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Abstract

Non-covalent interactions govern many important areas of chemistry, ranging from

biomolecules to molecular crystals. Here, an accurate and computationally inexpensive

dispersion-corrected second-order Møller-Plesset perturbation theory model (MP2D)

is presented. MP2D recasts the highly successful dispersion-corrected MP2C model

in a framework based on Grimme’s D3 dispersion correction, combining Grimme’s

D3 dispersion coefficients with new analogous uncoupled Hartree-Fock ones and five

global empirical parameters. MP2D is faster than MP2C, and unlike MP2C, it is

suitable for geometry optimizations and can describe both intra- and intermolecu-

lar non-covalent interactions with high accuracy. MP2D approaches the accuracy of

higher-level ab initio wavefunction techniques and out-performs a widely-used hybrid

dispersion-corrected density functional on a range of intermolecular, intramolecular,

and thermochemical benchmarks.
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1 Introduction

Non-covalent interactions govern protein folding, chemistry in solution, molecular crystal

polymorphism, and many other important phenomena. Simulating such systems requires

theoretical models capable of accurately reproducing the often delicate balances among the

different types of non-covalent interactions both within molecules and between them. Large-

basis coupled cluster methods can achieve this accuracy for small systems,1 but they are

computationally prohibitive for larger ones. Dispersion-corrected density functional theory

(DFT) models provide a much more affordable option,2 though DFT cannot always provide

the requisite accuracy due to self-interaction error and other inherent limitations in the

functionals.3 Here, we report a new, computationally practical dispersion-corrected second-

order Møller-Plesset perturbation theory (MP2) model which provides high-quality energetics

and structures in systems where non-covalent interactions are important, filling an important

gap between DFT and higher-level techniques.

With formal computational cost scaling with the fifth power with system size (though this

scaling can be reduced via Laplace transform, local correlation models, etc4), MP2 provides

a valuable and computationally affordable alternative to DFT for organic systems, but it

has well-known problems describing van der Waals dispersion interactions. It overestimates

the interaction energy in the π-stacked benzene dimer by a factor of two, for example.5

From the perspective of intermolecular perturbation theory, this deficiency in MP2 stems

from its uncoupled Hartree-Fock (UCHF) treatment of intermolecular dispersion6,7 which

approximates the excited states and excitation energies that contribute to the dispersion

energy using unrelaxed ground-state Hartree-Fock orbitals.

Various models empirically scale the same-spin and opposite-spin correlation components

in MP2 to improve its performance,8–13 though the optimal parameters often vary with the

nature of the chemistry being modeled. The very successful non-empirical MP2C method7,14

replaces the problematic UCHF dispersion with an improved coupled Kohn-Sham (CKS)
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treatment of dispersion,

EMP2C = EMP2 − EUCHF
disp + ECKS

disp (1)

effectively using time-dependent density functional theory to obtain an improved descrip-

tion of the excited states. The excellent performance of MP2C for intermolecular interactions

earned it “the bronze-standard of quantum chemistry” moniker.15 Unfortunately, MP2C has

two major limitations. First, the dispersion correction is derived from intermolecular pertur-

bation theory and is not defined for intramolecular interactions. Intramolecular dispersion

can be crucial in larger molecules. Second, MP2C is not currently used for structure opti-

mization due to the complexity of its analytical nuclear gradients.

Here, we combine the ideas of MP2C with Grimme’s DFT-D3 dispersion correction16 to

develop a new dispersion-corrected MP2Dmodel. Recasting MP2C in terms of atom-centered

two-body dispersion coefficients offers clear advantages. Atomic dispersion coefficients can

be applied to both intra- and intermolecular atom-atom interactions. Furthermore, both the

energy and analytical gradients of the dispersion correction can be computed with trivial

computational cost. On the other hand, it introduces some empiricism to the model in the

form of five global parameters. MP2D is also similar to the MP2+∆vdW model,17 but it

improves upon that model in several important ways. It includes both the C6 and C8 terms,

instead of only C6 like MP2+∆vdW. More significantly, MP2D solves the problem of how

to determine the atomic C6 dispersion coefficients for different chemical environments by

adopting the D3 dispersion correction approach.16

The following sections present the MP2D model, including how the dispersion coefficients

were obtained, modifications to the short-range damping necessary to treat both covalent-

and non-covalent chemistry, several minor changes to the D3 procedure, and the strategy

used to ensure physically appropriate parameters were obtained. We then demonstrate that

MP2D performs very well across thousands of benchmark energies, including intermolecular
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interactions, conformation energies, and thermochemistry. We examine in detail the per-

formance of MP2D on the challenging anthracene photodimerization, in which inter- and

intramolecular interactions compete strongly. Finally, we study several examples of geome-

try optimization where dispersion effects play a major role. Throughout these tests, MP2D

significantly improves MP2 in cases where van der Waals dispersion is important, and it

does so with negligible additional computational cost. At the same time, the MP2D dis-

persion correction has little impact on MP2 in cases where dispersion does not contribute

significantly.

2 Theory

2.1 MP2D overview

MP2D corrects MP2 by subtracting out the pairwise interatomic UCHF dispersion energy

and replacing it with the equivalent contribution calculated at the CKS level of theory,

EMP2D = EMP2 − ẼUCHF
disp + ẼCKS

disp (2)

where

Ẽdisp = s6
∑

a,b

f6(RAB)
C6,ab

R6
AB

+ s8
∑

a,b

f8(RAB)
C8,ab

R6
AB

(3)

In these expressions, C6 and C8 are the interatomic two-body dispersion coefficients calcu-

lated at either the UCHF or CKS levels of theory, RAB is the distance between atoms A

and B, fn are short-range damping functions, and sn are empirical scaling factors. One

might further augment MP2D with a 3-body dispersion term,18 since those contributions

are missing in MP219 and can become significant in large systems,20,21 but that is not done

here.

MP2D adopts Grimme’s D3 model16 to compute the UCHF and CKS dispersion contri-

butions. In fact, MP2D uses Grimme’s existing D3 C6 coefficients for the CKS dispersion
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energy. New UCHF dispersion coefficients are computed here. Several other minor modifi-

cations are made to the D3 approach with regard to the damping at short non-covalent and

covalent distances and the evaluation of the continuous coordination approach, as described

below.

2.2 Review of the D3 approach

It is worthwhile to review Grimme’s D3 approach briefly before discussing the MP2D-specific

changes. D3 computes frequency-dependent dipole-dipole polarizabilities α(iω) for a series

of different hydrides with different coordination numbers (CNs). For carbon, for instance,

it computes them for C (CN = 0), CH (CN ≈ 1), C2H2 (CN ≈ 2), C2H4 (CN ≈ 3), and

C2H6 (CN ≈ 4). The C6 dispersion coefficients for all possible pairwise combinations of

atoms and coordination numbers are calculated via Casimir-Polder integration with these

polarizabilities after subtracting out the approximate hydrogen contribution,

C6,ab(CNa
i , CN b

j ) =
3

π

∫ ∞

0

dω
1

m

[

αAmHn(iω)−
n

2
αH2(iω)

] 1

k

[

αBkHl(iω)−
l

2
αH2(iω)

]

(4)

In this expression, αAmHn(iω) and αBkHl(iω) are the frequency dependent polarizabilities for

the reference hydrides, and αH2(iω) is the corresponding value for H2.

Key to the success of the D3 model is how it interpolates the pre-tabulated C6 coefficients

to adapt them to the current chemical environment via these coordination numbers. It

computes continuous coordination numbers for each atom a in a given system as,

CNa =
N
∑

b 6=a

1

1 + e
−16

(

4

3

Rcov
ab

Rab
−1

) (5)

where Rcov
ab are sums of pre-tabulated, modified covalent radii for each element pair. Re-

fer to the original D3 paper for details on the set of the radii used.16 The C6 dispersion

coefficients for atom a interacting with atom b in their current coordination environments
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is then computed via a weighted average of the C6 values from the tabulated coordination

environments,

C6,ab =

∑

i

∑

j C
ref
6,ab(CNa

i , CN b
j )Lij

∑

i

∑

j Lij

where Lij = e−4[(CNa−CNa

i
)2+(CNb−CNb

i
)2] (6)

Indices i and j sum over the all reference hydrides for the given element. Once the C6

coefficients are obtained for an atom-pair, the C8 coefficients are estimated according to,

C8,ab = 3C6,ab

√

QaQb (7)

and

Qa =
1

2

√

Za

〈r4〉a
〈r2〉a

(8)

where Za is the nuclear charge, and 〈r4〉a and 〈r2〉a are pretabulated multipole expectation

values for the element. See Grimme’s original work for more details.16

In MP2D, Grimme’s reference hydride C6 coefficients (as implemented in Cuby422) are

used for the CKS portion of the model. Other D3 parameters, such as the multipole expec-

tation values 〈rn〉a, covalent radii Rcov
ab , and cutoff radii R0,ab are also employed in MP2D

without modification. However, several modifications and new ingredients were added in the

development of MP2D, as described in the following sections.

2.3 UCHF dispersion coefficients

Before adding the CKS dispersion to MP2, one must subtract out the UCHF dispersion that

is already present. This requires computing UCHF dispersion coefficients that are analogous

to the existing D3 CKS ones. The general expression for the frequency dependent dipole-

dipole polarizability tensor αλσ(iω) from intermolecular perturbation theory is,

αλσ(iω) =
∑

M 6=0

ωM [〈0|µ̂λ|M〉〈M |µ̂σ|0〉+ 〈0|µ̂σ|M〉〈M |µ̂λ|0〉]

~(ω2
M + ω2)

(9)

6



where 0 and M refer to ground and excited states, ωM is the excitation energy, and λ and σ

refer to different Cartesian components of the dipole operator µ̂. The resulting polarizability

tensor αλσ(iω) is a symmetric 3× 3 matrix with unique xx, xy, xz, yy, yz, and zz elements.

At the UCHF level of theory, the excited state wavefunctions involve vertical excitation

of an electron from occupied orbital i to virtual orbital a with no orbital relaxation. In

that case, the matrix elements simplify to matrix elements of the dipole operator involving

occupied orbital i and virtual orbital a, and the excitation energy ωM reduces to the energy

difference between orbitals i and a, ωM = εi − εa = εia. Employing these simplifications and

recognizing that the molecular orbitals are real, Eq 9 becomes,

αλσ(iω) = 2
∑

ia

εia〈i|µ̂λ|a〉〈a|µ̂σ|i〉

~(ε2ia + ω2)
(10)

where the sums run over all spin orbitals i and a. Spin integration yields the following

spin-unrestricted expression,

αλσ(iω) = 2

α spin
∑

ia

εia〈i|µ̂λ|a〉〈a|µ̂σ|i〉

~(ε2ia + ω2)
+ 2

β spin
∑

ı̄ā

εı̄ā〈̄ı|µ̂λ|ā〉〈ā|µ̂σ |̄ı〉

~(ε2ı̄ā + ω2)
(11)

where i and a refer to α spin orbitals and ı̄ and ā refer to β spin orbitals. In the spin

restricted case, the expression for the frequency-dependent polarizability further simplifies

to,

αλσ(iω) = 4
∑

ia

εia〈i|µ̂λ|a〉〈a|µ̂σ|i〉

~(ε2ia + ω2)
(12)

Finally, the isotropic frequency-dependent polarizabilities used as inputs for the D3 model

are computed as the trace of the frequency dependent polarizability tensors αλσ(iω).

From these isotropic UCHF polarizabilities, the C6 coefficients were computed by sub-

tracting out the approximate hydrogen contribution and performing Casimir-Polder inte-

gration over imaginary frequency according to Eq 4. The integration was performed via
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quadrature at ten frequencies given by,

iωj =
i

tan
[

π
4N

(2j − 1)
] (13)

for j = 1, 2, · · · , 10 and with integration weights gj:

gj =
π

2N sin2
[

π
4N

(2j − 1)
] (14)

Empirical testing indicates that ten quadrature points is sufficient to obtain well-converged

dispersion coefficients.

The frequency-dependent polarizabilities α(iω) were evaluated using a modified version of

Molpro 2012.23 While most of the hydrides used in the D3 model involve closed-shell species

(spin restricted wavefunctions), there are some open-shell species for which the unrestricted

spin formalism is necessary. Open-shell species include many bare elements (e.g. H, C, N, O)

and low-coordination number hydrides (e.g. CH, OH). The spin-restricted expressions were

already available in Molpro as part of the MP2C implementation, and the spin-unrestricted

variant was implemented in a local version of Molpro.

At present, UCHF frequency-dependent polarizabilities have been computed for all nec-

essary hydrides of H, B, C, N, O, F, Ne, P, S, Cl, Ar, and Br. These represent some of

the most common elements occurring in organic chemistry. Extending the list of elements

further would be straightforward, though not all elements would be well-described with an

MP2-based model (e.g. transition metals). The hydride geometries and basis sets used to

obtain these frequency-dependent polarizabilities are identical to those used in the original

D3 work.16

Table 1 presenets several sample C6 coefficients for C-C interactions. Broadly speaking, as

the level of hydrogen saturation decreases, the atomic polarizability and therefore magnitude

of the contribution to the dispersion energy should increase. Accordingly, the dispersion

coefficients increase in magnitude from ethane to ethene and ethyne. The dispersion energy
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Table 1: Sample UCHF and CKS C6 coefficients for carbon-carbon interactions between two
identical carbons for different species/coordination environments as computed according to the D3
scheme.

UCHF C6 CKS C6

Ethane 24.1 18.3
Ethene 34.9 25.7
Ethyne 41.2 29.5
Benzene 34.8 25.6

for such systems is typically overestimated at the UCHF level. This manifests in the UCHF

coefficients listed in Table 1, which are 30–40% larger than the CKS ones.

It is notable that the local coordination number scheme used to interpolate the C6 coeffi-

cients for the given chemical environment barely differentiates between the aromatic bonds in

a species like benzene and the double-bond environment of ethene. The resulting dispersion

coefficients are nearly identical for both cases. In reality, the dispersion coefficients should

be somewhat larger for the aromatic species. This translates to MP2D underestimating the

magnitude of the dispersion correction in the benzene π dimer at the S66x8 equilibrium

separation, for example. MP2D reduces the MP2 binding energy from 4.9 kcal/mol to 3.3

kcal/mol, versus 2.8 kcal/mol for MP2C and 2.7 kcal/mol for the CCSD(T) benchmark. The

dispersion correction here also would not capture the sorts of system-size-dependent changes

in the C6 coefficientss observed for large carbon nanotubes or graphene,24 for example. Nev-

ertheless, the results in Section 4 will demonstrate that MP2D performs well overall across

a broad range of chemical systems.

2.4 Short-range damping

The MP2D dispersion correction must be damped at short-ranges to avoid unphysical be-

havior. Here, Tang-Toennies damping,25 is used to attenuate the dispersion correction at

short interatomic separations instead of the Becke-Johnson or zero-damping used in D326

The physically-motivated Tang-Toennies damping function is well-suited for reproducing the

dispersion energy in correlated methods.27 The Tang-Toennies damping expression is given
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by,

fN(Rab) = 1− exp(sRRab)
N
∑

k=0

(sRRab)
k

k!
(15)

where N is the order of the dispersion term, i.e. 6 and 8, and sR is a distance scaling factor

calculated from the cutoff radius R0,ab (taken from the D3 dispersion correction) using two

empirical parameters:

sR = a1R0,ab + a2. (16)

Fitting the damping functions to UCHF and CKS dispersion energies separately, we

found that optimal damping parameters a1 and a2 for the UCHF dispersion energies differ

from those for the CKS ones. This would give rise to four parameters, aUCHF
1 , aUCHF

2 , aCKS
1

and aCKS
2 . However, the number of parameters can be reduced as described in Section 2.6

below.

Although the Tang-Toennies damping provides a physically sound treatment in the non-

covalent regime, it damps insufficiently at covalent distances. This leads to deteriorated

MP2D description of reaction energies, for example. We thus introduce a secondary short-

ranged damping that ensures that dispersion correction becomes constant at covalent dis-

tances. This damping is achieved by modifying the value of the interatomic distance Rab

that enters Eq 3 as

R′
ab =































rcutR0,ab if Rab <= R0,ab(rcut − w/2)

Rab if Rab >= R0,ab(rcut + w/2)

rcutR0,ab + f(Rab, R0,abrcut, R0,abw) otherwise;

(17)

f(Rab, r
′
cut, w

′) = (−2.5x8 + 10x7 − 14x6 + 7x5) ∗ w′; (18)

x =
Rab − (r′cut − w′/2)

w′
(19)

where two more parameters are introduced, rcut and w, which are defined as dimensionless

factors scaling the radius R0,ab taken from the D3 correction. Eq 17 leaves Rab untouched
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Figure 1: Example of how the secondary short-range damping modifies the effective C-C inter-
atomic separation based on a cutoff radius of R0,ab = 2.9103 Å, rcut = 0.72, and w = 0.2.

for distances greater than R0,ab(rcut + w/2), and it fixes Rab at a constant fraction of R0,ab

for distances that are shorter than R0,ab(rcut − w/2). The third portion of the function in

Eq 17 smooths the transition between these two regimes. The high-order polynomial ensures

smooth first, second and third derivatives at the end points of the switching interval.

This damping is applied at very short distances so that it practically does not affect

intermolecular non-covalent interactions. For example, using the final optimized parameters

described in Section 2.6, this damping smoothly alters the effective interatomic separation for

two carbon atoms from the actual separation to a fixed value near 2 Å and below (Figure 1).

The fractional nature of rcut and w means that these distances adapt depending on the

threshold radius R0,ab for the given atom pair. The overall dispersion energy is therefore

doubly damped: first by Tang-Toennies in the non-covalent regime, and second by this

short-range damping in the covalent regime.

2.5 Modified C6 interpolation

In D3, the C6 coefficients are interpolated using a continuous coordination number CN

calculated from distances to all other atoms using a switching function (Eq 5). Although

this switching function decays quickly, it yields small but nonzero contributions even at non-
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covalent distances. This makes the C6 coefficients in a dimer slightly different to these in

isolated monomers in the same geometry, and this propagates also to the C8 coefficients.

This proves problematic at short distances (where the C8 term becomes important) when

a weaker damping function is used.27 In MP2D, we eliminated this issue by replacing the

switching function with one that drops exactly to zero at larger separations. Again, the

polynomial interpolating between the short- and long-range regimes was designed to have

smooth first and second derivatives at the end points of the switching interval. The scaling

factors in this function were fitted to closely reproduce the original D3 one. The MP2D

coordination number is now calculated as,

CN =
N
∑

B 6=A

f(Rcov
ab , Rab); (20)

f(Rcov
ab , Rab) =































1.0 if Rab <= 0.95Rcov
ab

0.0 if Rab >= 1.75Rcov
ab

f ′(x) otherwise;

(21)

f ′(x) = 1.0− (−20x7 + 70x6 − 84x5 + 35x4); (22)

x =
Rab − 0.95Rcov

ab

1.75Rcov
ab − 0.95Rcov

ab

. (23)

In the geometry optimizations reported here, we used integer coordination numbers to sim-

plify the calculation of the gradient. All the studied systems have well-defined geometries

where the continuous valence numbers differ only negligibly from integer ones, so this as-

sumption does not introduce any appreciable error. One could implement gradients for the

continuous valence coordination numbers if desired.

2.6 MP2D Parameterization

The MP2D model described thus far could conceivably employ up to ten potential global

parameters: separate s6 and s8 scaling terms for each of the UCHF and CKS C6 and C8
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dispersion energies (four parameters), two parameters for the UCHF Tang-Toennies damping

function (aUCHF
1 and aUCHF

2 ), two parameters for the CKS Tang-Toennies damping function

(aCKS
1 and aCKS

2 ), and two parameters for the secondary short-range damping (rcut and w).

To obtain correct dispersion energies at long distances, the s6 parameter is set to unity for

both UCHF and CKS dispersion. In exploring the parameterization, we found that the value

of the s8 parameter is similar in both the UCHF and CKS cases, so we use a single global

s8 parameter for both. This reduces the number of possible global fitting parameters from

ten to seven. At this point, we tested multiple variants of the parameterization protocol,

and analyzed the results obtained with different parameter sets, exploring the possibilities

to simplify the method further.

First, we tested fitting the CKS and UCHF Tang-Toennies terms separately to the corre-

sponding CKS and UCHF energies from MP2C calculations performed on the S66x8 bench-

mark data set.28 The resulting dispersion coefficient model reproduced the original CKS

and UCHF energies rather well. The optimal parameter values in the CKS and UCHF

Tang-Toennies damping functions differed significantly. Next, to capture some higher-order

contributions not covered by MP2C, the Tang-Toennies fit parameters were refined against

CCSD(T)/CBS interaction energies on the same S66x8 data (i.e. fitting to the energy differ-

ence between MP2 and CCSD(T) instead of the raw MP2C energy components). When the

parameterization was started from the UCHF and CKS parameter values fitted to the CKS

and UCHF dispersion energy components separately, the resulting Tang-Toennies damping

parameters changed only very slightly.

However, further testing found that an equally good fit to the post-MP2 correlation

energy can be obtained when the same values of the parameters are used in both the CKS

and UCHF damping functions. Using common parameters reduces the fidelity with which

MP2D reduces the individual UCHF and CKS dispersion energy components, but it has

no appreciable negative impact on the quality of the net dispersion correction. We decided

that reduction in the number of adjustable parameters was more useful than reproducing
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the individual dispersion energy components. Setting

aUCHF
1 = aCKS

1 = a1, and (24)

aUCHF
2 = aCKS

2 = a2. (25)

reduces the number of global parameters down to five (s8, a1, a2, rcut, and w). Figure S1

in the Supporting Information provides an sample comparison for MP2D with and without

constraining the Tang-Toennies parameters to be identical.

During the parameterization procedure thus far, the S66x8 data set proved sufficient for

a robust and transferable parameterization of the correction at non-covalent distances. The

three parameters affecting the dispersion energy in this range of distances (a1, a2 and s8)

were thus optimized first on the S66x8 data set with the short-ranged damping disabled.

Subsequently, the initial values of the remaining two parameters in the short-range damping

(rcut = 0.7 and w = 0.2) were manually chosen to yield the best compromise between short

intermolecular interactions (in the S66x10 data set) and conformation energies (using all the

conformer data sets considered later in the paper). Overall, a fairly broad range of values for

rcut and w provide comparably good performance. Larger values of rcut would be obtained

if the method was optimized on thermochemistry data, but the description of non-covalent

interactions at short distances would be compromised while reaction energies would improve

only by about 0.5 kcal/mol.

Finally, all the five parameters were fitted again to the S66x8 data set, resulting in only

small change to the values of rcut. The resulting parameters thus represent a minimum with

respect to non-covalent interactions around and above equilibrium distance (represented by

the S66x8 data set) which can be expected to be the main application targets for the method.

At the same time, the formulation of the model and the choice of the initial values of the

parameters used additional information from conformational energies needed to provide a

seamless connection between the covalent and non-covalent regime.
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Table 2 lists the final values of the parameters. Figure 2 plots the MP2D dispersion

correction energy (C6 contributions only for simplicity) for two carbon atoms as a function

of distance with no damping, just Tang-Toennies damping, and finally the actual doubly-

damped model that also includes the covalent regime short-range damping.

Table 2: Optimized values of the five global parameters used in the MP2D method.

s8 1.187 dimensionless
a1 0.944 dimensionless
a2 0.480 Ångstrom
rcut 0.72 dimensionless
w 0.20 dimensionless
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Figure 2: Behavior of the MP2D dispersion correction (C6 only here) without damping, with Tang-
Toennies damping, and the double Tang-Toennies/shorter-range damping for two sp2-hybridized
carbon atoms.

The MP2D dispersion correction has been fitted to reproduce the counterpoise-corrected

∆CCSD(T) energy correction. The remaining question is how to treat the basis set superpo-

sition error (BSSE) in the MP2 part of the calculation. When the MP2 energy is calculated

in a large basis set or extrapolated to the CBS limit, the MP2D method should be universally

applicable to both inter- and intramolecular energies because the BSSE would be smaller

than the error of the dispersion correction.

This can be demonstrated on the calculations of the interaction energies in the S66

data set performed with and without counterpoise (CP) correction. At the CBS limit, using
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MP2D without CP correction yields smaller RMSE (0.19 kcal/mol) than when CP correction

is applied (0.26 kcal/mol). The good performance without CP correction results from error

cancellation, but it shows that the energy changes associated with the CP correction are

several times smaller than the overall error. In the aug-cc-pVQZ basis, the CP-corrected

and uncorrected results are very similar (RMSE 0.35 and 0.37 kcal/mol). In smaller basis

sets, the CP uncorrected interaction energies become significantly worse.

3 Computational Methods

The dispersion correction was implemented in the freely available Cuby4 framework,22 which

interfaces multiple computational chemistry packages that could provide the MP2 calcula-

tion. The MP2D dispersion correction implementation, including the dispersion coefficients

for the 13 common first- and second-row elements noted above, documentation, and input

examples, are provided at the Cuby website.29

Electronic structure calculations were carried out using a mixture of PSI4,30 Molpro

2012.1,23 and TURBOMOLE.31,32 All single-point MP2, MP2D, MP2C, MP2.5, and CCSD(T)

results reported here were extrapolated to the complete basis set (CBS) limit,33 typically

from the Dunning aug-cc-pVXZ basis sets.34 For MP2.5 and CCSD(T), the CBS limit was es-

timated using the standard focal point technique which combines MP2/CBS with post-MP2

correlation estimated in a smaller basis set.4,35 B3LYP-D3(BJ) results employ the nearly-

complete def2-QZVP basis. Geometry optimizations were performed in the def2-TZVP basis

with no counterpoise correction. Integer coordination numbers of the atoms were employed

for the dispersion coefficients in MP2D geometry optimizations. All calculations here em-

ployed density fitting with standard auxiliary basis sets throughout. Counterpoise correc-

tions for basis set superposition error were employed in the MP2-based methods (excluding

the geometry optimizations). Because the DFT-D3(BJ) damping parameters were fitted

without counterpoise correction,36 no counterpoise corrections were applied to the DFT re-
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Figure 3: Performance of MP2 and other methods on the S66x10 benchmark test set used in
fitting the empirical parameters.

sults here.

4 Results and Discussion

4.1 Energetics

The results here will demonstrate that MP2D performs very competitively with other tech-

niques across a wide variety of systems, including intermolecular interactions, conformational

energies, and thermochemistry. For comparison purposes, B3LYP-D3(BJ) was chosen as a

representative, widely used density functional that generally performs well for non-covalent

interactions.37–40 Comparison against other functionals (particularly double-hybrid density

functionals40) would make for an interesting subject of future work.

Non-covalent interactions at short range. Consider first the sixty-six dimers at

ten intermolecular separations comprising the S66x10 benchmark test set.41 The eight largest

intermolecular separations are identical to the S66x8 set used in the parameter fitting, while

the shortest two distances (0.7R0 and 0.8R0) were not part of the final fit. Figure 3 plots

the root-mean-square (rms) errors versus intermolecular distance. At equilibrium distances

1.0R0, the 0.18 kcal/mol rms error for MP2D is much better than MP2 (1.24 kcal/mol),

appreciably smaller than B3LYP-D3(BJ) (0.44 kcal/mol), and almost as good as MP2C
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(0.16 kcal/mol).

The MP2D performance improves further relative to the other methods at shorter sep-

arations. As the dimer separation decreases, the fraction of the MP2C UCHF and CKS

dispersion energies captured by MP2D decreases, with the short-range damping effectively

mimicking some of the repulsive exchange-dispersion terms which are not corrected in MP2C.

At 0.7R0 for instance, which was not included in the training data, the MP2D error is only

0.82 kcal/mol, versus 1.03 kcal/mol for MP2C and 2.36 kcal/mol for B3LYP-D3(BJ). Even

the recently proposed B3LYP-D3M(BJ), which seeks to improve the short-range behavior of

D3, exhibits a significantly larger error of 1.57 kcal/mol at this separation (those reported

results were counterpoise corrected).41

Of course, MP2D is only useful if it also performs well broadly, beyond the systems the

empirical parameters were fitted for. Figure 4 reports box plot error distributions for MP2,

MP2D, MP2C, and B3LYP-D3(BJ) across 10 different benchmark sets consisting of several

thousand diverse examples and lists the rms errors.

Interaction energies in more diverse systems. For the 3380 protein side chain-side

chain interactions in SSI,38 the MP2D errors are two-thirds smaller than MP2, comparable

to MP2C, and half those for B3LYP-D3(BJ) (Figure 4a). For the halogen-containing dimers

in X4042 (excluding iodine-containing species for which the Molpro MP2C implementation

fails) and the S22 set,43,44 MP2D reduces the MP2 errors 2–4-fold, though they are larger

than the MP2C ones and only moderately better than B3LYP-D3(BJ). Some of the largest

MP2D errors occur for π-stacked cases, for which it corrects much of the MP2 error, but not

as effectively as MP2C. Such π-stacked cases make up a disproportionately large fraction

of the S22 set compared to S66x8 or SSI, which helps explain the larger difference between

MP2C and MP2D for that set.

Conformation energies. Figure 4b examines conformational energy benchmarks for

alkanes (ACONF45), amino acids (Amino20x440), sugars (SCONF40), and short peptides

(from MPCONF19646). MP2D improves upon MP2 in all cases, reducing the rms errors
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Root-Mean-Square Error (kcal/mol)
Set MP2 MP2C MP2D B3LYP-D3(BJ)

S66x10 1.54 0.39 0.33 0.88
X40 0.72 0.27 0.34 0.35
S22 1.38 0.19 0.35 0.43
SSI 0.36 0.14 0.16 0.32

ACONF 0.11 – 0.06 0.07
Amino20x4 0.26 – 0.17 0.29
SCONF 0.31 – 0.29 0.51
Peptides 0.71 – 0.27 0.56
ISO34 1.68 – 1.55 2.64
DARC 3.97 – 1.90 8.26
IDISP 7.03 – 1.44 5.53

Figure 4: Performance of MP2D and other methods for benchmark sets focusing on (a) inter-
molecular interaction energies, (b) conformational energies, and (c) thermochemistry. MP2C is only
defined for the intermolecular interactions. Boxes and whiskers contain 50% and 95% (or 99.9%
for part (a)) of the data, respectively. The table lists root-mean-square errors for all methods and
sets.

and generally narrowing the width of the error distributions. The largest improvements

occur for the amino acids and peptides where van der Waals interactions are relatively

large. Dispersion plays the smallest role the sugar conformers (SCONF), and the MP2D

improvement there is correspondingly small. MP2D outperforms B3LYP-D3(BJ) appreciably

for Amino20x4, SCONF, and the Peptides.

Thermochemistry. While intermolecular interactions and conformational energies rep-

resent traditional applications for methods like MP2D, it is equally important that MP2D

should not interfere with thermochemistry. Figure 4c plots errors for small-molecule isomer-

izations (ISO3447) and Diels-Alder reactions (DARC48). Dispersion plays a minimal role in
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Figure 5: Potential energy basins for covalent anthracene photodimer (near 1.6 Å) and non-
covalent π-dimer (near 3.6 Å). B3LYP-D3 employs def2-QZVP basis; all other methods at extrap-
olated CBS limit.

the small-molecule isomerization reactions found in ISO34, and the MP2D correction only re-

duces the MP2 error by 8%. Dispersion is much more important in the Diels-Alder reactions

(DARC), and MP2D cuts the MP2 error in half and substantially out-performs B3LYP-

D3(BJ). Also impressive, however, is the MP2D performance for IDISP,40 which consists of

four chemical reactions and two conformational changes involving intramolecular dispersion.

MP2D reduces the 7.0 kcal/mol rms error for MP2 to only 1.4 kcal/mol, compared to 5.5

kcal/mol for B3LYP-D3(BJ).

While a thorough comparison of density functionals is beyond the scope of this letter,

many of the test sets considered here are part of the GMTKN55 suite,40 for which results from

many density functionals have been reported. Analysis of those results suggests that MP2D

is competitive with or better than the best dispersion-corrected hybrid functionals. The best

double hybrid functionals sometimes perform moderately better (with similar computational

cost to MP2D), but those functionals frequently employ empirical spin-component scaling

of the MP2 correlation (e.g. DSD-BLYP-D3(BJ)49), which is not exploited here.

Anthracene dimerization. For further insight on how MP2D performs, consider the

anthracene photodimerization reaction, which is the most challenging case in the IDISP set.

This reaction includes both a non-covalent π-stacked dimer with intermolecular separation
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∼3.6 Å and a covalent photoreacted dimer with intramolecular separation ∼1.6 Å. It proves

problematic for many electronic structure methods.50 Whereas the MP2C dispersion cor-

rection is defined only for the intermolecular dimer, MP2D can describe both regimes. A

benchmark CCSD(T)/CBS potential energy scan was created for this reaction, as shown in

Figure 5 and described in the Supporting Information.

Figure 5 shows that various methods perform well for the intermolecular dimer energy

basin, with MP2 performing the worst due to its overestimation of the π–π interactions.

MP2D and MP2.551,52 perform very similarly, overbinding the π-dimer by 1.2–1.5 kcal/mol

relative to CCSD(T). B3LYP-D3(BJ) does even better, underbinding it by 0.2 kcal/mol. The

real challenge, however, occurs in modeling the covalent basin and the competition among

the long covalent bonds between the two anthracenes, the anthracene ring distortion, and

the very short-range dispersion interactions between the anthracene rings. Unsurprisingly,

MP2 overbinds by 9.1 kcal/mol. At the other extreme, B3LYP-D3(BJ) underestimates the

stability of the covalent dimer by 13.4 kcal/mol, predicting the photodimerization reaction to

be significantly endothermic instead of slightly exothermic. In contrast, MP2.5 and MP2D

reproduce CCSD(T) nicely across most of the potential energy surface, with 1.2–1.5 kcal/mol

errors at the minima. Both methods reproduce the energy difference between the two minima

to within less than 0.1 kcal/mol. Only near ∼2.5 Å does MP2D perform appreciably worse

than CCSD(T) or MP2.5, where the increasingly significant static correlation arising from the

stretching of the two inter-anthracene covalent bonds is ill-described by spin-restricted MP2.

The ability to accurately describe both intra- and intermolecular interactions simultaneously

is a key feature of MP2D.

4.2 Geometries

Facile geometry optimization represents another advantage of MP2D over MP2C for systems

with significant non-covalent interactions. Consider the challenging example of [7]helicene—

seven fused benzene rings arranged in a helix. Figure 6 overlays the structures optimized with
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Table 3: Root-mean-square deviations (rmsd) in pm for the optimized geometries for 10 benzene
dimer stationary points relative to reference structures obtained with a mixed DFT/CCSD(T)
approach.56 Structure S4 causes significant problems for MP2 and B3LYP-D3(BJ), so the rmsd is
reported with and without S4 included. Counterpoise corrections were not employed.

Structure MP2 MP2D B3LYP-D3(BJ)
def2-TZVP def2-TZVP def2-TZVP

M1 11.4 3.1 2.7
M2 6.2 2.3 0.7
S1 7.2 4.9 1.2
S2 11.7 3.4 2.9
S3 8.3 3.9 2.7
S4 90.5 3.5 12.2
S5 3.8 1.0 1.0
S6 2.5 1.3 0.9
S7 11.1 3.6 4.7
S8 10.4 2.9 4.6

RMSD (all) 29.8 3.2 4.7
RMSD (excluding S4) 8.7 3.2 2.8

The ten stationary points on the benzene dimer potential energy surface56 provide another

interesting case. For nine of the ten structures, B3LYP-D3(BJ) and MP2D reproduce the

reference DFT + CCSD(T) structures well, with root-mean-square RMSD of 2.8 and 3.2 pm

respectively (Table 3). However, the geometry of the S4 structure varies strongly with the

method, as shown in Figure 7. In the reference structure, the benzene molecules interact

at a 53.8◦ angle. MP2 fails completely for this structure, optimizing to a parallel π-stacked

structure, while B3LYP-D3(BJ) underestimates the angle at 45.2◦ (RMSD 12.2 pm). In

contrast, MP2D predicts a 51.8◦ angle of the reference structure and gives an RMSD of only

3.5 pm.

5 Conclusions

In summary, MP2D largely corrects the key dispersion-related flaws of MP2 with trivial

computational cost using a dispersion correction based on the Grimme D3 scheme. It relies

on pre-tabulated ab initio dispersion coefficients and five universal empirical parameters de-

23





empirical parameters.
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