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Classical polarizable force fields effectively incorporate the dynamic response of the electronic charge distri-
butions into molecular dynamics simulations, but they do so at a significant increase in computational cost
compared to simpler models. Here, we demonstrate how one can improve the stability of a polarizable force
field molecular dynamics simulation or accelerate the evaluation of self-consistent polarization via a simple
extension of the predictor in the Always Stable Predictor-Corrector (ASPC) method. Specifically, increasing
the number of prior steps used in the predictor from six to sixteen reduces the energy drift by an order of
magnitude. Alternatively, for a given level of energy drift, the induced dipoles can be obtained ~20% faster
due to the reduced number of self-consistent field iterations required to maintain energetic stability. The

extended-history predictor is straightforward to implement and involves minimal computational overhead.
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Consideration of force field polarization is necessary to
capture the transport properties of ionic liquids® and to
describe protein structure adequately.?3 However, the in-
clusion of polarization significantly increases the compu-
tational cost of classical molecular dynamics (MD) sim-
ulations. For instance, solving the large system of linear
equations to obtain the induced dipoles in the AMOEBA
force field* accounts for about 50% of the computa-
tional cost of an MD simulation. In practice, this system
of equations is too large to be solved exactly, and instead
the solution is solved iteratively via a self consistent field
(SCF) method.™®

In these SCF methods, successive iterations generally
converge the induced dipoles toward their exact, mutu-
ally polarized values. The convergence thresholds for
these SCF solvers must be chosen with care: When evalu-
ating the polarization contributions to the nuclear forces,
it is assumed that the iteratively determined induced
dipoles have converged completely to the exact induced
dipoles. Loose convergence of the induced dipoles can in-
troduce instabilities in the simulation, such as problem-
atic long-term energy conservation or deviations in phys-
ical properties.'® On the other hand, converging the in-
duced dipoles more tightly via additional SCF iterations
can increase the computational costs appreciably. Strate-
gies based on perturbation theory,!''2 truncated conju-
gate gradients,'®1* and extended-Lagrangian models'®16
have been developed to circumvent the computational
costs of converging the induced dipoles tightly during the
polarization procedure.

Alternatively, use of a history-based predictor to con-
struct a good initial guess for the SCF solver can sig-
nificantly reduce the iterations and computational cost
required to reach convergence.® A predictor can provide
an efficient means of calculating the induced dipoles with-
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out introducing additional approximations. However, the
use of induced dipoles from previous time steps destroys
the time reversibility of the method.'” Time reversibility
is a characteristic of symplectic integrators which pre-
serve phase space volume and therefore conserve energy.
A useful predictor should therefore exhibit an acceptable
degree of time reversibility while substantially improving
the starting point of the SCF method—i.e. it should pro-
vide an acceptable compromise between energy drift and
computational cost. In this letter, we focus on the predic-
tor from the Always Stable Predictor-Corrector (ASPC)
method,'® which is a polynomial extrapolation scheme
that employs information from previous time steps in a
manner designed to guarantee stability during the MD
time integration. Nevertheless, the ASPC predictor still
introduces some energy drift in practice. Whereas con-
ventional wisdom holds that the predictor should use in-
formation from only a relatively small number of recent
steps, here we demonstrate how incorporating a much
longer history in the predictor addresses stability con-
cerns and/or reduces the computational cost of comput-
ing the induced dipoles by ~20%.

The ASPC uses a history-based predictor for the in-
duced dipoles,

k+1

W(t+1) = 3 Bisapalt - jh) (1)
7=0

where pP(t + 1) is the predicted dipole, Bjiq are the
scaling coefficients and p(t — jh) are the induced dipoles
from previous time steps. The time step size is h and
k + 2 is the total number of values stored in history.
The Bj1 scaling coefficients are derived such that the
contributions that lead to time irreversibility error are
chosen to be zero. In the original ASPC approach, the
predicted induced dipoles are subsequently corrected by
performing a single iteration of the SCF solver and then
damping the resulting dipole update. The specific value
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FIG. 1. Predictor coefficients with increasing history length.

of the damping coefficient is determined empirically, and
its optimal value can potentially vary between systems
and/or over the course of a simulation.

The Tinker software packages'®2! (and possibly oth-
ers) avoid this empirical damping parameter part of the
corrector. Instead they employ the so-called “predicted
iteration” method,'® in which the predictor generates the
initial guess for the induced dipoles, after which the SCF
iterations are allowed to proceed until some user-defined
convergence value is reached or a desired number of iter-
ations has been performed. This predicted iteration vari-
ant of the ASPC is more accurate and circumvents the
need to determine the optimal damping parameter.!?

Previously, the predictor coefficients were worked out
and tested up to the 6-step predictor (k = 4), but the 4-
step predictor was suggested as a compromise between
accuracy and memory storage.' The additional SCF
iterations performed in the predicted iteration method
mitigate accumulation of error that might arise from the
use of only a single SCF iteration in the ASPC. These
additional SCF iterations potentially change the calculus
regarding the optimal number of prior steps to include in
the predictor, since a longer history might lead to a better
guess for the dipoles and therefore require fewer iterations
to converge at the next time step. Whereas the current
implementation of this method in the Tinker packages
employs a 6-step predictor, in this letter we test up to the
16-step predictor in the Tinker-HP v1.1 package.?’ The
necessary coefficients for these higher N-step predictors
can be derived from the recursive expressions presented
previously.!® Using these expressions, we have derived
the coefficients for up to a 25-step predictor, and these
are included in the Supplementary Information.

Augmenting an existing implementation of the ASPC
predictor to use higher N-step predictors is straightfor-
ward and adds little computational overhead. For a given
system size, the memory requirements increase linearly
with the number of induced dipole vectors stored in his-
tory. In a parallel implementation such as the one in

Tinker-HP,2° these historical induced dipoles can be dis-
tributed across nodes, since each processor only needs
knowledge of the dipole elements handled by that pro-
cessor. Regardless, the total memory requirements are
insignificant even with global storage: the induced dipole
history for a 100,000 atom system for the 16-step predic-
tor requires only 38.4 MB of memory in double precision.
Evaluating the predictor requires just scalar multiplica-
tion, so the computational cost is negligible relative to
the cost of an SCF iteration, and it scales linearly with
the number of prior steps included.

In the ASPC predictor, the predicted induced dipole
depends most strongly on the recent induced dipoles in
history. In Figure 1 we see this trend holds for across a
range of N-step predictors. In the 16-step predictor, for
instance, the eight most recent history points account for
99.1% of the predicted induced dipole magnitude, while
the oldest 8 history points contribute the remaining 0.9%.
That means for a 1 fs time step, the 16-step predictor is
dominated by contributions from the last 8 fs of simula-
tion, which is shorter than the time period during which
any substantial structural or conformational changes to
the chemical system might occur.

The current work explores up to 16-step predictors,
for which the B;1; coefficients span seven orders of mag-
nitude. The coefficients for the 25-step predictor span
twelve orders of magnitude. The decision to stop at the
16-step predictor here is somewhat arbitrary. The 16-
step predictor provides significant computational bene-
fits (as shown below) while avoiding the need to handle
many tiny contributions that would arise from employing
a longer history.

We test the different N-step predictors here with the
two SCF polarization solvers: the widely used precon-
ditioned conjugate gradients (PCG) solver?? and our re-
cently developed divide-and-conquer Jacobi iterations ac-
celerated with direct inversion in the iterative subspace
(DC-JI/DIIS) solver. We have previously demonstrated
the superior speed and stability of DC-JI/DIIS relative
to PCG.2324 DC-JI/DIIS is used here unless otherwise
specifically noted. Typically one iterates the SCF equa-
tions until a user-chosen convergence criterion is met.
However, given the small numbers of iterations typically
required to meet commonly used convergence criteria,
even a change of one iteration arising from slightly dif-
ferent initial guesses can substantially alter how tightly
converged the induced dipoles are. That in turn would
obscure the stability behavior resulting from the predic-
tor. To ensure an even-handed comparison of stability
across the different solvers and predictors, all results here
employ a fixed number of SCF iterations in the polariza-
tion solver. Testing indicates that the stability improve-
ments reported here for the longer-history predictors also
occur with more traditional threshold-based convergence
criteria.

Stability of the predicted iteration approach is assessed
here in terms of energy conservation in an NVE ensem-
ble. The method also performs well for NVT ensembles,
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FIG. 2. Comparison of the energy conservation (in kcal mol ~*
per atom) for NVE simulations on (H20)s00 with different N-
step predictors and three SCF iterations at each time step.

though using a thermostat obscures differences between
the different predictors. Testing was done on a 500-
molecule water box?® and on the ubiquitin system.® The
9,737-atom ubiquitin system consists of the 1,227-atom
protein surrounded by 2,835 waters. All simulations were
performed with the reversible reference system propaga-
tor algorithm (RESPA) multi-step integrator?® using a 1
fs time step for non-bonded forces and 0.5 fs time step
for the bonded forces. A direct space cutoff of 7 A was
employed for the particle-mesh Ewald treatment of long-
range interactions. Energy drift was typically measured
via linear regression of the energies over 1 ns of simulation
time. For more tightly converged cases with less energy
drift, 5-10 ns of simulation were used. Empirical testing
indicates that these simulation lengths are sufficient to
provide converged regression slopes (energy drift).

Figure 2 plots the energy conservation from NVE sim-
ulations on (H20)s500 with different N-step predictors.
The tightly converged reference simulation (i.e. 20 DC-
JI/DIIS iterations, starting from initial guess dipoles
equal to the polarizability times the permanent electric
field) converges the dipoles to a root-mean-square change
of ~10713 Debye, and it exhibits negligible drift (<10~°
kcal mol~! ns™! atom™!). In contrast, the N=6 pre-
dictor with three SCF iterations per time step drifts by
—0.042 kcal mol~™! ns™! atom™!. Increasing the length
of the history employed in the predictor reduces the drift
considerably. Despite taking only three SCF iterations
per time step, the N=16 predictor case drifts by only
—0.002 kcal mol™! ns™' atom™! over the 10 ns trajec-
tory.

For a broader perspective, Figure 3 plots the drift per
nanosecond in the (H20)500 box as a function of the num-
ber of steps included in the predictor and the number of
SCF iterations. Each data point in this plot corresponds
to a drift rate extracted from linear regression of an NVE
simulation under those conditions. Independent of the
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FIG. 3. Energy drift rate (kcal mol~! ns™') per atom for NVE
simulations on (H20)s00 for the 6-step to 16-step predictor
with differing numbers of SCF iterations at each time step.
A tightly converged reference simulation with no predictor
exhibits energy drift less than 1075 kcal mol ™! ns™! per atom.

number of SCF iterations, increasing the history from
the 6-step to the 16-step predictor decreases the energy
drift rate by an order of magnitude. Moreover, the use
of the 16-step predictor consistently improves the energy
stability by an amount comparable to what one would
obtain by performing an additional SCF iteration with
the 6-step predictor. From that perspective, the bet-
ter predictor can be used to accelerate the evaluation of
the induced dipoles without increasing energy drift. For
example, DC-JI/DIIS generally requires four SCF itera-
tions to converge to a 10~° Debye threshold.?* With the
16-step predictor, comparable energy conservation can
be obtained at the cost of only three SCF iterations, or a
computational savings of ~20%. The performance here is
not unique to water, either. Similar energy drift behav-
ior is observed for the ubiquitin system and an aqueous
NaCl solution as well. See Supporting Information (SI).

It is interesting to compare the present approach with
other recently developed strategies for accelerating polar-
izable force field simulations. For example, in the 16-step
predicted iteration method with three iterations, the en-
ergy drift rate is only 0.002 kcal mol™! ns~! atom™!.
For comparison, a thermostatted extended-Lagrangian
approach employing the same number of SCF iterations
exhibited a somewhat larger energy drift of ~0.009 kcal
mol~! ns~! atom™! for a similar water box.'® The ap-
proximate OPT3 perturbative polarization solver'? also
effectively utilizes three SCF iterations, but it requires
several empirically fitted parameters to achieve good ac-
curacy. Furthermore, the large N-step predictor ap-
proach here is probably as fast or faster than the trun-
cated conjugate gradient approximate solvers (at least for
1 fs time steps), since those effectively employ 2-3 PCG
iterations and have more expensive analytic gradients.

On the other hand, the performance of the traditional
ASPC predictor implementation degrades when longer
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FIG. 4. Comparison of different higher N-step predictors with
the DC-JI/DIIS and PCG polarization solvers.

time steps are used in the simulation, unlike solvers such
as OPT or TCG where the number of SCF steps de-
pends only on the current state and is independent of
time step size. Results are presented in the SI examining
the behavior of longer-history predictor with 3 fs time
steps instead of 1 fs ones (using hydrogen mass reweight-
ing as implemented in Tinker-HP). With 3 fs time steps,
two additional DC-JI/DIIS SCF iterations are required
to maintain energy drift comparable to that of 1 fs time
steps. Increasing the history from 6 to 16 steps still im-
proves energy conservation noticeably, though the mag-
nitude is reduced from ~10-fold with a 1 fs step to ~3—
4-fold with a 3 fs time step. In other words, the benefits
of the longer-history predictor decrease when longer time
steps are taken, but they are still appreciable and worth-
while given the low computational cost associated with
them.

A direct and thorough performance comparison among
the different polarization approaches over a range of sim-
ulation scenarios would be a valuable future work. Here,
we compare just two polarization solvers, DC-JI/DIIS
and PCG, with higher N-step predictors in Figure 4.
With 1 fs time steps, both SCF methods generally benefit
from employing the higher N-step predictors. However,
DC-JI/DIIS exhibits less drift relative to PCG for all
simulations. Interestingly, for the case of the PCG solver
using two iterations, using higher N-step predictors does
not decrease the energy drift, in contrast to what is ob-
served for the more robust DC-JI/DIIS solver. For the 3
fs time step case examined in SI, PCG exhibits no benefit
from the longer predictor. Both observations contrast the
behavior of the more robust DC-JI/DIIS solver, where
the longer predictor is always beneficial. PCG is more
sensitive to the initial guess dipoles than other methods
like JI.8

Finally, to understand why the longer N-step pre-
dictors perform better than shorter-history ones, Fig-
ure 5 shows the distribution of dipole errors in the ini-
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FIG. 5. Distributions of errors in the induced dipoles from
the initial guess (pq) and first four SCF iterations relative
to tightly converged dipoles using either the 6-step (blue) or
16-step predictor (red).

tial guess (ug) and after each successive iteration relative
to a tightly converged (20 SCF iterations) reference set.
With both 6-step and 16-step predictors, the initial guess
dipoles have errors around 10~% D, but the root-mean-
square (rms) errors for the 16-step case are about ~20%
smaller. The errors in the induced dipoles decrease sev-
eral fold with each SCF iteration, but the dipoles from
the 16-step predictor consistently maintain ~20% higher
accuracy. These small accuracy improvements in the in-
duced dipoles are sufficient to increase the stability of the
simulations signifcantly.

In conclusion, we have demonstrated that use of a
longer history in the “predicted iteration” variant of the
ASPC provides substantial computational benefits in the
context of the AMOEBA force field. Increasing the his-
tory from 6 to 16 steps requires only minor software mod-
ifications and adds little computational overhead, yet it
reduces the rate of energy drift by an order of magnitude.
Alternatively, one can employ this strategy to reduce the
number of SCF iterations and accelerate the calculation
of force field polarization by ~20%. The ability to achieve
acceptable energy conservation with only three SCF it-
erations makes the combination of the 16-step predic-
tor and DC-JI/DIIS polarization solver competitive with
other approximate and extended-Lagrangian schemes for
handling the induced dipoles. The extended predictor
should prove useful for other polarizable force fields in ad-
dition to AMOEBA, and perhaps it could also be adapted
for ab initio molecular dynamics simulations that em-
ploy the ASPC.?" In addition, preliminary testing with
higher-order Gear predictors did not provide the same
reduction in energy drift seen here for the longer-history
ASPC predictor. In the future, it might be interesting to
investigate behaviors of different predictors in this con-
text in more detail.
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