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De novo variants overlap with other disorders in cell polarity genes

Highlights
e Recurrent de novo variants identify a new high-confidence TD
risk gene: CELSR3

e Genes involved in cell polarity are more likely to be disrupted
by de novo variants

e De novo sequence variants may carry more risk in simplex
families, female probands

e De novo CNVs occur 2 to 3 times more often in TD probands
than in matched controls
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In Brief

Wang et al. expand their earlier exome-
sequencing work in TD, adding 291 trios
and conducting combined analyses
suggesting de novo variants carry more
risk in individuals with unaffected
parents, establishing de novo structural
variants as risk factors, identifying
CELSR3 as a risk gene, and implicating
cell polarity in pathogenesis.

Cell


mailto:ppaschou@purdue.edu
mailto:jeremy.willsey@ucsf.edu
mailto:matthew.state@ucsf.edu
https://doi.org/10.1016/j.celrep.2018.08.082
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2018.08.082&domain=pdf

OPEN

ACCESS
CellPress

Cell Reports

De Novo Sequence and Copy Number Variants
Are Strongly Associated with Tourette Disorder
and Implicate Cell Polarity in Pathogenesis

Sheng Wang,'-2:34 Jeffrey D. Mandell,®>* Yogesh Kumar,> Nawei Sun,®# Montana T. Morris,># Juan Arbelaez,*

Cara Nasello,® Shan Dong,? Clif Duhn,?# Xin Zhao,*%7 Zhiyu Yang,®> Shanmukha S. Padmanabhuni,> Dongmei Yu,&°
Robert A. King,'® Andrea Dietrich,’' Najah Khalifa,'213 Niklas Dahl,'4 Alden Y. Huang, %16 Benjamin M. Neale,°
Giovanni Coppola,'516 Carol A. Mathews,'” Jeremiah M. Scharf,?-° Tourette International Collaborative Genetics Study
(TIC Genetics), Tourette Syndrome Genetics Southern and Eastern Europe Initiative (TSGENESEE), Tourette Association
of America International Consortium for Genetics (TAAICG), Thomas V. Fernandez,'® Joseph D. Buxbaum,'8

Silvia De Rubeis,'® Dorothy E. Grice,'® Jinchuan Xing,® Gary A. Heiman,%2° Jay A. Tischfield,%2° Peristera Paschou,52%*
A. Jeremy Willsey,3419.20.21.* gand Matthew W. State3.19.20.*

1College of Biological Sciences, China Agricultural University, Beijing, China

2National Institute of Biological Sciences, Beijing, China

3Department of Psychiatry, UCSF WEeill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
4Institute for Neurodegenerative Diseases, UCSF WEeill Institute for Neurosciences, University of California, San Francisco, San Francisco,
CA, USA

5Department of Biological Sciences, Purdue University, West Lafayette, IN, USA

SDepartment of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
"Department of Traditional Chinese Medicine, Xinhua Hospital Affiliated to Shanghai Jiatong University School of Medicine, Shanghai, China
8Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,

MA, USA

9Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA

10Yale Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA

1Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
12Department of Neuroscience, Child and Adolescent Psychiatry Uppsala University, Uppsala, Sweden

13Centre for Research and Development, Region Gavleborg, Gévle, Sweden

14Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden

15Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA

16Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA

17Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA

18Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA

19Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA

20These authors contributed equally

21l ead Contact

*Correspondence: ppaschou@purdue.edu (P.P.), jeremy.willsey@ucsf.edu (A.J.W.), matthew.state@ucsf.edu (M.W.S.)
https://doi.org/10.1016/j.celrep.2018.08.082

SUMMARY TD and obsessive-compulsive disorder and de novo
copy number variants between TD and autism spec-

We previously established the contribution of de {ym disorder, consistent with shared genetic risk.

novo damaging sequence variants to Tourette disor-
der (TD) through whole-exome sequencing of 511
trios. Here, we sequence an additional 291 TD trios
and analyze the combined set of 802 trios. We
observe an overrepresentation of de novo damaging
variants in simplex, but not multiplex, families; we
identify a high-confidence TD risk gene, CELSR3
(cadherin EGF LAG seven-pass G-type receptor 3);
we find that the genes mutated in TD patients are en-
riched for those related to cell polarity, suggesting a
common pathway underlying pathobiology; and we

INTRODUCTION

Tourette disorder (TD), an early onset neurodevelopmental disor-
der characterized by chronic motor and vocal tics, has a worldwide
prevalence of approximately 0.3%-1% (CDC, 2009; Robertson,
2008; Scharf et al., 2015) and a pronounced sex bias with males
much more likely to be affected (Freeman et al., 2000; Scharf
etal.,2013). TDis highly comorbid with other psychiatric disorders,
such as obsessive-compulsive disorder (OCD) and attention-
deficit and hyperactivity disorder (ADHD) (Ghanizadeh and Mosal-
laei, 2009). Behavioral interventions have comparable effective-

confirm a statistically significant excess of de novo
copy number variants in TD. Finally, we identify signif-
icant overlap of de novo sequence variants between

aaaaaaa

Cell Reports 24, 3441-3454, September 25, 2018 © 2018 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ness to medication for tic disorders, though both, unfortunately,
have limited efficacy. Moreover, the most effective medications
to suppress unwanted movements and vocalizations may lead

3441
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Figure 1. Study Overview

Our group previously generated and analyzed WES
data from 511 TD trios, generated by the
TIC Genetics (325 trios) and TAAICG (186 trios)
consortia (Willsey et al., 2017). In this study, we
expand the number of trios with WES data by 291
(92 from TIC Genetics, 18 from UTC, and 181 from
TSGENESEE). We leverage recurrent de novo vari-
ants occurring within the same gene in unrelated
individuals to identify a high-confidence gene,
CELSR3. Next, we identify de novo CNVs from the
WES data and significantly associate these variants
with TD. Third, we replicate the association of de
novo CNVs by analysis of microarray data from 399
partially overlapping TIC Genetics trios. Finally,
based on the rate of de novo variants, we assess the

Part 1 - De novo sequence variants

TD Phase 1 TD Phase 2

[
Study Overview
Figure 2 Table 4
Table 2
De novo SNV/Indel Identification of
burden TD risk genes
| I —
r

Controls

N genomic architecture of TD. CNVs, copy number
variants; SSC, Simons Simplex Collection; TAAICG,
Tourette Association of America International Con-
sortium for Genetics; TD, Tourette disorder; TIC

.

Table 3

Genetics, Tourette International Collaborative
511 TD trios from 291 New TD trios from Genetics consortium; TSGENESEE, Tourette Syn-
TIC Genetics (325) and TIC Genetics (92), L& conio quariets ) drome Genetics Southern and Eastern Europe
TAAICG (186) UTC (18) and fomihe SSC Initiative; UTC, Uppsala Tourette Cohort.
See Figure S1 for an overview of quality control and
sample filtering and Table S1 for sample metrics.
Part 2 - De novo structural variants
N | J
I
be ES;’;GSNV arcGhﬁggtTrlg of —/ variants in cases versus controls (or versus
D expectation; Willsey et al., 2018).
¢ Recently, our group reported the asso-
ciation of de novo damaging sequence
variants  (single-nucleotide  variants
Figure 3 [SNVs] and insertion or deletion variants

[indels]) with TD risk (Willsey et al., 2017).
We identified four TD risk genes, including
one high-confidence TD (hcTD) risk gene
(false discovery rate [FDR] < 0.1) and three
probable TD (pTD) risk genes (FDR < 0.3).
We also demonstrated that, similar to

J

to long-term side effects, including chronic movement disorders
(Quezada and Coffman, 2018). Development of a broader and
more effective therapeutic armamentarium is currently profoundly
limited by a lack of understanding of pathophysiology. However,
given the significant role of genetic factors in TD (Huang et al.,
2017; Pauls et al., 1981; Price et al., 1985; Willsey et al., 2017),
the elucidation of genes and loci carrying large TD risks represents
a promising path forward for clarifying the underlying biology.
Indeed, in the past five years, advances in genomics technology,
including microarray genotyping and whole-exome sequencing
(WES), have resulted in an explosion of genetic data for neurode-
velopmental disorders, including autism spectrum disorder
(ASD), intellectual disability, epileptic encephalopathies, OCD,
ADHD, and schizophrenia. With regard to early onset disorders
in particular, it has become clear that the identification of recurrent
de novo variants is a highly reliable and productive path forward for
gene discovery, in the context of a demonstrated excess of these

3442 Cell Reports 24, 3441-3454, September 25, 2018

other early-onset neurodevelopmental
disorders, the identification of recurrent
de novo variants is a powerful strategy
for gene discovery in TD. Our group and others have also demon-
strated that rare copy number variants (CNVs) are associated with
TD risk (Fernandez et al., 2012; Huang et al., 2017; McGrath et al.,
2014; Nag et al., 2013; Sundaram et al., 2010). However, although
suggestive evidence existed (Fernandez et al., 2012), de novo
CNVs had not yet been firmly established as a risk factor.

In this study (Figure 1), we expand our earlier (phase 1) WES
study by 291 additional trios (873 samples), increasing the total
number of TD trios to 802 (2,406 samples). In the combined data-
set, we identify a new high-confidence TD risk gene, CELSRS3, as
well as two probable risk genes (OPAT and FBN2). Analyses of
the genes with de novo damaging variants implicate cell polarity
in the pathogenesis of TD. We also conduct pilot analyses that
suggest the yield of de novo sequence variants is increased in
“apparently” simplex (neither of the parents had any reported
history of a tic disorder) versus multiplex (at least one of the par-
ents had a reported history of a tic disorder) TD families and in
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Table 1. Demographics and Sequencing Metrics by Cohort

Phase Phase 1 Phase 2 Phases 1 and 2
TAAICG TAAICG
Cohort TICGen (Broad) (UCLA) TICGen uTC TSGENESEE SSC Siblings
Samples (trios) sequenced 325 149 37 92 18 181 1,184
Samples (trios) passing 311 145 37 92 18 174 1,153
QC for de novo sequence
variant calling
Male:female (sex ratio) 245:66 (3.71) 116:29 (4.00) 34:3(11.33) 73:19(3.84) 14:4 (3.50) 144:30 (4.80) 528:625 (0.84)
Paternal age® 33.05+0.63 3335+0.85 31.85+1.90 33.98+1.15 NA NA 32.6 + 0.33
Maternal age® 31.08 £0.57 31.64+0.82 30.40+1.46 31.16+0.93 NA NA 30.55 + 0.29
Simplex:multiplex®° 264:30 128:13 35:0 72:0 17:1 61:59 NA (all simplex)
Comorbid:non-comorbid®®  216:86 101:39 26:10 64:22 0:18 84:64 NA (all non-
comorbid)

Exome array Nimblegen Agilent v1.1 Nimblegen IDT xGen Nimblegen

EZ v2 EZ v3 EZ v2
Size of capture region (bp) 44,001,748 32,760,120 63,564,965 33,337,769 44,001,748
RefSeq hg19 coding region 32,586,393 31,844,591 33,644,238 33,357,319 32,586,393
covered (bp)
RefSeq hg19 coding region  96.33 94.13 99.45 98.61 96.33
covered (%)
Consensus region (bp)° 19,343,430
Coding region covered in 59.36 60.74 57.49 57.99 59.36
consensus (%)
Mean consensus callable 18.97 £ 0.041 18.97 £ 0.059 18.32+0.59 18.25+0.20 18.87 +0.11 18.50+0.0095 18.10 + 0.064

size (million bp)®

Cohort characteristics as well as sequencing metrics are summarized per cohort and by phase. 95% confidence intervals are displayed as +, where
relevant. Agilent v1.1, Agilent SureSelect v1.1; IDT xGen, IDT xGen Exome Research Panel; Nimblegen EZ v2, Nimblegen EZ Exome v2; Nimblegen EZ
v3, Nimblegen EZ Exome v3.

#Not all samples have data; we based calculations on those having records (e.g., we did not have parental age records for UTC and TSGENESEE
cohorts).

PSimplex: parents unaffected with TD; multiplex: one or more parents have TD.

°Comorbid: probands comorbid with ADHD/OCD; non-comorbid: probands not comorbid with ADHD/OCD.

%We first calculated cumulative depth of coverages for each trio. For each cohort, we then generated a list of regions in which more than 50% of trios
from that cohort have >20x joint coverage (i.e., each member of the trio has >20x depth at that position). We intersected these regions from each
cohort to generate a list of consensus regions. To reduce any potential biases arising from differences in coverage, de novo burden analyses were
restricted to these high-quality regions.

®We estimated the cumulative depth of coverage for each trio in the consensus regions and calculated the mean and 95% Cl using one-sample t test in

R. See STAR Methods for details.

female versus male probands. Additionally, we identify de novo
CNVs in WES and complementary microarray data, and conclu-
sively associate de novo CNVs with TD risk. We also revise our
estimates on the contribution of de novo sequence and struc-
tural variants to TD risk: 9.7% of cases from TD simplex families
carry a de novo damaging sequence variant and 1.5% carry a de
novo structural variant likely mediating risk. Overall, this sug-
gests that, in simplex families, approximately 10% of individuals
meeting clinical diagnostic criteria for TD will carry a contributing
de novo variant. Finally, we estimate that 483 genes contribute
risk through disruption by de novo sequence variation.

RESULTS
De Novo Sequence Variants

To follow up our phase 1 study (Willsey et al., 2017), we conduct-
ed WES on 291 new “phase 2” TD trios (802 total trios across

phase 1 and 2; Figure 1). We also analyzed 582 new phase 2
control trios from the Simons Simplex Collection (SSC) (1,184
total control trios across phase 1 and 2). After quality control,
we trimmed to 777 TD trios and 1,153 SSC trios for de novo
sequence variant calling (STAR Methods; Tables 1 and S1;
Figure S1).

We leveraged GATK to conduct alignment, quality control, and
variant calling (DePristo et al., 2011; McKenna et al., 2010; Van
der Auwera et al., 2013). We conducted joint genotyping across
the entire set of phase 1 and phase 2 TD trios, as well as the
entire set of control trios, in order to reduce batch effects. We
further modified our previous de novo calling pipeline (Willsey
et al., 2017) to utilize the GATK genotype refinement workflow
(STAR Methods; Table S2). We defined likely gene disrupting
(LGD) variants as insertion of a premature stop codon, disruption
of a canonical splice site, or a frameshift insertion or deletion,
and probably damaging missense 3 (Mis 3) variants include

Cell Reports 24, 3441-3454, September 25, 2018 3443



OPEN

ACCESS
CellPress

missense variants with a PolyPhen2 (HDIV) score > 0.957 (Adz-
hubei et al., 2010, 2013). We refer to the set of LGD and Mis3 var-
iants as “damaging”.

We detected 309 de novo coding variants from phase 2
samples (1.09 variants per sample). Applying the new pipeline
to the phase 1 samples, we detected a total of 466 de novo
coding variants (0.94 variants per sample). The number of
de novo variants per individual followed a Poisson distribution
(Figure S2), and our new pipeline achieved a 95.9% validation
rate across phase 1 and 2 TD samples. See STAR Methods
for more details. We did not validate the de novo variants in
control samples, and therefore, we conducted all burden ana-
lyses using all de novo variants identified in TD and control
trios. However, for gene discovery, we considered validated
de novo variants only. WES coverage varied across cohorts
and phases because of the different capture arrays and
sequencing protocols used (Table 1) and was positively corre-
lated with the number of de novo variants observed per individ-
ual (STAR Methods). To account for these differences, we
compared mutation rates, instead of the number of de novo
variants observed per individual, to normalize for the number
of bases with sufficient joint coverage for de novo calling
(Willsey et al., 2017). To further reduce biases, we estimated
mutation rates within a high-confidence region with high joint
coverage across all cohorts (consensus region; Table 1;
STAR Methods). We then compared the rate between TD pro-
bands and SSC siblings with a one-sided rate ratio test, as pre-
viously described (Willsey et al., 2017). We also confirmed that
the overall rate of coding de novo sequence variants does not
differ between phase 1 and phase 2 TD trios (rate ratio [RR]
1.03; p = 0.81; two-sided rate ratio test). See Table 2 for
de novo rates by variant type and Table S3 for a detailed
summary of all de novo variants called.

De Novo Sequence Variants Contribute Strong Risk to
Simplex TD

Our combined dataset consists of apparently simplex trios (the
proband is the only individual with confirmed TD; 577 trios),
multiplex trios (the proband and one or more parents have TD;
103 trios), and trios with insufficient phenotype data to make a
determination (unknown; 97 trios). We did not consider affected
status of other relatives, as this information was not consistently
available across families. We first assessed whether de novo
mutation rates vary by simplex versus multiplex trios. We
observed a significant increase in simplex, but not multiplex,
TD trios, particularly for LGD variants (simplex: RR 1.93,
p =0.0028; multiplex: RR 1.11, p = 0.50; Figure 2A; Table 2). Nar-
rowing to mutation-intolerant genes (Kosmicki et al., 2017; Lek
et al., 2016) further strengthens the statistical findings and in-
creases the effect size in simplex families (e.g., for LGD variants;
RR 3.61; p = 0.0023; Figure 2B; Table 2). For multiplex families,
the effect size of LGD variants also increases, but the result re-
mains non-significant (multiplex: RR 1.36; p = 0.55). Directly
comparing the rate of de novo variants in simplex versus multi-
plex TD trios reveals significant differences for nonsynonymous
variants in mutation-intolerant genes overall (RR 3.91; p = 0.023),
as well as for missense variants in mutation-intolerant genes
alone (RR 5.15; p = 0.047) and potentially for LGD variants too
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(RR 2.66; p = 0.28; Figure 2B). Together, these results suggest
that de novo variants likely carry risk in multiplex TD but of lesser
effect, although this remains to be confirmed with larger sample
sizes. The de novo rate in unknown trios is similar to simplex
trios, suggesting the unknown trios are largely composed of
true simplex trios (Table 2; Figure S5). Therefore, although we
excluded multiplex trios from de novo burden analyses, estima-
tion of the total number of TD risk genes, and gene discovery, we
included unknown trios in the estimation of the total number of
TD risk genes and in gene discovery.

Female Probands May Have More De Novo Sequence
Variants

Given the strong male:female sex bias in TD, we next assessed
whether sex of the proband influences de novo mutation rate in
577 simplex TD trios. We did not conduct analogous analyses in
multiplex or unknown trios because of the small sample sizes
available in this study. We first compared the rate of de novo
variants in sex-matched TD probands and SSC controls. We
observed an elevation in the rate of de novo LGD variants in fe-
male TD probands (RR 2.39; p = 0.018; female TD probands
versus female SSC controls) as well as in male TD probands
(RR 2.06; p = 0.015; male TD probands versus male SSC con-
trols). A direct comparison of female and male TD probands
does not reveal a statistically significant difference, though
the result shows a trend toward enrichment in female probands
(RR 1.57; p = 0.14; Figure S4A). Further narrowing to variants
within mutation-intolerant genes increases the observed effect
sizes (e.g., de novo LGD: female TD probands, RR 5.21, p =
0.027; male TD probands, RR 3.04, p = 0.04; Figure S4B). Again,
however, a direct comparison of female versus male TD pro-
bands does not result in a statistically significant difference
(e.g., de novo LGD: RR 1.45; p = 0.35; female versus male TD
probands). We did not observe any difference between male
and female SSC controls when comparing the overall rate of
de novo coding variants (Figure S4A).

De Novo Structural Variants

We detected de novo CNVs from the WES data from phase 1 and
phase 2 TD samples with CoNIFER (Krumm et al., 2012; STAR
Methods). This resulted in the identification of 27 de novo
CNVs in the 789 TD trios passing CNV-specific quality control
(0.034 per proband; 95% confidence interval [Cl] 0.021-0.047;
Figure S1; Table S5). In addition, we analyzed 1,136 SSC control
quartets (mother, father, proband, and unaffected sibling). This
provided the opportunity to compare the de novo CNV rate in
TD probands versus SSC siblings as a negative control, as well
as in SSC probands versus SSC siblings as a positive control.
This also facilitated a comparison of the de novo CNV burden
in ASD versus TD. Using identical methods, a total of 37
de novo CNVs were identified in 1,136 SSC probands (0.033
per proband; 95% CI 0.022-0.043) and 19 in the 1,136 SSC sib-
lings (0.017 per sibling; 95% Cl 0.0081-0.025). See Table S5
for details. We attempted qPCR-based confirmation of all
de novo CNVs identified in TD probands (88.2% confirmation
rate; STAR Methods; Table S3). We did not directly confirm de
novo CNVs in the SSC quartets, but based on confirmations pre-
viously performed on a subset of these variants as reported in
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Table 2. De Novo Sequence Mutation Rates by Category

Mutation Rate per Base Pair in RefSeq Coding Regions (x 1078; +95% Cl)

TD (n=777) Controls (n = 1,153)
Simplex Simplex Simplex

Simplex Multiplex Unknown Combined Simplex Male  Female Comorbid Non-comorbid Female Combined
Cohort (n=577) (n=103) (n=97) (n=777) (n = 461) (n=116) (n = 384) (n=179) Male (n = 528) (n = 625) (n=1,153)
Coding 1.68 £ 0.17 1.58 + 0.38 1.71 £ 0.44 1.67 £ 0.15 1.67 £ 0.20 1.69 + 0.35 1.65 + 0.21 1.72 + 0.30 1.50 + 0.17 1.55 +0.16 1.53 + 0.12
Syn 0.42 +0.087 0.44+023 0.41+020 0.42+0.075 0.42 +0.099 0.43 +0.18 0.43 + 0.11 0.40 £ 0.16 0.39 +£0.085 0.41+0.085 0.40 + 0.060
Nonsyn 1.25+0.15 1.14 +0.35 1.30 = 0.40 1.24 + 0.13 1.25+0.18 1.25 +0.32 1.22 + 0.19 1.32 + 0.27 1.10 £ 0.16 1.12+0.14 1.11 £ 0.10
Mis 1.07 £ 0.14 1.083 £ 0.34 1.13 £ 0.38 1.08 £ 0.12 1.09 + 0.16 1.01 £ 0.30 1.04 £ 0.18 1.13 £ 0.25 1.02 £ 0.15 1.02 £ 0.13 1.02 + 0.098
Mis3 0.60 + 0.10 0.60 + 0.23 0.69+0.27 0.61+0.090 0.62+0.12 0.53 + 0.20 0.62 + 0.14 0.53 + 0.17 0.53 + 0.11 0.49 + 0.093 0.51 + 0.071
LGD 0.18 £0.057 0.10+0.10 0.17+0.13 0.17 £ 0.047 0.16 = 0.062 0.25 £ 0.14 0.18 £ 0.072 0.19 £ 0.10 0.079 + 0.039 0.11 +£0.042 0.093 + 0.029
LGD + Mis3 0.78 £ 0.12 0.70+0.24  0.86 + 0.31 0.78+0.10 0.78 +0.14 0.78 + 0.22 0.80 + 0.15 0.72 + 0.19 0.61 +£0.12 0.60 + 0.11 0.60 + 0.078
LGD SNV 0.073 +0.038 0.10+0.10  0.082 + 0.093 0.078 + 0.033 0.057 +0.039 0.14 + 0.11 0.082 + 0.050 0.059 + 0.058 0.027 +0.024 0.065 + 0.033 0.048 + 0.021
LGD FS 0.11 £ 0.042 - 0.085 + 0.097 0.089 +0.034 0.10 +0.047  0.11 £0.098 0.096 + 0.050 0.13 +0.085 0.051 + 0.032 0.040 + 0.026 0.045 + 0.020
In frame 0.0045 + 0.026 + 0.051 - 0.0067 + 0.0056 + 0.011 - 0.0067 + - 0.020 + 0.019 0.0042 + 0.011 £ 0.010

0.0088 0.0093 0.013 0.0082
Intolerant 0.13 +0.047 0.026 +0.051 0.19+0.14  0.13+0.040 0.12 + 0.050 0.18 + 0.12 0.12+0.055 0.15+0.090 0.077 +0.039 0.049 + 0.029 0.062 + 0.024
Mis
Intolerant 0.069 + 0.039 0.026 + 0.051 0.055 + 0.077 0.062 + 0.031 0.064 + 0.044 0.091 + 0.089 0.070 + 0.051 0.074 + 0.065 0.020 + 0.020 0.018 +0.017 0.019 + 0.013
LGD
Intolerant 0.20 + 0.063 0.051 +0.072 0.25+0.16  0.19 £ 0.052 0.18 + 0.068 0.27 + 0.16 0.19+0.076 0.22 £0.012 0.097 + 0.043 0.067 + 0.034 0.081 + 0.027
Nonsyn

We excluded any de novo variants located outside of the consensus regions and then calculated the mutation rate per base pair and 95% Cl using t test in R. See also Figures S4 and S5. Co-
morbid, probands with TD and ADHD/OCD; damaging, LGD + Mis3; in frame, indel causing in-frame deletion or insertion (loss or gain of amino acids); intolerant LGD, de novo LGD variants
occurring in genes with pLI greater than 0.9; intolerant Mis, de novo missense variants occurring in genes with missense Z score greater than 3.891; intolerant Nonsyn, intolerant Mis + intolerant
LGD; LGD, likely gene disrupting (insertion of premature stop codon, disruption of canonical splice site, and insertion-deletion frameshift); LGD FS, insertion-deletion variant causing frameshift;
LGD SNV, point mutation causing insertion of premature stop codon and disruption of canonical splice site; Mis, missense; Mis3, missense 3 (PolyPhen2 [HDIV] score > 0.957; Adzhubei et al.,
2010, 2013); multiplex, one or more parents have TD; non-comorbid, probands with TD only (without ADHD/OCD); Nonsyn, nonsynonymous; simplex, parents unaffected with TD; Syn, synon-
ymous; unknown, phenotypic data unavailable for parents.
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Figure 2. Combined Burden Analysis Identifies Differences in De Novo Rate in Simplex versus Multiplex Families

We defined a consensus region, consisting of a set of intervals with high-quality coverage across all samples. We then estimated the de novo mutation rates per
base pair in this consensus region (STAR Methods). We converted the mutation rate per base pair to an expected rate per child (proband or control) by multiplying
the mutation rate per base pair by the size of the total RefSeq hg19 “coding” region (33,828,798 bp).

(A) De novo variants are overrepresented in simplex TD trios only. LGD variants are significantly increased in simplex TD probands compared to SSC controls
(RR 1.93; p = 0.0028; one-sided rate ratio test). Mis3 variants also trend toward enrichment (RR 1.18; p = 0.08). Therefore, de novo damaging variants as a group
are overrepresented in simplex TD (RR 1.29; p = 0.0061). In contrast, de novo variants in any category are not significantly increased in multiplex TD families,
though de novo damaging variants trend in that direction (RR 1.16; p = 0.26). Additionally, the rate of de novo LGD variants may be higher in simplex versus
multiplex trios though the difference does not reach statistical significance (RR 1.73; p = 0.20).

(B) Restricting the analysis to de novo variants in mutation-intolerant genes (missense Z score > 3.891 or pLI > 0.9; Lek et al., 2016) reveals much larger effect
sizes, particularly in simplex families. Comparing simplex to multiplex trios reveals significant differences for de novo nonsynonymous variants (RR 3.91;
p = 0.023) and for de novo missense variants (RR 5.15; p = 0.047), but not for de novo LGD variants only (RR 2.66; p = 0.28; STAR Methods).

Damaging, LGD + Mis3; LGD, likely gene disrupting (insertion of premature stop codon, disruption of canonical splice site, and frameshift insertion-deletion
variant); Mis, missense; Mis3, probably damaging missense variants (PolyPhen2 [HDIV] score > 0.957; Adzhubei et al., 2010, 2013); Nonsyn, nhonsynonymous;
RR, rate ratio; Syn, synonymous. Error bars in (A) and (B) represent the 95% confidence interval (Cl). When necessary, we truncated the lower bound of the Cl to 0.

See Figures S2, S4, and S5 and Table S3.

Sanders et al. (2015), we estimate a 97.7% confirmation rate.
Therefore, as with de novo sequence variants, we based all
burden analyses on all detected de novo CNVs, though we
observed similar results when narrowing to confirmed de novo
CNVs only (STAR Methods).

De Novo CNVs Are Increased in TD

We normalized de novo CNV rate per individual per cohort based
on the number of non-contiguous intervals captured on each
array type to reduce potential bias arising from different capture
arrays (STAR Methods; Figure S3A). We observed an increased
rate of de novo CNVs in phase 1 TD samples (RR = 2.2; one-
sided Wilcoxon rank-sum test; p = 0.004; Figure 3A), phase 2
TD samples (RR = 2.2; p = 0.024), and the combined dataset
(RR = 2.2; p = 0.0025). De novo deletions (RR 2.13; p = 0.04)
and duplications (RR 2.25; p = 0.015) are independently overrep-
resented in the combined TD dataset, suggesting both are risk
factors (Table S5). As expected, we also observed an increased
rate of de novo CNVs in SSC probands (RR =1.9; p =0.0026). We
do not observe a significant difference between the ASD and TD
samples (RR = 1.1; two-sided Wilcoxon rank-sum test; p = 0.83),
suggesting that de novo CNVs occur at a similar rate in TD and
ASD, although larger sample sizes will be needed to confirm
this observation. We did not assess the de novo CNV rate in sim-
plex versus multiplex families or in male versus female probands
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due to the limited number of de novo CNVs identified here and
the corresponding lack of power.

Association of De Novo CNVs Is Replicated in Microarray
Genotyping Data

We used microarray genotyping data in an effort to replicate the
association observed in the WES data. We obtained genotyping
data generated from the lllumina HumanOmniExpressExome
chip for 412 TD trios. We trimmed this number to 399 trios after
quality control (Figure S3C and S3D). These 399 trios overlap
with 279 of the 789 TD trios in the WES CNV analyses and with
35 of the 148 trios in Fernandez et al. (2012). We utilized 765
SSC quartets, previously genotyped with the lllumina Human-
Omni chip, as controls (763 after quality control). To account
for the different microarray platforms, we narrowed to high-qual-
ity SNPs present on both arrays (Figure S3B). We detected CNVs
with PennCNV using an exome-specific Hidden Markov Model
(HMM) file (Szatkiewicz et al., 2013). We identified 13 de novo
CNVs in 399 TD samples (0.033 per proband; 95% CI 0.012-
0.053; 81.8% validation rate), 28 in 763 SSC probands (0.037
per individual; 95% CIl 0.021-0.052; 100% validation rate), and
9 in 763 SSC unaffected siblings (0.012 per individual; 95% Cl
0.0041-0.020; 100% validation rate). Again, we observed an
increased burden of de novo CNVs in TD samples versus SSC
unaffected control siblings (Figure 3B; RR = 2.8; p = 0.024). De
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Figure 3. De Novo CNV Burden Analysis

We called de novo CNVs from WES data and array data with CoNIFER (Krumm et al., 2012) and PennCNV (Wang et al., 2007), respectively. We utilized different
methods for normalization to make the results comparable across different samples sets.

For the WES data (A), we normalized the de novo CNV rate by the number of discontinuous capture array intervals in each cohort (Figure S3A).

For the microarray data (B), we restricted de novo CNV calling to a set of SNPs shared across all arrays and further removed any outlier SNPs based on the LRR
(Figure S3B; see STAR Methods for details). We compared each group with SSC sibling controls using a Wilcoxon rank-sum test in R. We also used the SSC
probands as positive controls to validate our de novo calling pipelines. We used all de novo calls (confirmed and unconfirmed) in the burden analysis.

Both the WES data (A) and array data (B) demonstrate that de novo CNVs are significantly increased in TD compared to SSC controls and that de novo CNVs
occur at approximately the same rate in TD and in ASD. Error bars in (A) and (B) represent the 95% confidence interval (Cl). When necessary, we truncated the

lower bound of the Cl to 0.
See also Tables S3, S4, and S5.

novo deletions are independently overrepresented in TD (RR 3.8;
p = 0.02), but de novo duplications do not reach significance (RR
1.9; p = 0.15; Table S5). We also confirmed an increased rate of
de novo CNVs in SSC probands (RR = 3.1; p = 0.0027). Direct
comparison between TD probands and SSC probands again
shows no difference (RR = 0.89; p = 0.63). We did not observe
any recurrent de novo CNVs, even when combining across the
WES and array data.

Approximately 10% of Cases Have a De Novo Damaging
Variant or CNV

We next explored the genomic architecture of simplex TD
(Table 3). We restricted these analyses to the simplex trios with
WES data that passed quality control for both de novo sequence
variant and CNV analyses (577 TD trios; 1,134 SSC control trios).
We predicted that 22.3% of de novo damaging sequence vari-
ants contribute TD risk (95% Cl 4.7%-41.5%) and 46.3% of
de novo CNVs carry risk (95% Cl —8.5%-101.1%) in simplex
families. Additionally, we estimated that 9.7% of TD cases in
simplex families carry one or more de novo damaging sequence
variants mediating risk (95% CI 5.2%-14.3%) and that 1.5%

carry a de novo CNV mediating risk (95% Cl 0.0%-3.0%). Over-
all, we estimated that approximately 10.5% of cases have a de
novo damaging sequence variant and/or CNV mediating risk
(95% Cl 6.0%-15.2%)).

De Novo Variants in TD Probands Overlap with Those
Identified in Other Disorders

We compared the list of genes with confirmed de novo damaging
variants in TD probands with genes mutated in other disorders
with established de novo contributions, including ASD (Sanders
et al., 2015), epileptic encephalopathies (EuroEPINOMICS-RES
Consortium et al., 2014), intellectual disability (Gilissen et al.,
2014; Hamdan et al.,, 2014; de Ligt et al.,, 2012; Rauch
et al.,, 2012), OCD (Cappi et al., 2017), schizophrenia (Fromer
et al.,, 2014), developmental disorders in general (Deciphering
Developmental Disorders Study, 2017), and congenital heart dis-
ease (Jin et al., 2017). There is a high degree of overlap between
TD and OCD (44 of 315 genes with de novo damaging variants in
TD overlap with 90 genes with de novo damaging variants in
OCD; p < 1 x 107* by permutation test accounting for per
gene mutability). However, a substantial proportion of TD
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Table 3. Contributions of De Novo Events to TD Risk

Percent of Children
Carrying >1 Variant®

Theoretical Rate per Child (+95% ClI)°

% of Cases with a % of Variants

TD Simplex Control TD Simplex Control Variant Mediating Carrying TD Risk
(n=577) (n=1,134) (n=577) (n=1,134) Risk (+95% CI)° (£95% ClI)°
LGD 9.0% 4.6% 0.12 (0.082-0.16)  0.061 (0.042-0.080) 4.4% (1.8%—7.1%) 49.5% (13.6%-83%)
Mis3 26.7% 20.8% 0.41 (0.33-0.48)  0.34 (0.30-0.39) 5.9% (1.6%-10.2%)  15.3% (—5.9%-36.4%)
Damaging (LGD+Mis3) 33.4% 23.7% 0.50 (0.42-0.57)  0.39 (0.34-0.44) 9.7% (6.2%-14.3%) 22.3% (4.7%-41.5%)
Intolerant genes 8.8% 4.1% 0.17 (0.12-0.22)  0.076 (0.055-0.098) 4.7% (2.2%-7.1%) 56.0% (26.0%-86.0%)
De novo CNVs® 2.9% 1.4% 1.29 x 107 0.69 x 107 1.5% (0.0%-3.0%) 46.3% (—8.5%-101.1%)
(0.68 x 107 7- (0.34 x 1077
1.90 x 1077) 1.05 x 1077)
Damaging + de novo 35.5% 25.0% - - 10.5% (6.0%-15.2%) -
CNVs
Intolerant genes + 11.8% 5.6% - - 6.2% (3.3%-9.2%) -

de novo CNVs

To estimate the contribution of de novo events to TD risk, we assessed the simplex TD and SSC controls used in both analyses of de novo sequence
variants and de novo CNVs (577 TD simplex trios and 1,134 SSC sibling control trios; Table S1).

3We calculated the percentage of children carrying de novo events as the total number of individuals carrying one or more de novo events/total number
of individuals in the cohort; we denote the percentages of TD cases and SSC controls as p(TD) and p(Controls), respectively.

PWe estimated the theoretical rate per child (proband or control) for sequence variants as described in Figure 2. We obtained the mean and 95% Cl by
ttestin R.

°We estimated the percentage of cases with a variant mediating TD risk by p(TD) — p(Controls). We generated the 95% CI by bootstrapping.

YWe estimated the percentage of variants carrying TD risk and the corresponding 95% CI by two-sample t test in R, using the theoretical rate per child
as input.

°ltis unclear how to estimate the theoretical de novo CNV rate per individual in WES data. We thus used the de novo CNV rate normalized by the num-
ber of continuous intervals captured to estimate the percentage of variants carrying TD risk (STAR Methods). To determine the percentage of cases
with a de novo sequence variant or a de novo CNV mediating risk, we used the percent of children carrying >1 of any of these variants.

probands in our sample have comorbid OCD (361 of 777 overall).
Nonetheless, narrowing to probands with TD only still results in
significant enrichment (22 of 179 genes with de novo damaging
variants in TD overlap with 90 genes with de novo damaging var-
iants in OCD; p <1 x 10~%), suggesting this is not driven by co-
morbid diagnoses. We do not observe significant overlap with
other disorders, even before correction for multiple compari-
sons: intellectual disability (p = 1.00); schizophrenia (p = 0.95);
epileptic encephalopathies (p = 0.81); congenital heart disease
(p =0.47); ASD (p = 0.14); and developmental disorders in gen-
eral (p = 0.092), although the latter two show a trend toward
enrichment and these analyses are likely underpowered.

We conducted a similar analysis for de novo CNVs identified
in our TD cohort and de novo CNVs previously identified in the
SSC. We restricted to the unique set of de novo CNVs called in
TD probands across the WES and microarray data and
compared them to published, validated CNVs from 2,591
SSC probands (Sanders et al., 2015). 9 of the 34 de novo
CNVs detected in TD probands were also detected in SSC
probands (p = 0.024 by permutation test), whereas only 1
was detected in SSC unaffected siblings (p = 0.27). Due to
the relatively small samples sizes of studies investigating de
novo CNVs in other disorders, we did not test the significance
of overlap between de novo CNVs in TD and other conditions.
However, we did observe de novo CNVs in TD cases that have
also been detected in other disorders (Table S3), for example,
CNVs in 15913.2-13.3 have been observed in ASD (Sanders
et al., 2015), schizophrenia (Georgieva et al., 2014; Malhotra
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et al., 2011), and epilepsy (Epilepsy Phenome/Genome Project

Epi4K Consortium, 2015).

Approximately 483 Genes Contribute Risk to TD

We next estimated the number of genes likely to contribute to TD
risk when disrupted by a de novo damaging variant. We used a
previously established maximum-likelihood estimation proced-
ure (Homsy et al., 2015; Willsey et al., 2017) and excluded multi-
plex families in which de novo damaging variants might
contribute low TD risk (Figures 2 and S5A). Our data fit best
with a model of 483 TD risk genes (Figure S6), consistent with
our previous estimate of 420 risk genes (Willsey et al., 2017).
We are unable to estimate the number of loci vulnerable to

de novo CNVs due to the absence of recurrent variants.

Integrated Analysis Identifies Additional TD Risk Genes,

Including a High-Confidence Gene CELSR3

We leveraged de novo damaging variants and the Transmission
and De Novo Association (TADA) algorithm to estimate per-
gene association with TD (De Rubeis et al., 2014; He et al.,
2013; Sanders et al., 2015; Willsey et al., 2017). We did not
observe overlap between genes with de novo sequence variants
and genes affected by de novo CNVs, as has been observed in
ASD (Sanders et al., 2015), and therefore, we did not include de
novo CNVs in this analysis. We also did not include inherited var-
iants, as we did not observe overrepresentation in our combined
TD cohort (Figure S5B). We utilized a Poisson regression model to
control for paternal age, sex, affected status (TD or unaffected),



Table 4. TD Risk Genes Identified in this Study

Gene LGD Mis3 p Value g Value q Value in Phase 1% Risk Status in Phase 1* Intolerant pLI° Missense Z Score®
wwerd A 1 1.93 x 107° 0.069  0.096 hcTD no 0.02 1.27
CELSR3° 0 3 2.23 x 10° 0.073 0.14 pTD yes (LGD and Mis) 1.00 6.17
OPA1¢ 0 2 6.70 x 10° 0.1 0.72 NA yes (LGD) 0.99 1.83
NIPBL® 0 2 113 x 10 0.16 0.22 pTD yes (LGD and Mis) 1.00 5.04
FN1¢ 0 2 122 x 107* 0.19 0.26 pTD no 0.06 1.39
FBN2¢ 0 2 129 x 107* 0.22 0.98 NA yes (LGD) 1.00 1.22

Six genes with recurrent de novo variants meet our thresholds for association: two of these are high-confidence TD (hcTD) risk genes (CELSR3 and
WWCT1; FDR < 0.1), and four of these are probable TD (pTD) risk genes (OPAT, NIPBL, FN1, and FBN2; FDR < 0.3). Four of these six TD risk genes are
considered intolerant to variation; determined based on PLI and missense Z score.We excluded genes with only one de novo variant from this table

(3 pTD genes; see Table S7). See also Figure S6 and Table S6.
2Willsey et al., (2017).

PProbability of being loss-of-function (LoF) intolerant, from Exome Aggregation Consortium (EXAC). pLI > 0.9 is considered intolerant.
©Z score for missense variants, from EXAC. Mis_z > 3.891 is considered intolerant.
9We previously identified WWCT as an hcTD gene and CELSR3, NIPBL, and FN1 as pTD genes (Willsey et al., 2017).

and number of callable bases within the consensus region (STAR
Methods) when estimating the relative risk for de novo LGD and
for de novo Mis3 variants. We included confirmed de novo
damaging variants identified in all 674 non-multiplex trios (577
simplex trios and 97 unknown trios) passing quality control. We
also integrated de novo damaging variants called and confirmed
in Willsey et al. (2017), but not called under the new pipeline,
which added 8 de novo damaging variants (Table S3). TADAiden-
tified 2 hcTD genes (FDR q value < 0.1; >2 de novo variants) and
4 pTD genes (g < 0.3; >2 de novo variants), including one new
hcTD gene, CELSR3 (cadherin EGF LAG seven-pass G-type re-
ceptor 3) and two new pTD genes (OPAT1 and FBN2; Table 4).
Four of these six TD risk genes, including CELSR3, are intolerant
to variation based on pLI and/or missense Z score. We identified
three additional genes with g < 0.3 but only one de novo
damaging variant; we omitted these genes from Table 4, but
they are included in Table S7.

Interestingly, we observed an additional de novo damaging
variant in CELSR3 within the 103 multiplex families. We also
identified two additional inherited compound heterozygous
damaging variants in CELSR3 in two independent probands
(each with one rare and one common inherited variant), which
is highly unlikely by chance (p = 0.0069 by permutation test;
STAR Methods; Table S6). We did not observe any compound
heterozygous variants in the other 5 TD risk genes.

The Top TD Risk Genes Highlight Cell Polarity

Both of the hcTD risk genes identified here (WWC7 and CELSR3)
encode proteins involved in cell polarity. Therefore, we assessed
whether de novo damaging variants in TD affect other genes
encoding cell polarity proteins. We obtained a list of genes related
to cell polarity from the Gene Ontology database (Ashburner et al.,
2000; The Gene Ontology Consortium, 2017) and annotated the
de novo variant list (Table S3). 15 of the 292 de novo damaging var-
iants in non-multiplex families impact genes related to cell polarity,
representing a significant enrichment over the variants identified in
the SSC control trios (7 of 350 de novo damaging variants; one-
sided Fisher’'s exact test odds ratio [OR] 2.56; p = 0.030). We
confirmed this result with permutation testing (13 of 315 unique
genes with confirmed de novo damaging variants are related to

cell polarity; p = 0.032). We observed additional variants in cell po-
larity genes in multiplex families (2 of 45 de novo damaging vari-
ants), and the combined set of variants from all 777 TD trios are
also significantly enriched for variants affecting cell polarity genes
(17 of 337 unique genes; one-sided Fisher’s exact test OR 2.60,
p = 0.024; permutation test, p = 0.014).

DISCUSSION

We previously established the contribution of de novo damaging
sequence variants to TD risk and identified one hcTD risk gene,
WW(CT1, based on de novo LGD variants observed in two unre-
lated probands. Furthermore, we demonstrated that sequencing
of larger cohorts coupled with the identification of recurrent de
novo variants would be a productive and reliable method for
gene discovery in TD (Willsey et al., 2017). In this study, we
sequenced an additional 291 trios, bringing the total sample
size to 802 trios. After quality control, we used 674 non-multiplex
trios for gene discovery (577 simplex families and 97 unknown
families). Given this sample size and our previously estimated
trajectory of gene discovery (Willsey et al., 2017), we expected
to identify 1.4 hcTD genes and 5.4 pTD genes. In actuality, this
study implicated 2 hcTD genes and 7 pTD genes, which fits
well with our previous prediction. Note that we did not present
three of the pTD genes in the main text, as they only carried
one de novo damaging variant (Table S7).

We observed a strong effect of plexity on de novo mutation
rate, particularly with respect to de novo variants in mutation-
intolerant genes (Figure 2B). Therefore, this suggests that the
recruitment and sequencing of simplex families should be the
highest priority, at least in studies examining de novo variants.
Of course, it still remains to be determined whether de novo var-
iants (particularly de novo LGD variants) carry risk in multiplex
families, as the effects observed here trend toward significance
(e.g., RR 1.16; p = 0.26 for de novo LGD variants) in an under-
powered analysis (103 multiplex trios) and de novo variants
appear to carry risk in multiplex families for other neurodevelop-
mental disorders (Leppa et al., 2016; Martin et al., 2017).

We also observed preliminary evidence for an increased rate
of de novo damaging sequence variants in female TD probands
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compared to male TD probands, as has been observed in ASD
(De Rubeis et al., 2014; lossifov et al., 2014; Sanders et al.,
2015). Given the TD sex bias for affected males (male:female =
3:1-4:1), this suggests a potential female protective effect similar
to that which has been postulated in ASD (De Rubeis et al., 2014;
Dong et al., 2014; Gockley et al., 2015; lossifov et al., 2014; Jac-
quemont et al., 2014; Levy et al., 2011; Sanders et al., 2011,
2015). Larger sample sizes are, of course, required to confirm
this preliminary observation, and it should be noted that we
observe a significant excess of de novo variants in both male
and female TD probands independently when compared to
sex-matched controls, indicating these variants carry risk for
both sexes. We do not observe any differences in the overall
rate of coding de novo variants by sex in the TD cohort (RR
1.02; two-sided rate ratio test p = 0.90) or the SSC cohort (RR
1.03; p = 0.72), suggesting no systematic differences in the
rate or detection of de novo variants overall.

We observed a significant increase in the rate of rare de novo
CNVs in TD. We confirmed this association using both WES and
microarray genotyping data. Of note, many of the samples as-
sessed are represented only in the WES data (511 trios) or only
in the array data only (120 trios), and de novo CNV calling was
conducted with independent methods. Taken together, then,
these results strongly support the conclusion that de novo
CNVs carry risk for TD. Although rare CNVs have already been
definitively associated with TD risk (Huang et al., 2017; McGrath
etal., 2014; Nag et al., 2013), de novo CNVs had not been defin-
itively implicated, though previous results suggested association
(Fernandez et al., 2012). The number of WES samples in this cur-
rent study is more than five-fold larger than that in Fernandez
et al. (2012; 789 versus 148 trios), and the array data are more
than two-fold larger (399 versus 148 trios), suggesting the main
difference in these studies was the greater power to identify
this association, especially given the similar effect sizes across
the studies (RR 2.2 in our WES data and RR 2.8 in our array
data versus RR 2.4 in Fernandez et al., 2012). Our observation
of an increased rate of de novo sequence variants in simplex
TD suggests that a similar phenomenon may also occur with
respect to de novo CNVs. However, we did not assess this ques-
tion here due to a very small number of de novo CNVs identified
in multiplex families (3 de novo CNVs in 103 multiplex trios).

We estimated that 4.4% of TD probands have a de novo
LGD variant mediating risk and 5.9% have a de novo missense
3 variant mediating risk (Table 3). Although de novo missense
variants in general are not yet significantly associated, we can
similarly estimate that 5.0% of TD probands carry a de novo
missense variant mediating risk. At first glance, these estimates
appear much lower than estimates in ASD (e.g., 9% and 12% for
de novo LGD and de novo missense, respectively; lossifov et al.,
2014). However, the ASD estimates are based on different
methods. Indeed, by applying our methods to their data, we
achieved highly similar estimates (5.4% of ASD probands have
a de novo LGD variant contributing risk and 3.1% have a de
novo missense variant contributing risk). We believe the higher
estimates in lossifov et al. (2014) are due to two major factors.
First, they use a much larger set of regions for analysis
(~83 mb compared to ~30 mb here), and we expect the ascer-
tainment differential to increase proportionally to target size if the
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mutation rate per base pair is constant. Second, their method
counts multiple de novos per individual (rate in probands minus
rate in controls), whereas here, we are counting a maximum of
one de novo per individual (percentage with >1 de novo). We
previously observed similar rate ratios between TD probands
versus SSC controls and ASD probands versus SSC controls
(Willsey et al., 2017), further suggesting similar architecture.

Likewise, we did not observe a difference in the rate of de novo
CNVs in TD probands compared to ASD probands (Figure 3).
This suggests that the rate of de novo CNVs is not different
in TD and ASD and that published data showing a higher
proportion of de novo CNVs in ASD (e.g., 4.1% of individuals
have a de novo CNV mediating ASD risk in Sanders et al.,
2015 versus 1.5% reported here in TD) is likely due to the
genome-wide coverage in those studies versus exome-wide
coverage only here (i.e., whole-exome sequencing data and
HumanOmniExpressExome-8-v1 genotyping data).

We observed significant overlap between TD and OCD for de
novo damaging sequence variants, even when restricting to TD
probands without comorbid OCD. We also observed significant
overlap across de novo CNVs identified in TD and in ASD,
consistent with previous results (Fernandez et al., 2012), and a
suggestion of overlap of de novo sequence variants between
TD and ASD (uncorrected p = 0.14). This suggests that TD and
OCD as well as TD and ASD may share a subset of genetic
risk loci, but this hypothesis warrants follow-up with larger sam-
ple sizes. By the same token, the lack of overlap between TD and
other psychiatric disorders is inconclusive and may simply
reflect underpowered analyses, and therefore, it will be impor-
tant to revisit these analyses as data accumulate in these and
other disorders not yet characterized. For example, enrichment
of ultra-rare variants in ADHD (Satterstrom et al., 2018) suggests
that de novo variants will carry risk in this condition. Coupled with
the high degree of TD and ADHD comorbidity, this indicates that
there may be strong overlap at the level of de novo variants as
observed with OCD here.

We identified a total of six likely TD risk genes, including two
hcTD genes, CELSR3 (new; promoted from pTD status in phase
1) and WWCT1, and four pTD genes, OPAT (new), NIPBL, FN1,
and FBN2 (new). Notably, both of the two hcTD genes encode
proteins that are related to cell polarity, defined broadly in the
Gene Ontology database as anisotropic intracellular organiza-
tion or cell growth patterns (Ashburner et al., 2000; The Gene
Ontology Consortium, 2017). Additionally, we observed general
enrichment for cell polarity annotation among the genes carrying
de novo damaging variants, including four mutation-intolerant
genes (SPRY2, MARK2, PSMC1, and UBC; Table S3). Further-
more, recent rare CNV analyses have definitively implicated
NRXN1 deletions and CNTN6 duplications with TD risk (Fernan-
dez et al., 2012; Huang et al., 2017; Sundaram et al., 2010), and
other studies have highlighted CNTN4 and CNTNAP2 (Fernan-
dez et al., 2012; Verkerk et al., 2003). All of the proteins encoded
by these genes have putative roles in cell polarity or axon path-
finding and/or organization (Bel et al., 2009; Fernandez et al.,
2004; Kamei et al., 1998; Ushkaryov et al., 1992), suggesting
that perturbation of cell polarity may contribute to TD. We do
not observe convergence in other pathways, including histamin-
ergic neurotransmission, as has been previously identified



(Fernandez et al., 2012). Given clear evidence that we are in the
early phases of gene discovery in TD, it is very likely that further
studies will clarify these results and generate additinonal test-
able hypotheses regarding the underlying neurobiology of TD.
Generating more TD genomic risk data should also better
address the extent to which TD-associated de novo variants
overlap with CNVs and genes implicated in other neurodevelop-
mental disorders. As these data accumulate, functional genetics
will be critical to translate findings into an actionable understand-
ing of pathobiological mechanisms.
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KEY RESOURCES TABLE

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Biological Samples

TIC Genetics trios (n = 417)

TAAICG trios (n = 186)

TSGENESEE trios (n = 181)

UTC trios (n = 18)

Tourette International Collaborative
Genetics Study

Tourette Association of America
International Consortium for Genetics

Tourette Syndrome Genetics Southern
and Eastern Europe Initiative

Upsala Tourette Cohort

https://tic-genetics.org/

https://www.findtsgene.org/tique

http://tsgenesee.mbg.duth.gr/index.html

N/A

Deposited Data

Whole exome sequencing data from TIC
Genetics trios in Phase 1 project (n = 325)
Whole exome sequencing data from
TSAICG trios in Phase 1 project (n = 186)
Whole exome sequencing data from TIC
Genetics trios in Phase 2 project (n = 92)
Genotyping data from TIC Genetics

trios (n = 412)

Whole exome sequencing data from SSC
control quartets (n = 1,184)

Genotyping data from SSC control
quartets (n = 765)

Willsey et al., 2017

Willsey et al., 2017

This paper

This paper

lossifov et al., 2014

Sanders et al., 2011, 2015

BioProject: PRUNA384374

BioProject: PRUNA384389

BioProject: PRUNA384374

BioProject: PRUNA384374

NDAR: DOI:10.15154/1149697

http://www.sfari.org/resources/sfari-base

Software and Algorithms

Genome Analysis Toolkit (GATK)

DePristo et al., 2011; McKenna et al.,
2010; Van der Auwera et al., 2013

https://software.broadinstitute.org/
gatk/best-practices/

BWA-mem Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

Picard Tools Broad Institute. https://broadinstitute.github.io/picard/

Annovar Wang et al., 2010 http://annovar.openbioinformatics.org/
en/latest/

PLINK/SEQ Fromer et al., 2014 https://atgu.mgh.harvard.edu/plinkseq/

Primer Design This paper. https://primerdesign.willseylab.com/

Python script code for data processing & analysis This paper. https://bitbucket.org/willseylab/
tourette_phase2/src/master/

R code for data analysis This paper. https://bitbucket.org/willseylab/
tourette_phase2/src/master/

TADA He et al., 2013 http://www.compgen.pitt.edu/TADA/
TADA_homepage.htm

GenomeStudio 2.0 lllumina https://www.illumina.com/techniques/
microarrays/array-data-analysis-
experimental-design/genomestudio.html

Other

1000 Genomes GRCh37 hg19 genome build N/A http://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/technical/reference/human_g1k_v37.
fasta.gz

RefSeq hg19 gene annotation N/A http://genome.ucsc.edu/cgi-bin/

Intervals file for NimbleGen SeqCap EZ Exome v2

Intervals file for NimbleGen SeqCap EZ Exome v3

Roche NimbleGen, Madison, WI, USA

Agilent Technologies, Santa Clara, USA

hgTables?command=start

https://bitbucket.org/willseylab/
tourette_phase2/src/master/

https://bitbucket.org/willseylab/
tourette_phase2/src/master/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Intervals file for Agilent SureSelect v1.1 Roche NimbleGen, Madison, WI, USA https://bitbucket.org/willseylab/

tourette_phase2/src/master/

Intervals file for IDT xGen Integrated DNA Technologies, Inc., https://bitbucket.org/willseylab/
Skokie, lllinois, USA tourette_phase2/src/master/

Coding regions only from RefSeq hg19 gene This paper. https://bitbucket.org/willseylab/

annotation tourette_phase2/src/master/

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for data should be directed to and will be fulfilled by the Lead Contact, Jeremy Willsey (jeremy.
willsey@ucsf.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample collection

TD Trios

We utilized 511 TD trios (affected child and both parents) characterized in our previous “Phase 1” study (Willsey et al., 2017). Ascer-
tainment of these samples has also been described previously (Dietrich et al., 2015). In this study (“Phase 2”), we sequenced 291
additional TD trio samples from three independent collaborative groups: the Tourette International Collaborative Genetics group
(TIC Genetics; 92 new trios), the European Multicenter Tics in Children Studies (TSGENESEE; 181 new trios) and the Uppsala
Tourette Cohort (UTC, 18 new trios). We ascertained the TIC Genetics trios as previously described (Dietrich et al., 2015). We
also ascertained the TSGENESEE trios as previously described (Karagiannidis et al., 2012). All adult participants and parents of
children provided written informed consent along with written or oral assent of their participating child. The Institutional Review Board
(IRB) of each participating site approved the study.

The UTC was collected under a study in Sweden called, “Mapping of Hereditary Factors in Neuropsychiatric Conditions, Focusing
on Tourette Syndrome.” Individuals with a TD diagnosis were asked to participate and signed informed consent documents that
described the nature of the study. Inclusion criteria for patients were individuals meeting the DSM-IV criteria for TD. All patients
were ascertained by a specialist in child psychiatry or child neurology. After a 60-90 minute assessment, blood samples were pro-
cessed and DNA stored in biobank of the Academic Hospital. All adult participants and parents of children provided written informed
consent along with written or oral assent of their participating child. The regional ethical committee of Uppsala approved the study
(equivalent to IRB).

Phenotypic data available for each cohort is described in Table 1, including sex, parental age (where available, we were not able to
obtain parental age for TSGENESEE and UTC samples), comorbid OCD and/or ADHD in probands, and the history of tic disorders in
the first degree relatives for most data. Among the 789 TD trios that passed quality control (see ‘Quality control’), we defined 582 trios
(73.8%) as ‘apparently simplex’, which means neither of the parents had any reported history of a tic disorder; 103 trios (13.1%) as
‘multiplex’, which means at least one of the parents had a reported history of a tic disorder, and 104 trios (13.2%) as ‘unknown’, which
means that we were not able to assign status based on incomplete parental phenotypic data.

Control Samples

We obtained a total of 1,184 quartets from the Simons Simplex Collection (SSC) (Fischbach and Lord, 2010). These quartets consist
of an ASD proband, an unaffected sibling, and both unaffected parents. 602 of these quartets were used as controls in our Phase 1
study (Willsey et al., 2017) and 582 are new. 1,174 quartets passed quality control (see ‘Quality control’).

METHOD DETAILS

Whole exome sequencing

Exome capture and sequencing

We derived DNA samples for the Phase 2 trios (873 total samples from 291 trios) from a combination of whole blood (858 samples),
lymphoblastoid cell lines (13 samples, 8 parental samples and 5 child samples), and saliva (2 samples, 1 parental sample and 1 child
sample). We did not observe an excess of de novo variants in any of the non-blood samples (excess defined as > 10 de novos).
We utilized the IDT xGen kit (https://www.idtdna.com/pages/products/next-generation-sequencing/hybridization-capture/
lockdown-panels/xgen-exome-research-panel) to capture the exome and then performed whole exome sequencing (WES) with
the lllumina Hiseq 4000 platform to 100 base pair long paired end reads. For the 511 trios previously characterized, DNA was derived
from whole blood, exome capture was performed with three different capture arrays—-Nimblegen EZ v2, Agilent v1.1, and Nimblegen
EZ v3-and the exome was sequenced with the lllumina Hiseq 2500 platform (Willsey et al., 2017).
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Control data for whole exome sequencing
We obtained a total of 1,184 quartets from the SSC, which were previously captured on the Nimblegen EZ v2 array and sequenced
with the lllumina Hiseq 2000 platform (lossifov et al., 2012, 2014; Krumm et al., 2015; O’Roak et al., 2012; Sanders et al., 2012, 2015).
All the WES control data were generated from blood-derived DNA. We summarized metadata and sequencing metrics from all TD
trios and SSC control trios in Tables 1 and S1.
Variant calling pipeline summary
We used GATK best practices to process all raw whole exome sequencing data across both Phase 1 and 2 (DePristo et al., 2011;
McKenna et al., 2010; Van der Auwera et al., 2013). We aligned sequencing reads in FASTQ format to the GRCh37 build of the
human reference genome with BWA-mem (Li and Durbin, 2009). For consistency, we reverted sequencing alignment data
(BAM files) from SSC control families to FASTQ format and then processed identically. We sorted, indexed, and marked duplicate
reads in the alignment files (BAM format) with Picard Tools, and then locally realigned reads containing indels with GATK’s Indel-
Realigner tool. Next, we used GATK to perform Base Quality Score Recalibration using the training data recommended by GATK.
We used the recalibrated alignment data produced by this step in all downstream analyses, including quality control. We produced
variant calls in gVCF format for all samples with GATK HaplotypeCaller. Finally, we produced a list of joint recalibrated variant calls
for the entire sample collection by running GATK GenotypeGVCFs followed by GATK’s SNP and indel Variant Quality Score
Recalibration steps.
Variant calling pipeline details
Below are descriptions of specific software tools used to perform data processing, along with the runtime options that can be used to
reproduce our work. Any arguments or options not specified either retain their default values or are system-specific. For example, file
paths, memory allocation, and multithreading options are not included.

0) Sequencing data was acquired from SSC in BAM format. To transform this data into a fastq format so that alignments could be
re-generated, and variants called, using the same methods as with the TD cohorts, we took the following steps:

® Randomly re-order alignments in BAM files with the Samtools bamshuf function
e Using Picard’s RevertSam function, remove alignment information and restore original quality scores to reads. Options used:
SORT_ORDER = unsorted, RESTORE_ORIGINAL_QUALITIES = true, VALIDATION_STRINGENCY = LENIENT
® Using Picard’s SamToFastq function, convert BAM files to paired-end fastq format. Option used: VALIDATION_
STRINGENCY = LENIENT
1) BWA
Tool: BWA 0.7.12
Runtime options:
mem -R [sample-specific header] [GRCh37 reference fasta file]
2) SAM sorting
Tool: Picard 2.1.1
Runtime options:
SortSam SO = coordinate
Note: In this version of Picard, specifying an output filename ending in “.bam” automatically compresses alignments into BAM
format, which we did.
3) Duplicate marking and BAM index creation
Tool: Picard 2.1.1
Runtime options:
CREATE_INDEX = TRUE
4) Indel realignment
Tool: GATK 3.5
Training file, available online in the GATK Resource Bundle:
Mills_and_1000G_gold_standard.indels.b37.vcf. (aka “Golden Indels”)
Runtime options (RealignerTargetCreator step):
- T RealignerTargetCreator
—intervals [exome-capture-array-specific interval file]
—interval_padding 100
R [GRCh37 fasta reference]
known [Golden Indels file]
- —filter_mismatching_base_and_quals
Runtime options (IndelRealigner step):
- T IndelRealigner
- R [GRCh37 fasta reference]
- —target-intervals [interval list created by RealignerTargetCreater)
- —filter_mismatching_base_and_quals
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5) Base Quality Score Recalibration
Tool: GATK 3.5
Training files, available online in the GATK Resource Bundle:
- Mills_and_1000G_gold_standard.indels.b37.vcf. (aka “Golden Indels”)
- dbsnp_138.b37.vcf.
Runtime options (BaseRecalibrator step):
- T BaseRecalibrator
- —intervals [exome-capture-array-specific interval file]
- —interval_padding 100
- R [GRCh37 fasta reference]
- knownSites Mills_and_1000G_gold_standard.indels.b37.vcf.
- knownSites dbsnp_138.b37.vcf.
Runtime options (PrintReads step):
- T PrintReads
- R [GRCh37 fasta reference]
- BQSR [recal data table from BaseRecalibrator step]
6) Variant calling
Tool: GATK 3.5
Runtime options:
- T HaplotypeCaller
- R [GRCh37 fasta reference]
- ERC GVCF
- variant_index_type LINEAR
- variant_index_parameter 128000
- —read_filter BadCigar
- an StrandOddsRatio -an AlleleBalanceBySample
- an DepthPerSampleHC -an MappingQualityZeroBySample
- an StrandBiasBySample -an GenotypeSummaries
7) Joint genotyping

First, gvVCFs were combined into batches of around 50 samples each using GATK’s CombineGVCFs tool. In order to speed up
data processing, we created 13 separate combined GVCFs for each batch of samples for the following subsets of chromosomes:
1,2, 3/21, 4/22, 5/19, 6/Y, 7/20/MT, 18/X, 8/17, 9/16, 10/15, 11/14, 12/13. (These subsets were chosen to have similar combined
sizes to increase the efficiency of parallel processing.) For each of the 13 chromosome subsets, GATK’s GenotypeGVCFs was
run using all associated combined gVCF files as inputs. Then, GATK’s CatVariants was used to combine the 13 separate joint
VCF output files into one comprehensive joint VCF file before continuing to the final variant quality score recalibration steps.

Tool: GATK 3.5

Runtime options, CombineGVCFs step:

- T CombineGVCFs

- R [GRCh37 fasta reference]

- 1 [ ~50 gVCF samples]

- —intervals [run-specific chromosome subset (see above) ]

Runtime options, GenotypeGVCFs step:

- T GenotypeGVCFs

- R [GRCh37 fasta reference]

- | [all combined gVCF files corresponding to the current run’s chromosome subset]
- —pedigree [Plink-style pedigree file including all samples/families]

- an InbreedingCoeff -an StrandOddsRatio -an BaseQualityRankSumTest
- an ChromosomeCounts -an Coverage -an FisherStrand

- an MappingQualityRankSumTest -an MappingQualityZero -an QualByDepth
- an RMSMappingQuality -an ReadPosRankSumTest -an VariantType

- an DepthPerAlleleBySample -an AlleleBalanceBySample

- an MappingQualityZeroBySample -an StrandBiasBySample

- an DepthPerSampleHC -an GenotypeSummaries

CatVariants invokation:

java -cp [GenomeAnalysisTK.jar] org.broadinstitute.gatk.tools.CatVariants
- R [GRCh37 fasta reference]

- V [.vcf.gz file] x13 (chromosome-specific joint VCFs)
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- assumeSorted
- o [output file]
8) SNP variant quality score recalibration
Tool: GATK 3.5
Recalibration training files, available online in the GATK Resource Bundle:
1. hapmap_3.3.b37.vcf.
2. 1000G_omni2.5.b37.vcf.
3. 1000G_phase1.snps.high_confidence.b37.vcf.
4. dbsnp_138.b37.vcf.
Runtime options (VariantRecalibrator step):
- T VariantRecalibrator
- mode SNP
- R [GRCh37 reference fasta]
- resource:hapmap,known = false,training = true,truth = true,prior = 15.0 [recal training file 1]
- resource:omni,known = false,training = true,truth = true,prior = 12.0 [recal training file 2]
- resource:1000G,known = false,training = true,truth = false,prior = 10.0 [recal training file 3]
- resource:dbsnp,known = true,training = false,truth = false,prior = 2.0 [recal training file 4]
- an QD -an MQ -an MQRankSum -an ReadPosRankSum -an FS -an SOR
Runtime options (ApplyRecalibration step):
- T ApplyRecalibration
- mode SNP
- R [GRCh37 reference fasta]
- tranchesFile [tranches output file from VariantRecalibrator]
- recalFile [recal output file from VariantRecalibrator]
- —ts_filter_level 99.5
9) Indel Variant Quality Score Recalibration
Tool used: GATK, version 3.5
Recalibration training files, available online in the GATK Resource Bundle:
- Mills_and_1000G_gold_standard.indels.b37.vcf. (aka “Golden Indels”)
- dbsnp_138.b37.vcf.
Runtime options (VariantRecalibrator step):
- T VariantRecalibrator
- R[GRCh37 reference fasta]
mode INDEL
- —-maxGaussians 4
resource:mills,known = false,training = true,truth = true,prior = 12.0 [golden indels file]
resource:dbsnp,known = true,training = false,truth = false,prior = 2.0 [dbSNP 138 file]
an QD -an FS -an SOR -an ReadPosRankSum -an MQRankSum
Runtime options (ApplyRecalibration step):
- T ApplyRecalibration
- mode INDEL
- R [GRCh37 reference fasta]
- tranchesFile [tranches output file from VariantRecalibrator]
- recalFile [recal output file from VariantRecalibrator]
- —ts_filter_level 90.0

Quality Control

Pedigree Check

We verified sample pedigree information by running PLINK (Purcell et al., 2007) on SNP-site genotype calls derived from our WES
data. More specifically, we confirmed familial relationships and sex with an in-house ‘family check’ script (see “Quality control”).
This script also checks for higher than expected relatedness across independent trios.

Among the TD data, 789 of the 802 trios remained after we removed 11 trios with unexpected familial relationships (e.g., proband
not related to parents) and 2 trios that were sequenced in both Phase 1 and Phase 2 project (We only used the Phase 2 data for these
two samples). We manually fixed annotation errors where possible (e.g., wrong sex indicated). We considered these 789 trios
only in downstream analyses. We removed 10 of the 1,184 SSC control quartets due to unexpected familial relationships, leaving
1,174 quartets for downstream analysis.
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Whole Exome Sequence Data Quality

We used Picard Tools to obtain quality metrics related to target capture, sequencing, and alignment, and we ran GATK’s
DepthOfCoverage tool to measure coverage across the exome at base-pair resolution. We then identified the sites within each
trio that had at least 20X coverage across all trio members (>20X joint coverage). We performed principal components analysis
(PCA) on these metrics to identify outliers. We treated any samples more than 3 standard deviations (SD) from the mean in any of
the first four principal components as outliers and removed them from subsequent analyses.

When considering de novo sequence variants, the above QC removed 0 TD trios and 18 SSC sibling trios, leaving 789 TD trios and
1,156 SSC sibling trios. We further removed any samples with > 10 de novo sequence variants, leaving 777 TD trios (12 trios removed)
and 1,153 SSC sibling trios (3 trios removed) for de novo sequence variant analysis.

Our methods differed slightly for de novo CNV analysis: we used SSC probands as positive controls to assess our pipeline. There-
fore, we did quality control on complete quartets, which removed additional families due to probands failing quality control resulting in
removal of the entire quartet. In total we removed 38 such quartets, leaving 1,136 SSC quartets for downstream analysis. We did not
remove any samples with excess de novo sequence variants. Therefore, we included 789 TD trios and 1,136 SSC quartets in de novo
CNV analyses (Table S1).

Variant detection

De novo sequence variant detection

We optimized our de novo variant calling pipeline by integrating the GATK genotype refinement workflow (GRW) (https://software.
broadinstitute.org/gatk/documentation/article.php?id=4727). We re-estimated the genotype likelihood for each individual at each
position by utilizing SNP information from 1000 Genomes project as well as pedigree information. We then marked variants with ge-
notype quality (GQ) > 20 and allele count (AC) < max(4, 0.1% samples) (i.e., variant is present in a max of 4 or 0.1% of samples) as
putative de novo variants. After these standard GRW steps, we further applied several empirical error filters to remove false positives:
(1) homozygous in father and mother with allele balance (AB) < 0.05; (2) heterozygous in child with AB between 0.3-0.7; (3) depth in all
trio samples DP > 20; (4) mapping quality: MQ > 30; (5) allele frequency in cohort AF < 0.1%; (6) GQ > 90 in child sample; (7) de novo
mutation count < 10 (See “Determine cutoff for de novo mutation per child”). Finally, we visualized all the de novo indels by IGV
(Thorvaldsdottir et al., 2013) to remove false positives. We considered the resulting set of de novo variants as ‘high confidence’
de novo variants.

To validate the new de novo calling pipeline, we compared the new de novo calls to those from the old pipeline (published in Willsey
etal., (2017). For comparability, we ran both pipelines on the VCF file from the Phase 1 study, which did not undergo joint-genotyping
with Phase 2 samples. We only used these de novo calls for pipeline optimization (the de novos presented in the main text were
derived from the VCF generated by joint genotyping across Phase 1 and 2 samples, and the SSC samples). The Phase 2 pipeline
has increased sensitivity for de novo calling (520 total variants in the Phase 1 data, including 83 new de novo coding variants, and
missing 17 previously called de novo coding variants; Table S2).

All results presented in the main text are derived from the VCF generated from joint genotyping across all the TD and SSC samples.
This decreases the number of detected de novo coding variants (from 520 to the 466 total reported in the main text for Phase 1
samples), likely because rare variant detection may be penalized by joint calling across a large number of samples. Because of
this, we included the confirmed de novo damaging variants from the Phase 1 study (Willsey et al., 2017), that were missed here,
into gene discovery with TADA in order to increase yield. We did not use these variants for burden analyses.

Determining cutoff for de novo mutation per child

The distribution of de novo mutations across individuals should theoretically follow a Poisson distribution. To determine the the cutoff
for the de novo calling, we determined how well our observations fit a Poisson distribution under different cutoffs (Figure S2). To
normalize the different capture regions in different sample sets, we only used mutations in consensus regions (See “Estimation of
mutation rate per base pair” for definition). First, we called all the mutations with the error filters 1-6 in “De novo variant detection”
and summarized the de novo counts for each individual. Then we fixed the cutoff from 1 to 20 mutations (filter #7). With each cutoff,
we generated a de novo mutation list. We then summarized the de novo mutation counts in consensus regions and used the mutation
rate per individual (# of de novo mutations / # of passed individuals) as the lambda of theoretical Poisson distribution. We then utilized
lambda to generate a list of values based on Poisson distribution by npos function in R. The goodness-of-fit was performed by
chisg.test in R to obtain the p value. We used the maximum cutoff that is not significantly different with theoretical distribution
(p > 0.05) to increase the sensitivity of de novo calling.

Inherited sequence variants detection

We annotated GRW-processed VCF files with ANNOVAR and then detected inherited variants in coding regions with an in-house
script. As in the original TADA study (He et al., 2013), we considered three categories of inherited variants based on the genotypes
of the trios: alternative homozygous (0/7 x 0/1 - > 1/1), transmitted heterozygous (0/7 x 0/1(0/0) - > 0/1), and non-transmitted
(non-transmitted: 0/7 x 0/1(0/0) - > 0/0). We then utilized informative genotypes to identify “paternal” and “maternal” transmitted
mutations. We defined rare mutations as population allele frequency less than 0.1% in Exome Aggregation Consortium (ExAC)
version 0.3 which contains ~65,000 whole exome allele frequency data (Lek et al., 2016). Relevant filters from de novo variant calling
were applied in the inherited variant calling including:
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1) heterozygous AB: 0.3-0.7; homozygous AB: < 0.05;

2) depth in all the trio samples: DP > 20.

3) genotype quality (GQ) > 20
De novo CNV detection from WES data
We identified de novo CNVs from whole exome sequencing data using CoNIFER and the standard workflow (Krumm et al., 2012).
Briefly, we defined each continuous capture region as a ‘probe’, then calculated the RPKM (reads per thousand bases per million
reads sequenced) for all the samples and transformed to standardized z-score (ZRPKM). We then implemented singular
value decomposition (SVD) and made final calls based on SVD-ZRPKM values to help correct for biases arising from data
generation. Post-CoNIFER, we merged neighbor CNVs if the distance between two adjacent CNVs was less than half of the larger
one. Finally, we generated a list of high confidence de novo CNVs by implementing additional filtering criteria on raw de novo
CNVs, including:

1) not detected in both parents (i.e., without any overlap).

2) less than 50% overlap with common CNVs (MacDonald et al., 2014).
3) less than 50% overlap with telomeric, centromeric and immunoglobulin regions.
4) covering more than 12 probes.

5) Manual visualization blinded to affected status.

Microarray genotyping

TD data

We genotyped 412 trio samples with the HumanOmniExpressExome-8-v1 platform. We utilized GenomeStudio to generate high
quality final reports according to a previously published protocol (Guo et al., 2014). Specifically, after loading and automatic
clustering of the raw intensity data in GenomeStudio, we excluded all samples with less than 98% call rate. We then re-clustered
the remaining samples and manually checked and adjusted the following terms:

1) excluded the abnormal SNPs in chrX, chrY, chrXY and chrMT;
2) adjusted clusters with low GenTrain scores (which means less than 0.7).

As a result, 3 samples with less than 98% call rate and all the SNPs with less than 95% call frequency were excluded. After these
steps, we exported final reports as one file per sample.
Control data
We obtained final report level data (i.e., post Genome-Studio data) for 765 previously genotyped quartets from the SSC (Sanders
etal., 2011, 2015) as control data. In each family, there are two unaffected parents, one affected proband and one unaffected sibling.
Because the microarray platforms used in TD samples and SSC controls were different (Table S4), we further trimmed the SNPs that
only existed in the dataset we used in TD samples to make the results comparable. Then we calculated the standard deviation (SD)
of the LRR ratio for each remained SNP in all the passed samples. All the SNPs with SD of LRR > 0.5 were removed. This process
resulted in 686,180 SNPs, which we used for quality control and CNV detection (Figure S3B).
Quality control for genotyping data
The quality controls of genotyping data consisted of three steps (Figures S3C and S3D): (1) We calculated the mean of LRR in chro-
mosome X and Y for each individual and removed any individuals with abnormal sex karyotype; (2) we estimated the contamination of
these samples by calculation of heterozygous ratio (heterozygous to total SNPs) and duplicate sites ratio (SNPs with BAF of 0.25-0.4
or 0.6-0.75 to total SNPs) in each individual and excluded any outliers defined by 2 standard deviations from the mean; and (3) we
checked the pedigrees in each cohort with an in-house script based on PLINK and removed any failing families. We excluded 11 fam-
ilies from the TD dataset and 2 families from the SSC dataset, leaving 399 TD trios and 763 SSC quartets for de novo CNV calling.
Among the 399 TD trios, 279 trios overlap with the WES data. Additionally, 35 of these 399 TD trios were studied previously on a
different microarray platform (Fernandez et al., 2012).
De novo CNV detection from genotyping data
We detected de novo CNVs based in the families passing QC using PennCNV with an exome-specific Hidden Markov Model file
(Szatkiewicz et al., 2013). After merging neighbor CNVs with PennCNV default settings, the output was further filtered by a series
of criteria:

1) not detected in both parents (i.e., without any overlap);
2) less than 50% overlap with common CNVs (MacDonald et al., 2014);
3) less than 50% overlap with telomeric, centromeric and immunoglobulin regions;
4) covered more than 10 SNPs.
)

5) remove the samples with a) waviness factor > 0.055; b) SD of LRRs > 0.3; c) detected CNVs number > 10.

All the outputs were checked by visualization blind to affected status to obtain the final de novo CNYV list.
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De novo variant validation

De novo sequence variants validation

We attempted to validate all 309 Phase 2 de novo coding variants (including those that disrupt canonical splicing sites) through
PCR and Sanger sequencing. We designed the PCR primers for these sites with a primer3-based web tool developed by our lab
(https://primerdesign.willseylab.com). We generated an amplicon for each variant site using PCR from blood-derived DNA, if avail-
able (13 samples from lymphoblastoid cell line DNA, and 2 samples from saliva DNA). Due to failure in primer design, PCR reaction,
and/or Sanger sequencing, we were unable to validate of 55 of 309 sites. For the remaining 254 sites, we validated 243 of them as true
de novo mutations (95.7%), including 95% for SNVs (232/243) and 100% for indels (11/11).

For the 511 Phase 1 TD trios, our new methods captured the majority of de novo coding variants identified in our Phase 1 analysis
(879 of 419, 40 variants missed). Within these variants, 286 of the 293 with validation data from Willsey et al., 2017 confirmed as true
de novo variants (97.6%). We also identified 87 additional de novo variants. These differences are likely due to joint calling across a
larger number of samples as well as the GRW workflow described above. Within these 87 new de novo variants in Phase 1 samples,
we confirmed 31/37 (83.8%; 50 variants were not validated because of sample accessibility or difficulty in primer design). Hence, we
estimate our Phase 1 confirmation rate as 96.1% (317 of 330 de novo variants). Overall, we therefore achieved a confirmation rate of
95.9% (560 of 584) across Phases 1 and 2.

De novo CNV validation

We attempted to validate all detected de novo CNVs with gPCR. We aimed to design three primers for each candidate and to ensure
primers did not overlap common SNPs and were not within repeat regions (https://genome.ucsc.edu/cgi-bin/hgTables). We checked
fidelity for each pair of primers in silico. We used TERT and ZNF423 as controls to calculate the copy number (Sanders et al., 2011).
We were able to generate primers for 17 de novo CNV candidates in WES data (17/27) and 15 of them were validated as true de novo
CNVs (15/17, 88.2%). With respect to the microarray data, we conducted validation in 11 of 13 de novo CNV candidates and 9 were
confirmed (9/11, 81.8%). We did not explicitly validate de novo CNVs identified in SSC controls. However, based on published confir-
mation results for de novo CNVs identified in the SSC quartets (Sanders et al., 2012, 2015), we were able to assess the expected
confirmation rate of 44 of the 56 de novo CNVs identified in this study. Overall, 43 of these 44 de novo CNVs (97.7 %) were previously
confirmed in SSC samples in WES data, including 31/32 de novo CNVs in SSC probands and 12/12 de novo CNVs in SSC siblings.
We conducted a similar analysis for de novo CNVs detected from the SSC microarray genotyping data. Aside from 1 de novo CNV not
attempted previously, all were confirmed as true de novos (27/27 de novo CNVs in SSC probands and 9/9 de novo CNVs in SSC
siblings). Together, these comparisons suggest high specificity in de novo CNV calling. Given the good performance of our
de novo CNV calling pipeline on SSC WES data (97.7% confirmed) or microarray data (100% confirmed), it is unclear why we
have a lower confirmation rate in the TD samples (WES data, 88.2%; microarray data, 81.8%), though this is perhaps due to different
validation methods, different sequencing and genotyping platforms, and/or criteria used in our study and in Sanders et al., 2015.

Burden analysis

Estimation of mutation rate per base pair

Since the capture platforms varied across different cohorts, we defined high confidence “consensus regions” to minimize bias when
comparing the mutation rate in cases versus controls. We obtained the consensus callable regions by conducting the following steps:

1) By Family: within RefSeq hg19 coding regions, we produced a list of regions that have > 20X coverage in all members of the
trio (to match the minimum joint coverage required in de novo variant calling).

2) By Cohort: we filtered to regions from (1) covered in at least 50% of the trios

3) Across all cohorts (TD and SSC): we intersected the lists from (2) to generate the consensus regions.

These steps resulted in a set of consensus regions spanning 19,343,430 bp. We restricted comparisons of de novo and
transmitted mutation rates to these regions. More specifically, to estimate the mutation rate rate per base pair, we considered
de novo mutations occurring in consensus regions only. We then -calculated mutation rates per individual as
number of de novo mutations in consensus region/number of base pairs with >20X joint coverage within the consensus regions. We
then further divided the mutation rate by two to account for the diploid genome. We obtained the mean as well as the 95% confidence
interval (Cl) of the de novo mutation rate for each sample set by using t.test in R. Finally, we estimated the theoretical de novo mutation
number by multiplying the rate per base pair by the total size of the RefSeq hg19 coding region (33,828,798 bp).

De novo sequence variant burden analysis
We compared the de novo mutation rate in cases versus controls by one-sided Poisson test in R (Willsey et al., 2017):

poisson.test(x, T,alternative = “greater”),

where x is a vector of length two, containing the de novo mutation counts in cases and de novo mutation counts in controls (number of
events). T is also a vector of length two, containing the sum of the number of base pairs with > 20X joint coverage in the consensus
regions across all TD trios and SSC control trios, respectively (number of opportunities). We also obtained the estimated rate ratio and
also 95% ClI from this function. We truncated the lower bound of the 95% ClI to 0 if negative.
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De novo sequence variants burden analysis on mutation-intolerant genes

We also narrowed to mutation-intolerant genes and conducted burden analyses. We identified missense intolerant genes based on
missense Z > 3.891 and LGD intolerant genes based on pLI > 0.9 (Lek et al., 2016). Again, we restricted these analyses to de novo
variants in the consensus regions only. For each class of variants, we narrowed to the corresponding filtered list of intolerant genes to
calculate the mutation rate (e.g., missense variants in missense intolerant genes, LGD variants in LGD intolerant genes). We then
combined these two lists of genes (missense plus LGD variants) to calculate the nonsynonymous mutation rate in mutation-intolerant
genes. As in the overall analyses, the t.test function in R estimated mean and 95% CI for mutation rates, and we compared sample
sets with a one-sided rate ratio test.

De novo CNV burden analysis

Within the WES data, we observed that the number of de novo CNVs is positively associated with the number of probes (i.e., discon-
tinuous capture regions) on the respective capture arrays (Figure S3A). To address this issue, we normalized our de novo CNVs rate
per individual by dividing by the number of probes on each capture platform. We estimated the mean and 95% ClI of the normalized
de novo CNV rate by t.test in R. Comparison was carried out by Wilcoxon rank-sum test (WRST) in R: wilcoxon.test(x, y, alternative =
“greater”), where X, y are vectors containing normalized de novo CNV rates for cases and controls respectively. We did not use a one-
sided rate ratio test as in the de novo sequence variant burden analyses because we could not determine if de novo CNV occurence
follows a Poisson distribution. We then calculated the rate ratio (RR) of de novo CNVs in cases versus controls as:

(total number of de novo CNVs in cases) « (total number of callable probes in controls)

(total number of de novo CNVs in controls) « (total number of callable probes in cases)

For the microarray genotyping data, we used the de novo CNV rate directly for the burden analysis because we had already trimmed
to a common set of high quality SNP sites prior to de novo CNV calling. We also estimated the mean and 95% CI of the normalized
de novo CNV rate by t.test in R. We used the WRST for comparison: wilcoxon.test(x, y, alternative = “greater”), where x, y are vectors
containing de novo CNV rates per individual for cases and controls respectively. We calculated the RR of de novo CNVs in probands
versus siblings as:

RR - (total number of de novo CNVs in cases) * (total number of controls)
" (total number of de novo CNVs in controls)  (total number of cases)

Given that we have partial confirmation results and the confirmation rate is lower in TD cases, we conducted the same analysis
only using confirmed de novo CNVs for the burden analysis. In the WES data we confirmed 15 de novo CNVs from TD trios and
12 de novo CNVs from SSC sibling trios. As a result, we estimated RR 1.93, p = 0.040 in TD probands versus SSC controls. Within
the small sample size of confirmed de novo CNVs in the microarray data, we obtained RR 1.91, p = 0.13 using the same method.

De novo CNV burden analysis using exact binomial test

In addition to the WRST method, we utilized the binomial exact test to to confirm the increased rate of de novo CNVs in TD probands.
Specifically, we detected de novo CNVs from 789 TD trios and 26 of them carry de novo CNVs. In comparison, 16 of 1,136 SSC sib-
lings carry de novo CNVs. Thus, we carried out the binomial exact test as below:

binom.test(26,789,p =16/1136, alternative = "greater”),

This generated the p value as 8.37 x 10~° which is consistent with the result from WRST that de novo CNVs are significantly increased
in TD versus SSC siblings in WES data. Using the same method, we estimated the p value equals to 0.0087 for microarray data, which
further indicated the increased de novo CNV rate in TD versus SSC siblings.

We also checked with the exact binomial test in R if the increased rate of de novo CNVs could be still observed based on the vali-
dated de novo CNVs only. We estimated the p value as 0.016 for WES data and 0.15 for microarray data. Therefore, even restricted to
confirmed de novo CNVs, our results generally suggested the de novo CNV rate is increased in TD probands compared with SSC
siblings.

Genomic architecture of TD risk factors

We estimated the percentage of TD probands with de novo events (sequence variants and/or CNVs) mediating risk, as well as
the percentage of de novo events carrying TD risk based on the passing simplex trios with WES data (i.e., 577 trios TD trios,
1,134 SSC control trios). This allowed us to assess both types of variation in these individuals, in the same dataset.

To estimate the the percentage of TD probands with de novo events we counted individuals with one or more de novo events as
one and marked the remaining individuals as 0. We thus calculated the percentage of individuals with de novo events in cases and
controls as pCases and pControls respectively. The percentage of cases with de novo events mediating risk was calculated as:
pCases — pControls, the 95% confidence interval were estimated by bootstrapping for 1000 replicates. We calculated these values
for sequence variants alone, CNVs alone, and for any de novo event.

We determined the percentage of de novo events carrying TD risk for sequence variants and CNVs separately. For sequence
variants, we calculated the theoretical rate per base pair as before for each individual in the consensus regions. And then the theo-
retical rate per child was obtained by multiplying the entire refseq coding size (33,828,798 bp). The difference and 95% CI between
cases and controls was estimated by two samples t.test in R. We divided difference by the theoretical rate in cases to obtained the
percentage of de novo events carrying TD risk. We generated the 95% Cl for this using the upper and lower of the difference in the
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same formula. For de novo CNVs, we cannot obtain the theoretical rate per person as did for sequence mutations. Thus we treated
the normalized mutation rate as theoretical rate per child and used the same strategy as before to generate the percentage of de novo
CNVs carrying TD risk as well as the 95% CI.

Gene discovery

Estimation of Total TD risk Genes by MLE

The detection of recurrent damaging mutations enabled us to estimate the number of TD risk genes with a previously established
maximum likelihood estimation (MLE) procedure (Homsy et al., 2015; Willsey et al., 2017). We assessed the percentage of damaging
mutations carrying TD risk (E) and did 50,000 permutations for every possible number of risk genes from 1 to 2500. For each permu-
tation, we randomly generated 292 de de novo variants (the total number of damaging mutations identified in all the TD samples; see
below). We also selected a certain number of risk genes according weighted by their respective mutation probability, which accounts
for gene size and GC content (He et al., 2013). We then randomly assigned a percentage of the 292 variants to risk genes, based on
(E), and the remaining percent as non-risk. In each iteration, we combined the risk genes and non-risk genes and checked whether
the recurrent mutation count was consistent with what we observed in our study. We estimated E using all de novo damaging
mutations identified in TD non-multiplex probands (probands from simplex [577 samples] and unknown [97 samples] trios, 674 total
probands) and SSC controls (1,153 samples) in consensus regions to reduce the bias that plexity and different capture platform intro-
duced. We did not use use the mutations from multiplex families due to their unclear risk (Figures 2 and S5). We calculated E as:

_M1—M2_(199/674) — (258/1153)

E==w - (199/674)

=0.2421256.

Among the 292 de novo damaging mutations detected in non-multiplex families (we removed the 10 variants failing confirmation, thus
remained 282 variants), we observed 6 genes with two recurrent variants and 2 genes with three recurrent variants. With these
observations, we determined the MLE of TD risk genes to be 483 genes based on the frequency of occurrences versus possible
TD risk gene number (Figure S6).

Identification of TD risk genes with TADA-denovo model

We did not observe an increase in rare transmitted mutations in simplex TD trios compared with SSC control trios (Figure S5B).
Therefore, we used the TADA de novo only model and all de novo damaging variants identified in the non-multiplex families to identify
TD risk genes. We updated the following parameters from Phase 1:

1) Fraction of causal genes ()

we used the new estimated risk gene number (483),

483 risk genes

T=17726 refseq hg19 genes =0.02724811

2) Fold-enrichment () for Mis3 and LGD

Instead of using synonymous mutations as controls, we used poisson regression to control the effects of paternal age, sex bias,
and consensus callable size. To reduce bias from different exome capture kits, we only used the results from Phase 1 Yale non-multi-
plex samples (281 trios) and Phase 1 and 2 SSC controls (1,153 trios) to estimate the fold-enrichment values since they were captured
by the same exome capture platform. Additionally, as in our other analyses we restricted the regression to the consensus regions to
further reduce batch effects. The formula for the regressions were:

Number of Mis3 mutations ~ paternalAge + sex + affect status + offset(log 10(consensus callable size))

and
Number of LGD mutations ~ paternalAge + sex + affect status + offset(log 10(consensus callable size))

We estimated the A for Mis3 and LGD as 1.383366 and 2.492502 respectively.

3) Relative risk (y) for Mis3 and LGD

A—1 1.383366 — 1

For Mis3: v=1+ - =1+ 004129527 =10.28354
A—1 2.492502 — 1
ForLGD: y=1+ - =1+ 004129527 =37.1422
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With these parameters, we ran TADA-Denovo to estimate the p value and q value (false discovery rate, FDR) for each gene (1000 per-
mutations). We considered genes with recurrent variants (> 1 de novo variant) and g < 0.3 as true TD risk genes (Table 4), but see
Table S7 for an exome-wide summary of p and g values (3 genes have g < 0.3 but only one de novo variant).

Prediction of the Number of Risk Genes Identified by Cohort Size

We took advantage of the estimated TD risk gene number above to predict the gene discovery yield while additional TD trios are
whole-exome sequenced. As done previously (Willsey et al., 2017), we fixed the gene number at 483 and varied the cohort size.
As in the MLE above, we randomly selected the risk genes, and then assigned a fraction of them to TD risk gene and the remaining
as non-TD risk genes. We permuted 10,000 iterations for each cohort size and generated LGD and Mis3 variants separately based on
their mutation rate (He et al., 2013; Sanders et al., 2012). We then combined the permuted variants and ran the TADA de novo only
algorithm using the same sample parameters as above to assess the per gene q value. Then we counted the number of probable
genes (g < 0.3) and high confidence genes (q < 0.1) for each cohort size and plotted the smoothed trend line using ggplotin R (“loess”
function). We predicted the number of genes identified in a particular cohort size by regression model.

We estimated the fractions of LGD and Mis3 variants carrying TD risk (E_gp and Eysz). We did not exclude the variants that failed in
confirmation due to the lack of confirmation data in SSC controls. We only used de novo damaging mutations in non-multiplex fam-
ilies and restricted the mutations to the consensus regions as in the MLE section. Specifically, the observed rate of de novo LGD
variants, M1 = 44/674 for TD probands while M2 = 39/1153 for controls. Therefore, E, gp = (M1-M2)/M1 = 0.482. For Mis3 mutations,
M1 = 155/674 and M2 = 219/1153, and therefore Episz = (M1-M2)/M1 = 0.174.

Permutation test for the occurrence of compound heterozygous mutations in hcTD genes

We first detected compound heterozygous mutations within any of the genes with one or more de novo damaging variants in TD pro-
bands. We only considered compound heterozygous where at least one allele is rare in the population (AF < 0.1% based on ExAC
v0.3) and both are Mis3 or LGD mutations. In total, we identified 189 mutations. Since the g value of OPAT1 is very close to the cutoff of
hcTD genes (g < 0.1) while only concerning non-multiplex families in TADA, we treated OPA1 as a potential hcTD genes in this per-
mutation test. To estimate the probability of observing recurrent compound heterozygous mutations in any of the three genes
(CELSR3, WWCT1 or OPAT), we thus sampled exactly 189 genes genome-wide with replacement and weighted by the probability
of a damaging mutation (He et al., 2013; Sanders et al., 2012). We defined a “success” as CELSR3, WWCT1 or OPA1 appears
more than twice in the generated gene list. We permuted the process 10,000 times and calculated the p value as the total number
of success in permutations.

Systems biological analyses

Comparison of de novo damaging variants in TD and other disorders

To assess the overlap of genes affected by de novo mutations between TD and other disorders, we used a one-sided permutation
test to estimate the significance of overlap. We focused on the de novo damaging mutations from OCD (Cappi et al., 2017), ASD
(Sanders et al., 2015), congenital heart disease (Jin et al., 2017), intellectual disability (Gilissen et al., 2014; Hamdan et al., 2014;
de Ligt et al., 2012; Rauch et al., 2012), schizophrenia (Fromer et al., 2014), epileptic encephalopathies (EuroEPINOMICS-RES Con-
sortium et al., 2014), and developmental disorders in general (Deciphering Developmental Disorders Study, 2017). For each disorder,
we randomly selected the number of unique genes with one or more detected de novo damaging variants, weighted by damaging
mutation probability (He et al., 2013; Sanders et al., 2012) and compared, at the gene level, the permuted list with our observations
in TD. We defined a success as the amount of overlap derived from permutation greater than or equal to our observation. We
permuted 10,000 iterations to estimate the p value for each disorder. Then we iterated the permutation test for each disorder and
obtained the p values respectively. We removed de novo damaging mutations that failed in confirmation and treated genes with
more than one mutations as one. Since a proportion of TD probands in our sample set comorbid with OCD, we therefore also did
the same permutation test using the genes detected from TD probands without comorbid with OCD only.

Comparison of de novo CNVs in TD and ASD

To assess the overlap of de novo CNVs detected from TD probands and ASD probands, we utilized the results from a previously
published study characterizing the Simons Simplex Collection (Sanders et al., 2015). We removed de novo CNVs with more than
50% overlap between ASD probands and siblings which likely carry lower risk. We further removed the telomeric, centromeric
and immunoglobulin regions as did in our de novo CNV calling workflow. These filters resulted in 290 and 57 de novo CNVs in
ASD probands and siblings respectively. Then we intersected either de novo CNV list from ASD study with the de novo CNVs
detected from either WES data or microarray data under the cutoff as 50% using bedtools. We combined CNVs detected in the
same TD probands from either WES data or microarray data prior to the intersection. We observed 9 de novo CNVs overlapping
between ASD probands and TD probands. In comparison, we observed only 1 de novo CNV shared across ASD siblings and TD
probands.

We then estimated the significance of this observation by permutation test. We randomly picked a region list according to the
length of the given CNVs and the chromosome location. We avoided the telomeric, centromeric and immunoglobulin regions in
the permutation. We permuted 10,000 times for ASD probands and siblings. We defined a “success” as the intersection between
the permuted list with de novo CNVs in TD was greater than or equal to the observations (i.e., 9 for TD versus ASD probands
and 1 for TD versus ASD siblings). We estimated the final p value as the rate of success in 10,000 permutations.

Cell Reports 24, 3441-3454.e1-e12, September 25, 2018 el1

OPEN

ACCESS
CellPress




OPEN

ACCESS
CellPress

Enrichment of de novo mutations in cell polarity
To check whether the de novo mutations are enriched in cell polarity, we extracted all the genes related to cell polarity from Gene
Ontology (http://www.geneontology.org/) and annotated the de novo variants in TD and SSC controls. We utilized three methods
to assess the enrichment.

First, we compared de novo damaging variants affecting cell polarity genes in cases and controls. In total, we observed 337 de novo
damaging mutations in TD probands and 350 de novo damaging mutations in SSC controls. Among these, 17/337 and 7/350 affected
cell polarity genes, respectively. We did not consider confirmation status here as variants in the SSC samples did not undergo validation.

TD probands SSC controls
# of de novo damaging mutations 337 350
# of hits in cell polarity 17 7

We then compared using fisher’s exact test in R as:

fisher test(matrix(c((17,337 — 17,7,350 — 7),ncol = 2)), alternative = "greater”),

The results in an estimated odds ratio (OR) = 2.60 and p value = 0.024.

Second, we used a permutation test at the gene-level to assess the enrichment. We removed all the de novos that failed confir-
mation. In total, we observed 327 genes with one or more de novo damaging mutations, across Phase 1 and 2. 15 of these are
cell polarity genes. For each of 10,000 permutations, we randomly selected 327 genes without replacement according to the
damaging mutation probability of each gene (He et al., 2013; Sanders et al., 2012). We tabulated how many of these were cell polarity
genes. We defined success as > 15 cell polarity genes. We calculated the p value as the total number of successes in the 10,000
iterations. We estimated the p value as 0.014.

QUANTIFICATION AND STATISTICAL ANALYSIS

We conducted all statistical analyses in Python (v > 3.6) and R (v > 3.31). We have made the scripts used in these analyses available on
bitbucket at https://bitbucket.org/willseylab/tourette_phase2/src/master/. Where appropriate, we present data as mean + the 95% con-
fidence interval (Cl). We estimate mean and 95% CI with the t.test function. We describe the value of n in the main text and/or in Tables 2
and 3, and n stands for number of samples (trios), number of base pairs, or number of variants as indicated. We conducted the primary
burden analyses for sequence variants with a rate ratio test, using the poisson.test function in R, and comparing, across two cohorts, the
number of de novo variants per the number of callable base pairs assessed. We did burden analyses for copy number variants using Wil-
coxon rank-sum test using wilcox.test function in R. When comparing TD probands versus SSC controls, we utilized a one-sided test (alter-
native = “greater”), given the prior evidence for the role of de novo sequence/copy number variants in TD and other neurodevelopmental
disorders. However, we compared rates between TD cohorts with a two-sided test because we did not expect these rates to differ. In
secondary burden analyses, one-sided binomial exact tests (binom.test in R) and Fisher’s exact tests (fisher.test in R), as well as a Poisson
regression in R (g/m with family = poisson, link = “log”) (see “Determining cutoff for de novo mutation per child”) also assessed significance.

We did not correct p values for multiple comparisons because our primary hypotheses focused on de novo damaging variants
followed by secondary characterization of individual variant classes, and because we previously implicated de novo variants in
TD (Willsey et al., 2017). We considered a p value < 0.05 statistically significant and we list individual p values in the main text, Figures
2 and 3, and Tables 3 and 4.

As described above in the STAR Methods, we estimated p- and g-values for individual association with TD risk with the algorithm,
TADA, which is described in detail in (He et al., 2013).

DATA AND SOFTWARE AVAILABILITY

Data

We have deposited aligned whole exome sequencing data (.bam files) in the Sequence Read Archive (SRA,; https://www.ncbi.nlm.nih.
gov/sra/) under BioProject: PRINA384374 (https://www.ncbi.nlm.nih.gov/bioproject/384374) (TIC Genetics data) and BioProject:
PRJNA384389 (https://www.ncbi.nlm.nih.gov/bioproject/384389) (TAAICG data). We have also deposited the microarray genotyping
data (final report files) from the TIC Genetics cohort under BioProject: PRINA384374.

Software

Perl, Python, and R code used to process these data and complete statistical analyses are available on bitbucket at https://bitbucket.
org/willseylab/tourette_phase2/src/master/. Our in-house primer design software that generated primer sets for variant confirma-
tions is located at https://primerdesign.willseylab.com/.
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