2

SH 3.8 1.0 1.0

S6 2.5 1.3 0.9

S7 11.1 3.6 4.7

S8 10.4 2.9 4.6
RMSD (all) 29.8 3.2 A7
RMSD (excluding S4) 8.7 3.2 2.8

The ten stationary points on the benzene dimer potential energy surface’® provide another
interesting case. For nine of the ten structures, BSLYP-D3(BJ) and MP2D reproduce the
reference DFT 4+ CCSD(T) structures well, with root-mean-square RMSD of 2.8 and 3.2 pm
respectively (Table 3). However, the geometry of the S4 structure varies strongly with the
method, as shown in Figure 7. In the reference structure, the benzene molecules interact
at a 53.8° angle. MP2 fails completely for this structure, optimizing to a parallel 7-stacked
structure, while BSLYP-D3(BJ) underestimates the angle at 45.2° (RMSD 12.2 pm). In
contrast, MP2D predicts a 51.8° angle of the reference structure and gives an RMSD of only

3.5 pm.

5 Conclusions

In summary, MP2D largely corrects the key dispersion-related flaws of MP2 with trivial
computational cost using a dispersion correction based on the Grimme D3 scheme. It relies

on pre-tabulated ab initio dispersion coefficients and five universal empirical parameters de-
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Reference:

Figure 7: Overlay of benzene dimer S4, showing how MP2D (red) reproduces the correct angle
between the molecules, unlike MP2 (green) and B3LYP-D3(BJ) (purple).

signed to attenuate the correction at short range and compensate for higher-order dispersion
contributions. Unlike MP2C, MP2D improves the description of intramolecular dispersion
and can be used for geometry optimizations. The results here indicate that MP2D provides
a valuable alternative to DFT in systems where van der Waals interactions are important,
ranging from organics to biomolecules. A software implementation of the MP2D disper-
sion correction that can be easily coupled with MP2 calculations in many computational
chemistry programs is freely available.?"

Future work should compare MP2D against a broader suite of density functionals. It
would also be interesting to pursue a spin-component-scaled version of MP2D. One of the
key problems in spin-component-scaled methods has been the difficulty of finding param-
eters that simultaneously improve the treatment of thermochemistry and non-covalent in-
teractions. The MP2D dispersion correction addresses the non-covalent interactions, which
would allow the spin-component scaling to correct the thermochemistry errors. Such an ap-
proach could provide an interesting alternative to some of the best-performing double-hybrid

density functionals which also employ spin-component-scaling and a similar number of global
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empirical parameters.
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