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Abstract:

Soil moisture is a critical variable in the water and energy cycles. The prediction of soil moisture patterns, especially at high
spatial resolution, is challenging. This study tests the ability of a land surface hydrologic model (Flux-PIHM) to simulate high-
resolution soil moisture patterns in the Shale Hills watershed (0.08 km?) in central Pennsylvania. Locally measured variables
including a soil map, soil parameters, a tree map, and lidar topographic data, all have been synthesized into Flux-PIHM to
provide model inputs. The predicted 10-cm soil moisture patterns for 15 individual days encompassing seven months in 2009 are
compared with the observations from 61 soil moisture monitoring sites. Calibrated using only watershed-scale and a few point-
based measurements, and driven by spatially uniform meteorological forcing, Flux-PIHM is able to simulate the observed macro
spatial pattern of soil moisture at ~10-m resolution (spatial correlation coefficient ~ 0.6) and the day-to-day variation of this soil
moisture pattern, although it underestimates the amplitude of the spatial variability and the mean soil moisture. Results show that
the spatial distribution of soil hydraulic parameters has the dominant effect on the soil moisture spatial pattern. The surface
topography and depth to bedrock also affect the soil moisture patterns in this watershed. Using the National Land Cover
Database (NLCD) in place of a local tree survey map makes a negligible difference. Field measured soil type maps and soil type-
specific hydraulic parameters significantly improve the predicted soil moisture pattern as compared to the most detailed national
soils database (Soil Survey Geographic Database, or SSURGO, 30-m resolution). Copyright © 2015 John Wiley & Sons, Ltd.
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INTRODUCTION

Soil moisture is a critical variable in the water and energy
cycles. It determines the partitioning of available energy
into sensible, latent, and ground heat fluxes, as well as the
partitioning of incoming precipitation into surface runoff
and infiltration. Soil moisture is also an important driver
of many biogeochemical processes. Capturing the
temporal variation and spatial distribution of soil moisture
is important for numerical models to accurately simulate
land surface, hydrological, and biogeochemical processes.

It is generally held that soil moisture is highly variable
in time and space. Many studies have focused on the
temporal variation of soil moisture when testing hydro-
logic models’ ability to simulate soil moisture (e.g. Liang
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et al., 1996; Liang et al., 2003; Livneh et al., 2011; Niu
et al., 2011). There are relatively fewer studies examining
the spatial patterns of soil moisture predicted by
hydrologic models. Western et al. (1999) and Western
and Grayson (2000) compared the predicted top 30-cm
soil moisture pattern from a distributed hydrologic model,
Thales (Grayson et al., 1992) (~140-m? grid size) with the
field measurements using Time Domain Reflectometry
(TDR) (500 points on ~10mx20m grids) at the
Tarrawarra watershed (0.105km?) in Australia. Using
field survey soil map as input, the simulated soil moisture
patterns compared well during dry and wet periods, but
were problematic during transition periods in spring and
fall. Peters-Lidard et al. (2001) compared the 5-cm soil
moisture pattern predicted by a TOPMODEL based land-
atmosphere transfer scheme (TOPLATS-GIS; 30-m
resolution) with the soil moisture map derived from the
airborne Electrically Steered Thinned Array Radiometer
(ESTAR) (200-m resolution) at the Little Washita
watershed (530km?). The soil map and properties were
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obtained from a site-specific comprehensive soil property
database (Mohanty et al., 2002). The model represented
the remotely sensed spatial pattern of soil moisture
reasonably well. Rigon et al. (2006) and Gebremichael
et al. (2009) used the ESTAR observations (800-m
resolution) at the Little Washita watershed to evaluate a
distributed hydrologic model, GEOtop, with 200-m grid
resolution with the same comprehensive soil database
(Mohanty et al., 2002). The results showed that the
drainage network pattern was pronounced in ESTAR soil
moisture observations following a storm event, but was
totally missed in the GEOtop simulations. Bertoldi et al.
(2014) compared the GEOtop predicted soil moisture
pattern (200-m resolution) with ground surveys and
satellite synthetic aperture radar images (~200-m resolu-
tion) at the Matsch/Mazia valley watershed (98 km?) in
Ttaly. A soil map based on local soil survey was used, but
the number of soil classes was purposely decreased to
avoid over-parameterization. They found that the model
simulations show poor capability in reproducing the
observed soil moisture spatial variability, with low
coefficient of determination (R* ~ 0.2) and high errors
(RMSE ~ 0.13m>m ™). Those studies demonstrated that
using hydrologic models to capture the spatial variability
of soil moisture at high spatial resolution is challenging,
especially when used without a comprehensive and
accurate soil map (e.g. Bertoldi ef al., 2014).

Determining what data and modelling techniques are
required to simulate high-resolution soil moisture
patterns will provide important guidance for future
hydrologic model applications and model development.
Previous studies found that observed watershed-scale soil
moisture patterns are primarily controlled by soil texture
and topography (Hawley et al., 1983; Burt and Butcher,
1985; Jackson et al., 1995; Nyberg, 1996; Crave and
Gascuel-Odoux, 1997; Fitzjohn et al, 1998; Cantén
et al., 2004; Western et al., 2004; Takagi and Lin, 2012)
and are affected by vegetation in arid or semiarid areas
(Seghieri et al., 1997; Gémez-Plaza et al., 2001; Cantén
et al., 2004). However, it is very difficult to rank the
relative importance of the controlling factors, because
those controlling factors interact in a complex manner.
Physically based spatially distributed hydrologic models
can be used to study the impact of the controlling factors
of soil moisture patterns and provide insights into the
relative importance of the controlling factors.

This study aims to answer the following questions: (1)
Can we predict the observed high-resolution soil
moisture pattern (~10m) using a physically based
spatially distributed hydrologic model? (2) What data
are needed to resolve fine-scale land surface heteroge-
neities such as soil moisture patterns using numerical
models? and (3) Is the most detailed existing national
land cover and soils database sufficient for high-

Copyright © 2015 John Wiley & Sons, Ltd.

4625

resolution soil hydrologic modelling? We use a coupled
land surface hydrologic model, Flux-PIHM (Shi et al.,
2013), to provide reasonable answers to these questions.
Flux-PIHM couples the Penn State Integrated Hydrologic
Model (PIHM) (Qu, 2004; Qu and Duffy, 2007; Kumar,
2009) with the land surface scheme adapted from the
Noah land surface model (LSM) (Chen and Dudhia,
2001; Ek et al., 2003). Flux-PIHM adds the ability to
simulate the surface energy balance (SEB) and soil
moisture profile to PIHM. The model is implemented in
the first-order Shale Hills watershed (0.08 km?) in central
Pennsylvania, one watershed within the Susquehanna-
Shale Hills Critical Zone Observatory (SSHCZO). The
extensive field survey and broad array of observations at
this CZO, including spatially distributed soil moisture
monitoring sites, make it an ideal site for this study.

MODEL AND DATA
Flux-PIHM

Flux-PIHM incorporates a land-surface scheme into
the Penn State Integrated Hydrologic Model (PIHM), a
fully coupled, physically based, and spatially distributed
hydrologic model. The land surface and hydrologic
components are coupled by exchanging water table
depth, infiltration rate, recharge rate, net precipitation
rate, and evapotranspiration rate between the two model
components at every time step. Flux-PIHM simulates
surface energy balance, infiltration, recharge, overland
flow, groundwater flow, and channel flow at each model
grid in a coupled scheme. The model domain is
decomposed into unstructured triangular elements and
rivers are represented by rectangular elements. Channel
flow and overland flow are governed by the 1-D (channel
flow) and 2-D (overland flow) St. Venant equations
(Saint-Venant, 1871). Unsaturated flow and groundwater
flow (with dynamic coupling to the unsaturated zone
across water table) are described using the Richards
equation, and the unsaturated hydraulic conductivities are
calculated using the van Genuchten (1980) equations.
Unsaturated water is restricted to vertical transport in the
unsaturated zone. In the saturated zone, groundwater
flow is horizontal with dynamic coupling to the
unsaturated zone across the free surface (water table).
The land surface scheme integrates the Penman potential
evaporation scheme of Mahrt and Ek (1984), the
multiple-layer soil model of Mahrt and Pan (1984), the
canopy model of Pan and Mahrt (1987), and the canopy
resistance approach of Noilhan and Planton (1989) and
Jacquemin and Noilhan (1990). Detailed descriptions
and formulations of PIHM and Flux-PIHM are provided
by Qu (2004), Qu and Duffy (2007), and Shi et al.
(2013; 2014).

Hydrol. Process. 29, 4624-4637 (2015)
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In this study, we expand the number of standard soil
layers in Flux-PIHM from four to ten. The node depths
z;(m) are defined similarly to the Community Land Model
Version 3 (CLM3) soil layer definitions (Lawrence et al.,
2008):

2z = 0.65{exp[0.15(i — 0.5)] — 1}, )

and the thickness of each layer is:

0.5(z1 + 22), i=1
AZi = O-S(ZH-I *Zi—l)v i= 2737 7N7 1) (2)
IN — IN-1, i=N,

where N=10 is the number of standard soil layers.
Generally, the thicknesses of soil layers increase from
0.11 m for the first layer to 0.38 m for the tenth layer, and
the total depth of the standard soil layers is 2.24 m. If the
bedrock depth is less than 2.24m, the number of soil
layers is reduced, and the thickness of the lowest layer is
adapted to match the depth to bedrock. If the bedrock
depth is larger than 2.24 m, one additional soil layer is
added as needed.

Study site and data

The Shale Hills watershed is a small-scale, forested,
and V-shaped first-order watershed with an area of
0.08km? in central Pennsylvania (Figure 1). This
watershed is part of the Susquehanna Shale Hills Critical
Zone Observatory (SSHCZO). The mean annual temper-
ature is 10°C, and the mean annual precipitation is
107 cm. The broad array of observations and extended
field surveys and campaigns provide important model
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input data, calibration data, and evaluation data for this
study.

The surface terrain of the Shale Hills catchment is
described using airborne light detection and ranging
(lidar) data with 1-m horizontal resolution and 2-4 cm
accuracy (http://pihm.ics.psu.edu/CZO_NOSL/Lidar.
aspx) (Figure 1). The watershed is characterized by
relatively steep slopes and narrow ridges. The slopes are
interrupted by seven swales (topographic depressional
areas). The surface elevation varies from 256 m above sea
level at the watershed outlet to 310m above sea level at
the ridge top.

A field survey conducted in 2003 measured the depth
to bedrock using augers, and identified five soil series in
the watershed (Lin et al., 2006). Figure 2 shows the depth
to bedrock map and the soil map obtained from the field
campaign. The Weikert soil covers most of the watershed,
especially the planar slope and ridge top, and has relative
shallow bedrock depth. The Rushtown soil series is found
in the centres of the swales, and the Berks soil series
appears in between the planar slopes and the swales. The
valley floor is covered by the Ernest and Blairton (the
latter only found at the head at the stream) soils. Those
soil series near the swales and the stream have relatively
deep bedrock depths. Lin et al. (2006) and Baldwin
(2011) measured and derived the soil properties of the
five soil series, including the vertical saturated hydraulic
conductivity, the horizontal saturated hydraulic conduc-
tivity, the soil porosity, and the van Genuchten soil
parameters (Table I).

A field survey of all trees over 18-cm diameter at breast
height (DBH) was conducted in 2008, which provided a
vegetation map of the watershed (Eissenstat et al., 2013).

Surface elevation (m)

@ RTHnet wells 250

——Modeled stream path
/\ Model grid

@ Weather station and flux tower

Figure 1. Map of the Shale Hills watershed located in central Pennsylvania and the grids used in Flux-PIHM simulations. The locations of the RTHnet
measurements and TDR-tensiometers (with site ID numbers) are shown

Copyright © 2015 John Wiley & Sons, Ltd.
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Figure 2. Input maps of soil type, bedrock depth (BRD), and vegetation cover used for different simulations in this study. Field surveys are compared to
SSURGO soil type, an assumption of uniform soil type and uniform bedrock depth, and vegetation cover from the National Land Cover Database
(NLCD). Note that the ‘field survey’ BRD map shown in this figure is the observed bedrock depth plus an additional 1.25-m weathered rock layer

Table 1. Input soil hydraulic parameters for the simulation with field survey inputs and the SSURGO simulation for each of the five soil
series in the Shale Hills watershed, including vertical saturated hydraulic conductivity of infiltration layer (Kj,sy), vertical (Ky) and
horizontal (Kj) saturated hydraulic conductivities, porosity (®,), and van Genuchten soil parameters (a and /)

Weikert

Berks Rushtown Blairton Ernest

Field

Field Field Field Field

Parameter survey SSURGO  survey  SSURGO  survey SSURGO  survey SSURGO  survey  SSURGO

Ky (md™)  7.86 0.224 13.10 0.255 8.50 — 1.30 — 7.15 0.673
Ky (md 71) 1.40 0.289 1.61 0.250 0.938 — 0.584 — 3.20 0.475
Ky (md _1) 1.04 2.89 0.847 2.50 1.96 — 2.63 — 6.02 4.75
O, mMm™>) 0370 0471 0.403 0.472 0.425 — 0.418 — 0.493 0.463
o (mfl) 8.80 2.46 6.45 2.51 6.50 — 5.34 — 5.82 3.27

L (—) 1.24 1.20 1.21 1.21 1.26 — 1.26 — 1.22 1.32
The sloping areas and ridges of the watershed are covered To test the adequacy of the national scale database for

by several deciduous species. The valley floor and north- high-resolution hydrologic modelling, data from the Soil
facing ridge top are covered by some evergreen species Survey Geographic Database (SSURGO) and the Nation-
(Wubbels, 2010). Vegetation parameters for different land al Land Cover Database (NLCD) are used for comparison
cover types [e.g. minimum stomatal resistance, albedo, in this study. Figure 2 shows the SSURGO soil map and
emissivity, roughness length, see Shi et al. (2013) for NLCD land cover map for the Shale Hills watershed.
details] are obtained from the modified International Because of the limitation of its spatial resolution (30 m),
Geosphere—Biosphere Programme (IGBP) Moderate Res- SSURGO soil map cannot resolve the soil types around
olution Imaging Spectroradiometer (MODIS) 20-category the swales. In addition, the location of the Ernest soil
vegetation (land use) data (http://www.ral.ucar. series in the SSURGO soil map deviates from the local
edu/research/land/technology/ Ism/parameters/). soil survey (Figure 2). The a priori soil hydraulic

Copyright © 2015 John Wiley & Sons,

Ltd. Hydrol. Process. 29, 4624-4637 (2015)


http://www.ral.ucar.edu/research/land/technology/
http://www.ral.ucar.edu/research/land/technology/

4628

properties for SSURGO soil series are obtained by
applying pedotransfer functions (PTF) (Wosten et al.,
2001, their Table II) to textural classes in SSURGO, and
are shown in Table I. The NLCD land cover map captures
the deciduous trees on the slopes and the evergreen trees
on the valley floor near the outlet, but misses the
evergreen trees on the north-facing ridge top (Figure 2).
The vegetation parameters for the NLCD land cover types
are obtained from the modified IGBP MODIS 20-
category vegetation (land use) data.

The forcing data used in this study are the same as
those used in Shi et al. (2013). Precipitation, air
temperature, and relative humidity data are obtained from
the real time hydrologic monitoring network (RTHnet)
weather station at the SSHCZO. Downward longwave
radiation and downward solar radiation are obtained from
the Surface Radiation Budget Network (SURFRAD)
(Augustine et al., 2000) Penn State University station
near the Shale Hills watershed. Surface air pressure and
wind speed data are obtained from the Penn State
SURFRAD station (prior to April 2009) and the SSHCZO
eddy-covariance tower (after April 2009). Given the small
scale (0.08km?) of the watershed, spatially uniform
meteorological forcing is used for this study. The MODIS
8-day composite leaf area index (LAI) data (Knyazikhin
et al., 1999; Myneni et al., 2002) are rescaled based on
the comparison between the MODIS product and CZO
field measurements (Naithani ez al., 2013) to represent the
vegetation phenology (Shi et al., 2013). MODIS LAI has
a spatial resolution of 1km? thus cannot resolve spatial
structure in LAI within the watershed.

Calibration data include stream discharge, and point
measurements of groundwater level and soil moisture.
Stream discharge is measured with a V-notch weir at the
outlet of watershed. The water level at the weir is
measured with a Campbell CS420-L pressure transducer
and then converted to discharge rate using a rating curve
developed by Nutter (1964). The groundwater level and
soil moisture data used for calibration are collected from
three RTHnet wells drilled near the stream. The water

Y. SHI ET AL.

table depth (WTD; distance from the land surface to the
groundwater table) measurements (using Campbell
CS420-L pressure transducers) collected in different
wells are averaged to represent the mean WTD observed
within the single Flux-PIHM grid that includes the
RTHnet wells. The multiple volumetric soil moisture
content observations (using Decagon Echo2 EC-20 soil
moisture sensors) are collected at 10, 30, and 50-cm
depths. Measurements from those three wells are
averaged to represent the observed top 50-cm soil water
content (SWC). The model domain is discretized such
that the three RTHnet wells are located at three vertices of
one model grid (Figure 1). The point measurements of
WTD and SWC are used to optimize the model
predictions of WTD and SWC in that model grid that
represents the RTHnet wells. More details about the
forcing and calibration data can be found in Shi ef al.
(2013).

Soil moisture measurements were collected across the
watershed at a weekly to biweekly interval with a
handheld TRIME-FM (IMKO, Germany) TDR probe on
15days from 26 April to 09 October 2009. Volumetric
soil moisture measurements were collected at 10, 20, 40,
60, 80, and 100-cm depths by inserting the TDR probe
into Schedule 40 PVC access tubes that were buried at 61
sites across the watershed. Data collection on each day
typically took 6-8h, from around 0800 LST to around
1600 LST. Holes were drilled down to 110 cm or bedrock
at each site to install the access tubes. Because many of
the sites have shallow depth to bedrock (as shallow as
<20cm), not all sites have measurements below 10cm.
Therefore, only the measurements at 10-cm depth are
used for this study.

A geostatistical technique called kriging with an
external drift (Diggle and Ribeiro, 2007) is used at each
TDR site to calculate continuous catchment-wide fields of
10-cm soil moisture for each measurement date in 2009 to
help illustrate the observed soil moisture patterns. Kriging
with an external drift is a form of kriging where auxiliary
variables are used in a linear regression model to estimate

Table II. Statistical analysis of hourly model predictions of discharge (Q), water table depth (WTD), and top 50-cm soil water content
(SWC) from 1 Apr to 1 Nov 2009, including the Nash—Sutcliffe coefficient (NSE) for Q, and the correlation coefficient (R), and the root
mean square error (RMSE) for WTD and SWC

0 WTD SWC
Simulation NSE R (—) RMSE (m) R (—) RMSE (m’m™)
Field survey 0.778 0.836 0.168 0.743 0.021
SSURGO 0.782 0.820 0.179 0.784 0.024
1.75-m BRD 0.770 0.759 0.221 0.725 0.026
Uniform soil 0.902 0.803 0.186 0.776 0.018
NLCD 0.788 0.843 0.164 0.731 0.021

Copyright © 2015 John Wiley & Sons, Ltd.
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the local means of a predicted variable, and then ordinary
kriging is performed on the model residuals to interpolate
them across space. We use topographic variables derived
from the lidar topography data as auxiliary variables, and
a stepwise regression procedure (Venables and Ripley,
2002) is used to define the regression equation, where the
regression equation with the lowest Akaike’s Information
Criterion is chosen. An exponential spatial model was
used to estimate the spatial autocorrelation structure of
model residuals. The R package GeoR (Diggle and
Ribeiro, 2007) is used to conduct the soil moisture
kriging.

FLUX-PIHM SETUP

The Shale Hills watershed model domain is decomposed
into 535 triangular grids with an average grid size of
157 m?. The stream channel is represented by 20 stream
segments. The model grid configurations are presented in
Figure 1.

To identify the controlling factors of the observed soil
moisture patterns in Flux-PIHM, we examine five
different combinations of soil maps, land cover maps,
and bedrock depth maps (Figure 2). In the ‘field survey’
simulation, the surface topography map obtained from the
1-m lidar data, the depth to bedrock map and soil map
obtained from the field campaign, and the land cover map
obtained from the tree survey are projected to the model
grids to define the surface elevation, bedrock depth,
vegetation type, and soil type of each model grid. An
extra 1.25 m is added to the measured bedrock depths for
all model grids to account for flow through a deeper
weathered shale layer (Shi et al., 2013). Driven by field
survey inputs, this simulation represents our best effort to
numerically replicate the watershed, and is used to
evaluate the model’s ability of reproducing the observed
soil moisture spatial patterns.

The ‘1.75-m BRD’ simulation uses the same soil map
and soil parameters as the field survey simulation, but
has a uniform bedrock depth of 1.75m, which is the
average bedrock depth in the field survey simulation. In
the ‘uniform soil’ simulation, all model grids have the
same soil type (Ernest) and bedrock depth (1.75m). The
‘SSURGO’ simulation uses the SSURGO soil map, the
soil properties calculated using the pedotransfer functions
(Wosten et al., 2001), and the same bedrock depth map
as in the field survey simulation. The ‘NLCD’ simulation
uses the same soil map, soil parameters, and bedrock
depths as the field survey simulation, but uses the NLCD
land cover map instead of the field survey vegetation
cover map. Results from these simulations are compared
with the simulation driven by field survey inputs to
identify the controlling factors of the soil moisture

Copyright © 2015 John Wiley & Sons, Ltd.
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pattern, and to test whether the national database is
sufficient in high-resolution hydrologic modelling.

All simulations start from 0000 UTC 1 January 2008,
with a model time step of 1 min and an output interval of
1h. All simulations are separately manually calibrated
using outlet discharge, RTHnet water table depth,
and RTHnet top 50-cm soil water content measurements
to make sure they can all reproduce the watershed-scale
(i.e. discharge) and point (soil water content and water
table depth) observations. The hydrologic parameters that
show relatively strong identifiability in the model
sensitivity analysis (Shi et al., 2014) are calibrated,
including the vertical saturated hydraulic conductivity of
infiltration layer, vertical and horizontal saturated
hydraulic conductivities, soil porosity, van Genuchten
soil parameters, and vertical and horizontal macropore
hydraulic conductivities. The other parameters are kept
the same among all simulations. For details about those
parameters, please see Shi et al. (2013; 2014).

The thicknesses of the top two soil layers in Flux-
PIHM are 10.7cm and 12.3cm, respectively. For this
assessment, the simulated soil moisture content from the
top two layers are averaged to be compared with the
measurements at the 10-cm depth:

. OI'Az + O A

" 3
Az + Az ©)

where ©" is the simulated 10-cm soil moisture for a
model grid, ® is the simulated volumetric soil water
content at the i™ model layer, and 4z; is the thickness of
the i model layer, following Equation 2. For each
measurement day, Flux-PIHM predictions between 0800
LST and 1600 LST (corresponding to the field data
collection time) are averaged to represent the predicted
soil moisture pattern of the measurement day. The
simulated spatial patterns in soil moisture for all
measurement days in 2009 are compared with observa-
tions for each set of input data. The model-data
comparisons for various input data sets are used to
evaluate the importance of site-specific input data for
accurate simulation of the high-resolution spatial pattern
in soil moisture.

RESULTS

Predictions of discharge and point measurements

Figure 3 and Table II present the comparison of hourly
discharge, water table depth (WTD), and top 50-cm soil
water content (SWC) between RTHnet observations and
different Flux-PIHM simulations, as well as the statistical
analysis of these results. Although our different simula-
tions use different soil maps, bedrock depths, and land
cover maps, they provide similar performance in terms of

Hydrol. Process. 29, 4624-4637 (2015)
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Figure 3. Comparison of watershed outlet discharge (top), water table depth (middle), and top 50-cm soil water content (bottom) between observations

and the suite of Flux-PIHM simulations from 1 Apr to 1 Nov 2009. The WTD and SWC observations are averages among three wells. Circles are

observations, and the shaded areas show the representativity errors in WTD and SWC, quantified by the standard deviation of the three RTHnet
measurements

the predictions of outlet discharge, as well as predictions
of WTD and SWC at the RTHnet wells after calibration.
All simulations have the ability to reproduce the
observed discharge and point measurements of WTD
and SWC after calibration (Figure 3 and Table II). The
Nash—Sutcliffe model efficiency coefficients (NSEs)
(Nash and Sutcliffe, 1970) for discharge predictions
range from 0.770 and 0.902 across the different
simulations. The root mean square errors (RMSEs) of
WTD predictions are all lower than 0.23m, and the
correlation coefficients (R) are all higher than 0.75. As
for the SWC predictions, the RMSEs are lower than
0.026m*m™>, and the correlation coefficients are all
higher than 0.72.

Observed soil moisture pattern at the Shale Hills
watershed

Figure 4 presents the observed 10-cm soil moisture
pattern at the Shale Hills watershed for 15days in 2009.
Generally, the observation points near the stream and in
the swales are wetter than the points on the planar slopes.
The watershed soil moisture pattern shows considerable
spatial heterogeneity. For example, Sites Al, A2, and A3
are within 10 m to each other (for locations of these sites,
see Figure 1). The soil moisture conditions, however, are
significantly different. On most of the measurement days,
the 10-cm soil moisture observed at the A3 site is about
0.1m*m~3 lower than the other two sites. As for the
temporal variation, the watershed is wetter in April, May,
and October, but drier in August and September when
the swale characteristics become less prominent.

Copyright © 2015 John Wiley & Sons, Ltd.

Prediction of soil moisture pattern from the simulation
using field survey inputs

Figure 5 presents the Flux-PIHM prediction of soil
moisture content at 10-cm depth using the field survey
input. Note that the simulated soil moisture patterns
presented in Figure 5 show the predictions from the
triangular grids in the model, but do not include the river
segments, which are assumed to be saturated at all times.
Flux-PIHM predicts wetter soil near the stream and in the
swales, and drier soil on the planar slope. The model
simulation, however, shows notable dry bias on most of
the days. This is probably because the model is only
calibrated using soil moisture observations at one point.
The model simulated soil moisture patterns are much
smoother than the observations.

Figure 6a compares the simulated and observed 10-cm
soil moisture for each TDR site. If there are multiple TDR
sites in one Flux-PIHM model grid, the measurements
within the same grid are averaged. Similar to Figure 5,
Figure 6a demonstrates that the simulation using the field
survey inputs systematically underestimates the 10-cm
soil moisture, especially in the wetter areas. The mean
bias is larger when the watershed is wetter (from April to
July and in October) and smaller when the watershed is
dryer (in August and September). The RMSEs range from
0.034 to 0.092m>m~* on different days. Despite the
notable dry bias in the prediction, the spatial correlations
are always larger than 0.5, except for 3 October, which
demonstrates the ability of the Flux-PIHM model to
simulate the macro watershed soil moisture patterns.
Flux-PIHM is able to predict the relative wetness of the
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Figure 4. Observed soil moisture patterns at 10-cm depth of the Shale Hills watershed for 15 days in 2009. The coloured dots represent the TDR point
measurements, and the background is the soil moisture distribution obtained using regression kriging
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Figure 5. Flux-PIHM simulated soil moisture (at 10-cm depth) spatial patterns from the field survey simulation for 15 days in 2009

soil types, for example the Ernest soil type is always Figure 6b shows the temporal variation of the observed
wetter than the Weikert soil type. But it is clear that the and predicted average soil moisture at the TDR sites for
observations show greater variability in soil moisture the measurement days. The model is able to capture the
within a soil type than the simulation. The primary source  general day-to-day variation in soil moisture, but has a
of spatial variability in soil moisture in the model appears notable dry bias and underestimates the magnitude of the
to be soil type. temporal variation.

Copyright © 2015 John Wiley & Sons, Ltd. Hydrol. Process. 29, 4624-4637 (2015)
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Figure 6. (a) TDR observations versus Flux-PIHM simulation using field survey input data for 10-cm soil moisture at each TDR site. Correlation
coefficients and RMSEs are also shown. The solid black lines are the 1:1 lines, and the dashed black lines represent linear fits. Different colours represent

different soil types in Flux-PIHM. The unit for bias and RMSE is m’m™

. (b) Temporal variations of observed and simulated soil moisture (spatial

average)

Comparison of the soil moisture pattern across different
simulations

To identify and compare the relative importance of the
controlling factors of the soil moisture pattern, we compare
the soil moisture patterns predicted by different simula-
tions. The results are similar across all days. For the sake of
brevity we focus on the temporal average of soil moisture
patterns across all 15 measurement days. The predicted soil
moisture patterns from different simulations averaged
across all measurement days are presented in Figure 7, and
the predicted versus observed one-to-one comparisons are
presented in Figure 8.

The pattern of soil moisture predicted by the SSURGO
simulation (Figure 7b) strongly correlates with the pattern
of the SSURGO soil map (Figure 2), but differs from the
observed soil moisture pattern. The spatial correlation
between the SSURGO simulation and point measurements
is —0.02 (Figure 8b). The SSURGO simulation is
characterized by a broad dry soil area on the southern
slope (Figure 7b), corresponding to the location of the

Copyright © 2015 John Wiley & Sons, Ltd.

Ernest soil series in the SSURGO soil map (Figure 2). The
simulation using field survey inputs predicts that the Ernest
soil series is always wetter than the Weikert soil series, the
opposite of the SSURGO simulation. This is caused by the
different soil hydraulic parameters in the field survey
simulation and the SSURGO simulation (Table I). To test
this, we perform another simulation, which uses the
SSURGO soil map with the soil parameters from the field
survey. The soil moisture pattern predicted in this
simulation (results not shown here) still correlates with
the SSURGO soil map, except that the Ernest soil series is
wetter than the Weikert soil series, as predicted in the
simulation using field survey inputs.

The 1.75-m BRD simulation (Figure 7c) generally
captures the overall observed soil moisture pattern,
predicting wetter soil near the stream and in the swales,
and dryer soil on the planar slope. This simulation,
however, predicts stronger contrast between wet and dry
soils, and has a larger spatial variability compared to the
simulation with field survey inputs. The soil moisture
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(Figure 2). The spatial standard deviations are presented to quantify the predicted spatial variability of soil moisture
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Figure 8. TDR point observations versus simulated 10-cm soil moisture using different input data sets (Figure 2). Each dot represents the observations or
predictions at one TDR site averaged over all measurement days. Different colours represent different soil types in Flux-PIHM

near the stream (the Ernest soil series) is almost the same
as in the simulation with field survey inputs, but the soil
moisture on the planar slope is lower than in the field
survey simulation. Generally, our simulations show that
increasing the bedrock depth in the model tends to
decrease the surface soil moisture. Compared with the
simulation with field survey inputs, the 1.75-m BRD
simulation has shallower bedrock depths near the stream
but deeper bedrock depths on the planar slope (Figure 2),
which leads to wetter soil near the stream and dryer soil
on the planar slope. Because we calibrate all model
simulations such that the soil moisture near the stream
matches the observation, the combined result is that the

Copyright © 2015 John Wiley & Sons, Ltd.

soil moisture near the stream is almost the same as in the
simulation with field survey inputs, but the soil moisture
on the planar slope is much dryer.

The uniform soil simulation (Figure 7d) significantly
underestimates the variability in soil moisture, but does
predict relatively wetter soil near the stream and in the
swales. The spatial correlation between this simulation
and the measurements is 0.53. The predicted spatial
standard deviation of soil moisture is about 67% of that in
the simulation with field survey inputs. Because the soil
and bedrock depth is uniform in this simulation, the
predicted spatial pattern is mainly caused by lateral
groundwater flow, driven by surface topography.

Hydrol. Process. 29, 4624-4637 (2015)
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The soil moisture pattern predicted by the NLCD
simulation (Figure 7e) is almost identical to the
simulation with field survey inputs, which indicates that
the relatively small differences in vegetation distribution
between the NLCD database and our site survey are not a
controlling factor of the observed soil moisture pattern at
the Shale Hills watershed. It is also important to note that
our simulation does not take into account differences
across tree species, or spatial gradients in leaf area index
(e.g. Naithani et al., 2013).

DISCUSSION AND CONCLUSIONS

The results from these model simulations based on field
survey input data show that Flux-PIHM, a physically
based spatially distributed land surface hydrologic
model, can reasonably reproduce the observed macro
soil moisture pattern in the Shale Hills watershed. The
average spatial correlation is 0.63 and the average
RMSE is 0.06m®>m 3. Calibrated using only watershed-
scale measurements (i.e. discharge) and point measure-
ments (i.e. soil moisture and water table depth at one
location), and driven by spatially uniform forcing data,
Flux-PIHM is able to resolve the observed hillslope
scale (10" m) soil moisture pattern across the watershed
and reproduce the day-to-day variation of soil moisture.

Bertoldi er al. (2014) and Western et al. (1999) both
found that the hydrologic model predicted soil moisture
patterns tend to cluster with respect to the input soil types,
which is also shown in our study (Figures 5 and 6). It is
clear from comparisons at observation points that the
simulation underestimates variability in soil moisture
within soil types (Figure 6). In Flux-PIHM, all grids that
have the same soil series/landcover types use the same
soil hydraulic/landcover properties. We cannot conclude
from the data available if this weakness in the simulations
is because of mixed soils and vegetation types that are not
represented in our input data, or processes such as lateral
flow that are not being simulated properly. A study of the
variation in soil properties within soil types might clarify
the source of this discrepancy.

Most of the previous studies investigated the controlling
factors of soil moisture patterns by examining the
relationship between topography, soil properties,
land cover, and soil moisture using statistical analysis
(e.g. Hawley et al., 1983; Jackson et al., 1995; Nyberg,
1996; Crave and Gascuel-Odoux, 1997; Fitzjohn et al.,
1998; Cantén et al., 2004). This study provides an
alternative means to explore the influences on soil
moisture patterns using a numerical model. The simula-
tions that vary input data sets show strong modelling
evidence that the soil distribution and soil hydraulic
parameters have the dominant effect on predicted spatial

Copyright © 2015 John Wiley & Sons, Ltd.
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pattern in soil moisture at the Shale Hills watershed. The
surface topography and depth to bedrock also affect the
soil moisture pattern in this watershed. The relatively
small variation in vegetation distribution tested has
negligible effects on the soil moisture pattern. Baldwin
et al. (submitted) calculated the temporal autocorrelation
of soil moisture (2007-2010) from the 61 sites across Shale
Hills. They found that the combination of topography and a
digital soil map was significantly more accurate in
characterizing watershed-scale soil moisture variation than
five other prevailing stratification systems, which indicates
that the soil moisture pattern at the Shale Hills watershed is
controlled by topography and soil types; our model results
agree with their findings.

In all simulations, the predicted soil moisture patterns
strongly correlate with the input soil maps. The relative
magnitude of soil hydraulic parameters of different soil
types appears to determine the relative wetness of soil
types. For example, in the SSURGO simulation, the
model predicts that the Ernest soil series is drier than the
Weikert soil series when SSURGO parameters are used,
but predicts the opposite when the field survey parameters
are used. Flux-PIHM uses the single global calibration
multiplier method (Pokhrel and Gupta, 2010; Wallner
et al., 2012; Shi et al., 2013) to calibrate model
parameters. This method effectively reduces the dimen-
sion of parameter space for calibration. By using the
global calibration multiplier, the ratios between the
a priori parameter values of different soil types are
preserved. Calibration of this multiplier can improve the
predictions at the watershed-scale or at points, but it
cannot improve the prediction of relative wetness if the
ratios between a priori parameters are poorly estimated.
The estimate of a priori parameters is thus critical to yield
reasonable spatial patterns of variable when the global
calibration multiplier method is used. Although it is
possible to solve for different calibration multipliers for
different soil types, this method significantly increases the
dimension of space for parameter calibration, and is
almost impractical in larger watersheds with large
numbers of soil types.

The surface topography also appears to affect the soil
moisture pattern. Results from the uniform soil simulation
show that the model is able to reflect the impact of
topography on soil moisture pattern, owing to the
spatially distributed physically based hydrologic compo-
nent, especially the simulation of horizontal groundwater
flow. This demonstrates the potential for Flux-PIHM to
be used to study the impact of topography on hydrolog-
ical, land surface, and biogeochemical processes. The
impact of topography on the spatial pattern in soil
moisture, however, is relatively small compared to the
impact of soil distribution. The depth to bedrock does not
affect the general pattern of soil moisture, but has an
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effect on the amplitude of the spatial variability in the
surface soil moisture, suggesting that accurate bedrock
depth data is another important input data set.

For the soil parameters measured and derived by Lin
et al. (2006) and Baldwin (2011), the Weikert soil series
has larger o and S, and smaller ®, values than the Ernest
series. For the SSURGO simulation, however, the Weikert
soil series has smaller & and S, and larger ®; values. The
Flux-PIHM sensitivity analysis demonstrated that the
predicted soil saturation is very sensitive to o and S values
(Shi et al., 2014). The wrong relative magnitude of the van
Genuchten parameters between two soil series in the
SSURGO simulation leads to wrong relative wetness. It
suggests that the combination of SSURGO soil map and
pedotransfer functions is not adequate for high-resolution
soil moisture pattern prediction. However, it is not clear if
the error is because of the SSURGO soil properties (e.g. clay,
silt, and organic matter percentages, and bulk density), or the
pedotransfer functions (PTF) (Wosten et al., 2001) used to
estimate the soil hydraulic parameters. Field soil surveys are
critical in providing accurate soil map and soil hydraulic
parameters for spatially distributed hydrologic simulation.

While the static input data (e.g. soil maps and
parameters, landcover maps, and bedrock depth maps)
used by the different simulations vary considerably, the
discharge predictions and point WTD and SWC predic-
tions from the different simulations are very similar after
each is manually calibrated, and all show good agreement
with the observations (Figure 3 and Table II). This
illustrates the phenomenon of ‘equifinality’ (Beven,
1993), i.e. acceptable model predictions are achieved
using different combinations of model parameters.

Because the simulations are calibrated using integrated
top 50-cm soil moisture measurements at one point in
addition to discharge and point water table depth
measurements, the model produces a notable dry bias
using the field survey input. This implies a potential
drawback of using point soil moisture measurements for
model calibration. Because of the high spatial heteroge-
neity of soil moisture (Figure 4), calibrating using point
measurements cannot guarantee that the model captures
the watershed-scale soil moisture conditions. Intermediate
scale measurements, e.g. the cosmic-ray soil moisture
observing system (COSMOS) (Zreda et al., 2008), may
provide better calibration data for model application at
small watersheds.

Flux-PIHM reproduces the day-to-day variation of soil
moisture, and resolves the observed overall soil moisture
pattern when appropriate input data are used. This ability
of Flux-PIHM to resolve high-resolution hillslope soil
moisture patterns is especially significant for simulations
at small watersheds, which represent a large areal fraction
of many landscapes. It makes the model a good platform for
coupling biogeochemistry models to enable the quantitative

Copyright © 2015 John Wiley & Sons, Ltd.

4635

investigation of the effects of landscape on biogeochemical
processes.

The results highlight the needs to improve the soil
database for small scale watershed modelling. Field
surveyed soil maps and hydrologic parameters are not
commonly available for every watershed. Hydrologic
models generally rely on national scale soil database to
provide soil maps. Soil hydraulic properties are usually
estimated using different approximations because of the
lack of reliable soil property database. The most detailed
national soils database (SSURGO, 30-m resolution),
however, is still insufficient for high-resolution watershed
modelling as shown in our study. National scale soils
database with higher spatial resolution and higher
accuracy soil maps and hydraulic parameters are needed
for hydrologic simulations in low-order watersheds.
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