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The capability of an ensemble Kalman filter (EnKF) to simultaneously estimate multiple parameters in a
physically-based land surface hydrologic model using multivariate field observations is tested at a small wa-
tershed (0.08 km?). Multivariate, high temporal resolution, in situ measurements of discharge, water table
depth, soil moisture, and sensible and latent heat fluxes encompassing five months of 2009 are assimilated. It
is found that, for five out of the six parameters, the EnKF estimated parameter values from different test cases
converge strongly, and the estimates after convergence are close to the manually calibrated parameter val-
ues. The EnKF estimated parameters and manually calibrated parameters yield similar model performance,
but the EnKF sequential method significantly decreases the time and labor required for calibration. The results
demonstrate that, given a limited number of multi-state, site-specific observations, an automated sequential
calibration method (EnKF) can be used to optimize physically-based land surface hydrologic models.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainties in model parameters are a dominant source of un-
certainty for hydrologic models [28]. The ensemble Kalman filter
(EnKF) [13] provides a promising approach for the automated cal-
ibration of hydrologic models [26,29,39,46]. Most previous stud-
ies applied EnKF to conceptual or process-based hydrologic mod-
els. Shi et al. [39] performed a multiple-parameter estimation for a
physically-based land surface hydrologic model, Flux-PIHM [37], via
EnKF and assimilating multivariate synthetic observations including
discharge, water table depth, soil moisture, land surface tempera-
ture, sensible and latent heat fluxes, and transpiration. The model-
ing and data assimilation system was implemented at the Shale Hills
watershed (0.08 km?2) in central Pennsylvania, the site of the Susque-
hanna/Shale Hills Critical Zone Observatory (SSHCZO). Results from
the synthetic data experiments indicated that EnKF is capable of pro-
viding accurate estimation of multiple Flux-PIHM model parameters,
and the assimilation of multivariate observations including those cur-
rently available at the SSHCZO applied strong constraints to model
parameters.
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Real-data experiments, however, have notable difficulties that do
not exist with synthetic data experiments, because the errors in
model predictions expand to include the errors from forcing data,
domain configuration, observation bias, and model structure. When
EnKF is used to estimate parameter values, over-adjustment may oc-
cur, which may cause large changes in parameter values and param-
eter uncertainties, and lead to system “shocks”, when the dynamic
balance of model system is destroyed and the model attempts to re-
store the dynamic balance [18].

The goal of this research effort is to test the ability of the EnKF
system to estimate multiple parameters in Flux-PIHM with the as-
similation of real multivariate observations at a field site with co-
located measurements. Extensive and detailed field site characteri-
zation along with a broad array of observations is available at the
SSHCZO. This study site thus provides an unprecedented opportunity
for real-data assimilation experiment. We test the EnKF system’s abil-
ity to estimate Flux-PIHM model parameters with SSHCZO observa-
tions. Model performances with the EnKF-estimated parameter val-
ues and manually calibrated values are compared to assess the qual-
ity of the EnKF-estimated parameter values. In addition, we test the
performance of the data assimilation system when driven by atmo-
spheric reanalysis and remotely-sensed forcing data, to evaluate the
ability of the data assimilation method to adapt to commonly avail-
able continental-scale driver data.
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Table 1

Flux-PIHM model parameters, their plausible ranges of calibration coefficients, estimates from different test cases, and manual calibration values [37]. The test cases

are 1: Case0, 2: Case+, 3: Case—, 4: NLDAS, 5: MODIS, and 6: NLDAS+MODIS.

Parameter  Description Range of calibration coefficient ~ Test cases
1 2 3 4 5 6 Manual

O, Effective porosity (m> m~3) 0.3-1.2 062 067 065 060 063 061 0.52
o van Genuchten soil parameter (m~") 0-2.5 1.50 1.57 1.49 131 138 133 1.50
B van Genuchten soil parameter (dimensionless)  0.95-2.5 134 1.29 134 1.40 135 137 130
Remin Minimum stomatal resistance (s m~') 0.3-1.2 0.41 049 043 048 063 065 050

Reference canopy water storage (mm) 0-5 3.15 4.53 113 380 345 055 2.00
Gt Zilitinkevich parameter (dimensionless) 0.1-10 115 1.09 1.23 0.81 132 0.93 0.70

2. Flux-PIHM EnKF system

Flux-PIHM [37] is a coupled land surface hydrologic model. Flux-
PIHM incorporates a land surface scheme into the Penn State Inte-
grated Hydrologic Model (PIHM) [21,33,34], which is a fully-coupled,
physically-based, spatially-distributed hydrologic model. The land
surface scheme in Flux-PIHM is adapted from the Noah land surface
model (LSM) [8,12]. The land surface and hydrologic components are
coupled by exchanging water table depth, infiltration rate, recharge
rate, net precipitation rate, and evapotranspiration rate between the
two model components.

A Flux-PIHM data assimilation system has been developed by in-
corporating EnKF for model parameter and state estimation [39] us-
ing the EnKF formulation from Snyder and Zhang [40]. In the Flux-
PIHM EnKF system, the Flux-PIHM model variables and the global
calibration coefficients of model parameters are concatenated into
a joint state parameter vector X, and are updated simultaneously
by EnKF using the state augmentation approach [1,3,19,25,46]. The
global calibration coefficient [32,37,44] is a scalar multiplier applied
to the corresponding soil or vegetation related parameter for all soil
or vegetation types, and is used to decrease the dimension of the joint
state parameter vector. The covariance relaxation method of Zhang
et al. [48, Eq. (5)] is applied on model parameters and variables in
order to avoid filter divergence [2]. In addition, the conditional co-
variance inflation method [1] is applied to model parameters. A qual-
ity control process [39] is performed after each EnKF analysis step to
ensure the parameters and state variables remain within physically
realistic or plausible ranges. Please see Shi et al. [37,39] for detailed
descriptions.

3. Experimental setup

The Flux-PIHM EnKF data assimilation system is implemented
at the Shale Hills watershed (0.08 km?) in central Pennsylvania.
The Shale Hills watershed is a small-scale, forested, V-shaped catch-
ment characterized by relatively steep slopes and narrow ridges. The
SSHCZO exists in this watershed. A real-time hydrologic monitoring
network (RTHnet) is operating in the SSHCZO, which provides real-
time and high-frequency observations from bedrock to the atmo-
spheric boundary layer.

The Shale Hills watershed model domain is decomposed into 535
triangular grids and 20 river segments, with an average grid size of
157 mZ2. There are five soil types and three vegetation types in the
model domain. The grid configuration, vegetation map, soil map, me-
teorological forcing, and a priori input data are the same as in Shi
et al. [37]. Given the small scale (0.08 km?) of the watershed, spatially
uniform forcing is used. The meteorological forcing (precipitation, air
temperature, relative humidity, downward longwave and solar radi-
ation, wind speed, and surface air pressure) data are obtained from
the RTHnet weather station and the surface radiation budget network
(SURFRAD) Penn State University station. The moderate resolution
imaging spectroradiometer (MODIS) 8-d leaf area index (LAI) data
[20,30] are rescaled based on the comparison between the MODIS

product and the CZO field measurements to drive the model [37]. The
parameters to be estimated are: effective porosity ®,, van Genuchten
[42] soil parameters « and B, Zilitinkevich [49] parameter Cy;, mini-
mum stomatal resistance R.,;;, and reference canopy water capacity
S. The estimation of those parameters has been tested in synthetic
experiments [39]. The physically plausible ranges of the calibration
coefficients are presented in Table 1. Detailed descriptions and a pri-
ori values of those parameters can be found in Shi et al. [37,38].

A total of 30 ensemble members are used for each test case. The
ensemble members are generated by randomly perturbing the cal-
ibration coefficients of those six parameters within their plausible
ranges (Table 1). The parameters that are not estimated are set to
their manually calibrated values as in Shi et al. [37]. The manual cal-
ibration was performed using the “trial and error” strategy, using
outlet discharge, water table depth, soil water content, soil temper-
ature, and surface heat flux data from June to July 2009 to optimize
model parameters [37]. For each parameter (calibration coefficient)
¢, the values are randomly drawn from a Gaussian distribution, with
an initial standard deviation of o¢ = 0.2(¢max — Pmin), Where @dmax
and ¢,;, represent the upper and lower boundaries of the plausible
range, respectively. Among those parameters, C,; is perturbed in log
space. Shi et al. [39] showed that EnKF is capable of identifying the
interacting parameters and quantifying the correlations between pa-
rameters, without the need of a priori parameter correlation informa-
tion. We thus perturb the parameters such that the initial correlation
coefficient (the absolute value) between any two of those parame-
ters is less than or equal to 0.25, to avoid artificially high correlations
between parameters and observable variables.

All ensemble members start from 0000 UTC 1 January 2009, from
saturation in the relaxation mode [37]. The model time step is 1 min
and the output interval is 1 h. The first set of observations is assimi-
lated at 1700 UTC 4 April 2009. The calibration period is from 4 April
to 1 September, 2009. Shi et al. [39] found that the assimilation in-
terval for synthetic experiments at the Shale Hills watershed should
be larger than 72 h to avoid system “shocks” caused by EnKF updates.
In real-data experiments, however, we found that the system shocks
are often larger than with synthetic data, probably due to additional
errors such as model structural errors. Thus we set the assimilation
interval to 168 h to avoid any potential shocks to the system. The time
for assimilating the first set of observations is chosen to include the
discharge peak on 20 June 2009 considering the assimilation interval.

Six test cases, Case0, Case+, Case—, NLDAS, MODIS, and
NLDAS+MODIS are executed. The test cases Case0, Case+, and Case—
have different initial guesses of parameter values. For CaseO0, the ini-
tial ensemble means of parameters are set to the center of the physi-
cally plausible range, i.e., 0.5(@max + @Pmin). For Case+ and Case—, the
initial ensemble means of parameters are set to 0.5(Pmax + @min) +
09 and 0.5(Pmax + Pmin) — 0. respectively. These three test cases
are driven by locally-measured meteorological forcing and rescaled
MODIS LAI data. The test cases NLDAS, MODIS, and NLDAS+MODIS
have the same initial ensemble members as Case0. The test case NL-
DAS is driven by the forcing data for Phase 2 of the North Ameri-
can Land Data Assimilation System (NLDAS-2) [10,45] and rescaled
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Fig. 1. (a) Comparison of precipitation between RTHnet observation and NLDAS-2 forcing, and comparison of LAl between rescaled and unchanged MODIS product. Observations of
(b) discharge, (c) water table depth (WTD), and (d) soil water content (SWC). The shaded areas in (b-d) represent observation errors and the stars represent assimilated observations

in the real data experiments.

Table 2

Forcing data used for different test cases.
Test cases Meteorological forcing  LAI forcing
Case0 Locally measured Rescaled MODIS LAI
Case+ Locally measured Rescaled MODIS LAI
Case— Locally measured Rescaled MODIS LAI
NLDAS NLDAS-2 forcing Rescaled MODIS LAI
MODIS Locally measured Unchanged MODIS LAI
NLDAS+MODIS  NLDAS-2 forcing Unchanged MODIS LAI

MODSI LAI data; the test case MODIS is driven by the locally-
measured atmospheric forcing and unchanged MODIS LAI data; and
the test case NLDAS+MODIS is driven by the NLDAS-2 forcing and un-
changed MODIS LAL The hourly NLDAS-2 forcing data are bilinearly
interpolated from 1/8° resolution to the location of SSHCZO. These
three test cases are used to test the robustness of the data assimila-
tion system when driven by reanalysis and remotely-sensed forcing
data. The forcing data used for each test case are listed in Table 2.
Fig. 1a shows the difference of precipitation between RTHnet obser-
vation and NLDAS-2 forcing, and the difference of LAl between MODIS
product and rescaled LAL

4. Assimilated observations and observation errors

The observations assimilated into the system are:

1. hourly outlet discharge rate (Q);

2. hourly average water table depth (distance from the land sur-
face to the groundwater table) at three RTHnet wells (WTD);

3. hourly average integrated soil moisture content over the soil
column (0-50 cm) at three RTHnet wells (SWC);

4. hourly average sensible heat flux (H) via above-canopy eddy
covariance measurements (average of two 30-min flux mea-
surements); and

5. hourly average latent heat flux (LE; the same as above).

Please see Shi et al. [37,39] for the locations of the measurements.
Stream discharge integrates outflow across the entire water-
shed. These observations are compared to the simulations of whole-

watershed discharge. The discharge is measured with a V-notch weir.
The water level at the weir is measured using a Campbell CS420-L
transducer with a precision of 7 mm [7], and is converted to discharge
rate using a rating curve developed by Nutter [31]. The observed dis-
charge is converted into log space to improve EnKF performance [9].
Shi et al. [39, Eq. (7)] calculated the random error of discharge in log
space at the Shale Hills watershed. The observations and errors in
observed discharge are shown in Fig. 1b. Converting discharge to log
space may improve the EnKF performance [9], but it can also exag-
gerate model errors for low flows. For example, when the forecast is
0.1 m3 d-! and the observation is 0.01 m3 d~!, the forecast error is
the same in log space as when the forecast is 1000 m? d~! and the
observation is 100 m3 d~'. To avoid exaggerated errors and associ-
ated system shocks at low flows, and to avoid taking log of a zero dis-
charge, a 1.0 m3 d-! discharge rate is added to both the observation
and the forecasts before calculating the Kalman gain.

Observations of WTD and SWC are calculated by averaging mul-
tiple groundwater level measurements and volumetric soil moisture
content measurements at the RTHnet wells near the stream. For the
Shale Hills simulation, the model domain is discretized as such that
the three RTHnet wells are located at three vertices of one model grid
for the convenience of model-data comparison. Thus, the measure-
ments at the RTHnet wells represent the observed WTD and SWC at
the model grid that is surrounded by RTHnet wells. These data are not
compared to any other grid points in the simulation, thus the point
nature of these measurements is preserved. Each well is equipped
with one water level sensor (Druck pressure transducer CS420-L
manufactured by Campbell Scientific) and three soil moisture sen-
sors (Decagon Echo2 probes) at different levels below ground. The
WTD and SWC observations from different wells show considerable
spatial variability. Because the representation uncertainties (the stan-
dard errors among three wells) of WTD and SWC are always much
larger than their instrumental errors (about 0.007 m for WTD and
0.01 m3 m~3 for SWC [7,11]), we conclude that representation uncer-
tainties dominate the uncertainty for these measurements. For every
hourly WTD and SWC, we use the computed standard errors among
the three RTHnet wells as the observation errors for WTD and SWC,
which are shown in Fig. 1c and d.
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Fig. 2. Temporal evolution of estimated parameters in real-data experiment from different test cases. The dotted black lines represent the manually calibrated parameter values,
and the insets on top represent the evolution of the standard deviation in the Case0 experiment.

In Flux-PIHM, the surface energy balance is closed, i.e., Ry — G =
H + LE, where R, is the net radiation, and G is the ground heat flux.
Eddy covariance measurements, however, always fail to close the en-
ergy budget, and H + LE tends to be less than R, — G [15,16,27,41]. The
surface heat fluxes measured at the SSHCZO using eddy-covariance
(H and LE) likely have this consistent low bias. Since it is a densely
forested site, ground heat fluxes at the Shale Hills watershed are
likely to be small. At the Shale Hills watershed in the growing sea-
son, simulated mid-day ground heat fluxes are always below 3% of
Ry, and the average ratio between simulated ground heat flux and
net radiation in 2009 is about 4% [37]. We therefore treat G as neg-
ligible, and rescale H + LE using R,. When the sum of hourly aver-
aged surface heat fluxes Hy + LEy < Ry, the surface heat fluxes are
rescaled as

_ __Hp

H= o+ g ()
_ __LEg

LE = gt R, 2)

The eddy covariance flux observations represent a flux footprint of
approximately 1 km? [17]. The flux measurements are thus compared
to simulated watershed-average fluxes. The H and LE fluxes are cal-
culated following the quality control methods documented by Vick-
ers and Mahrt [43]. The processed 30-min H and LE fluxes are ag-
gregated into hourly fluxes. Then the aggregated hourly sensible and
latent heat fluxes are rescaled using hourly average net radiation ob-
servations according to Eq. (1). This rescaling closes the surface en-
ergy balance on average, but does not eliminate the random vari-
ability in H and LE that occurs with half-hourly flux measurements
[6,35]. The rescaling, however, only works when both H and LE obser-
vations are available. If either H or LE is missing, the rescaling cannot
be applied and neither H nor LE will be assimilated into the system.
As a result, about 30% of 1700 UTC H and LE fluxes cannot be assim-
ilated. The random observation errors in H and LE are estimated to
be 10%, based on the site characteristics and extensive prior study of
the nature of random errors in eddy covariance flux measurements
[4,5,14,22,23,35,36].

5. Results

Fig. 2 presents the temporal evolution of the calibration coeffi-
cients of the estimated parameters from April to August 2009; the
manually calibrated values are shown for reference. The temporal
evolution of the standard deviations (o) of parameters for Case0 is
also presented. The temporal evolutions of o in the other test cases
are similar. To avoid using time-variant parameters [25], the average
of each parameter value from 1 August to 1 September, 2009 is taken
to be the EnKF calibrated parameter value. The EnKF calibrated values
are shown in Table 1, and are compared with the manually calibrated
parameter values.

In Case0, Case+, and Case—, for all parameters except for S, the
estimates from different test cases converge after about two months
of simulation and data assimilation, while the uncertainty ranges
(represented by the standard deviation) decrease and then stabilize
(Fig. 2). The temporal evolution of estimated parameters becomes
similar after convergence. For those five parameters, especially «
and B, the estimates converge towards the manually calibrated val-
ues, and the calibrated parameter values are close to the manually
calibrated values (Table 1). The performances of the reanalysis and
remote-sensing driven test cases are similar to CaseO (Fig. 2). The
temporal fluctuations of parameter values, however, are stronger, es-
pecially in the NLDAS and NLDAS+MODIS test cases, probably due to
the errors in NLDAS-2 meteorological forcing (e.g., Fig. 1a). The esti-
mates of the parameter R, in the MODIS and NLDAS+MODIS test
cases are always larger than in Case0, because the unchanged MODIS
LAI has larger values than the rescaled LAI (Fig. 1a).

Fig. 2 indicates that the parameters ®,, «, B, and C,; are highly
identifiable. The uncertainty in these parameters decreases fast and
the estimates from different test cases converge quickly. In contrast,
the uncertainty of S almost remains constant during the experiment
and the estimates from different test cases do not converge at all. In
the summer months (June, July, and August), the rate at which the
uncertainty of R, ,;, decreases is larger than in April and May (Fig. 2).

To test the EnKF calibrated parameter sets, evaluation runs with
the calibrated parameter sets are executed. The parameter values cal-
ibrated by EnKF for different test cases in Table 1 are assigned to those
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Fig. 3. Evaluation of the model predictions using the EnKF-estimated parameter sets
and manual calibration for (a) discharge, (b) water table depth, (c) soil water content,
and (d) sensible and (e) latent heat fluxes from 0000 UTC 1 September to 0000 UTC 1
December, 2009. Flux-PIHM predictions using default parameters (not calibrated) are
also shown. In each subfigure, the plot on the left show the model predictions and ob-
servations (for H and LE, only 1 September to 20 September is shown due to limitation
of space), and the Taylor diagram on the right indicates correlation coefficient, normal-
ized standard deviation, and root mean squared error as well as average model bias in
the inset.

six parameters. The other parameters that are not calibrated in this
experiment are set to their manually calibrated values as in Shi et al.
[37]. A simulation using the default parameters with no calibration is
also performed, driven by locally-measured atmospheric forcing and
rescaled MODIS LAL The evaluation runs start from 0000 UTC 1 Jan-
uary 2009, from the relaxation mode, and are driven by the forcing
listed in Table 2. The model predictions of Q, WTD, SWC, H, and LE
from 0000 UTC 1 September, to 0000 UTC 1 December, 2009 are eval-
uated by comparing with the observations. Predictions of the evalua-
tion runs are also compared with the Flux-PIHM evaluation run with
the manually calibrated parameter set, which is driven by locally-
measured atmospheric forcing and rescaled MODIS LAI (Table 1).
Note that the surface heat flux observations used in the evaluation
are not rescaled. The comparisons are presented in Fig. 3.

Generally, performances of the Flux-PIHM evaluation runs with
the EnKF calibrated parameter sets are comparable to the Flux-PIHM
run with the manually calibrated parameter set (Fig. 3), and show
improvements in forecasting skill compared with the simulation us-
ing default parameters, especially for discharge and SWC. The Tay-
lor diagrams demonstrate that manual calibration only exceeds the
automated calibration results in the discharge prediction. For the
other observable variables, the differences of manual calibration and
EnKF calibration are almost indistinguishable. For the discharge pre-
diction, the manually calibrated parameters provide better predic-
tion for the two highest discharge peak events (16 and 24 October,
2009). The Taylor diagram in Fig. 3a shows that the manual calibra-
tion evaluation run has a higher correlation coefficient (about 0.9)
with the observations than the EnKF calibrated parameter sets (about
0.8), smaller average bias, and smaller root mean square errors. For
WTD and SWC, the Case— evaluation run performs slightly worse
than the other runs, while performances of manual calibration, Case0
and Case+ are very similar. For H and LE, all evaluation runs yield
higher surface heat fluxes than observed, but this is expected given
the rescaling of H and LE observation data (Fig. 3d and e).

The performances of the reanalysis and remote-sensing driven
simulations are limited by the quality of the reanalysis and remote-
sensing forcing, especially the NLDAS-2 forcing quality. The Taylor di-
agram shows that when driven by the NLDAS-2 forcing, Flux-PIHM
discharge predictions are worse than the other evaluation runs for
the evaluation period (Fig. 3a), due to the errors in the NLDAS-2 pre-
cipitation forcing. During the evaluation period, the NLDAS-2 forc-
ing underestimates the total precipitation by 4.8 cm. The RMSE of
the NLDAS-2 hourly precipitation forcing is about 0.33 mm d~!, and
the correlation coefficient between the observed hourly precipitation
and the NLDAS-2 hourly precipitation is 0.58. Flux-PIHM surface heat
flux predictions are also worse than the other evaluation runs when
driven by the NLDAS-2 forcing (Fig. 3d and e), primarily due to the
errors of the NLDAS-2 downward solar radiation forcing. For exam-
ple, as shown in Fig. 3d and e, the NLDAS and NLDAS+MODIS evalu-
ation runs significantly overestimate the mid-day surface heat fluxes
on 17 September, when NLDAS-2 overestimates the mid-day down-
ward solar radiation by about 360 W m~2. The MODIS evaluation run
performance is very similar to Case0. Although MODIS overestimates
the LAI (Fig. 1a), the parameter R.,,;, estimated in the MODIS and
NLDAS+MODIS simulations are higher than the other simulations,
which compensate the high bias of the MODIS LAI forcing.

6. Discussion and conclusions

The results of the multivariate real-data experiment demonstrate
the capability of EnKF in parameter estimation for a physically-based
land surface hydrologic model (Flux-PIHM) using multivariate field
observations. The EnKF sequential calibration results are comparable
to the manual calibration while significantly improving the overall
efficiency in time and effort. Manual calibration took a large number
of repeated runs and many days to perform, while the EnKF data as-
similation at the Shale Hills watershed took less than 6 h of wall time
using 31 CPU processors (2.4 GHz) running in parallel.

The EnKF system is shown to be a powerful tool for multivariate
data assimilation and parameter estimation. EnKF does not use ex-
plicit objective functions, or assign explicit weights to each assim-
ilated observation data set. The weights of observations in EnKF are
determined by their observation errors and the ensemble forecast un-
certainties and covariances [9]. Compared with other multivariate or
multi-objective function calibration methods, which usually use em-
pirical weights for different observations or objective functions, the
weights in EnKF are more physically meaningful.

The fast decrease in parameter uncertainty and convergence
of parameter estimates suggest that ®,, «, B, and C, are
highly identifiable parameters. This agrees with the Flux-PIHM
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sensitivity analysis results, which showed that these four parameters
have much higher identifiability, especially distinguishability, than
the parameters R ;;; and S [38, Fig. 9]. In their synthetic experiments,
Shi et al. [39] also showed that when Q, WTD, SWC, H, and LE were
assimilated into the system, EnKF failed to provide accurate estimates
of the parameters R, ,;;;, and S [39, Table 5].

The temporal evolution of the parameter ®, implies that the
performance of parameter estimation might be affected by errors
other than observational errors. The parameter ®, has two signifi-
cant changes in parameter value during the calibration period (Fig. 2)
in all test cases. During the first few analysis steps, the estimates of
®, from different test cases converge to about 0.65, which is close
to the manually calibrated value. But a large change of ®, appears
on 2 May, and the parameter value deviates from the manually cal-
ibrated value. The meteorology forcing shows there was a precipi-
tation event in the early morning on that day. In the manual cal-
ibration process we noticed that however we tuned the parameter
values, Flux-PIHM persistently predicted a discharge peak on 2 May
(see the results in [37]), which was not observed in the outlet dis-
charge (Fig. 1b). This error might be caused not only by parameter val-
ues, but also by the errors in model structures, static input data, me-
teorological forcing. Because of the discrepancy in model prediction
and observation, EnKF changes the ®, value dramatically, to compen-
sate the other unidentified sources of error. The following low flow
discharge observations make little impact on ®,. Another significant
change in parameter value appears on 20 June, when the peak dis-
charge event occurs (Fig. 1). After the observation of discharge peak
is assimilated, EnKF once again adjusts ®, value towards the man-
ually calibrated value, and the parameter value generally stabilizes
afterwards. This suggests that discharge peak observations must be
assimilated to effectively estimate the value of ®,.

Because of its role in transpiration prediction, R i, is apparently
more identifiable in summer than in spring (Fig. 2), consistent with
the Flux-PIHM sensitivity analysis [38]. Yu et al. [47] divided PIHM
parameters into event-scale parameters and seasonal time scale
parameters. The parameter ®, was categorized as an event-scale pa-
rameter and R, ;i a seasonal time scale parameter. The temporal evo-
lutions of ®, and R, ,;;, in our experiment (Fig. 2) support their cat-
egorization: ®, can only be effectively estimated when observations
from peak discharge events are assimilated, and R.,;;,, can only be
effectively estimated in summer. It implies that the calibration pe-
riod and assimilation interval need to be chosen wisely, to cover im-
portant peak discharge events and also the time period when most
parameters are identifiable. Although a fixed assimilation interval is
used for this study, it is possible that a more sophisticated dynamic
assimilation period with mixed wet and dry periods would prove ef-
fective. Experiments with the calibration period variations and the
assimilation intervals will be addressed in future studies.

When estimating those six parameters using EnKF, other parame-
ters are fixed at their manually calibrated values. The impacts of the
other parameters and their potential interaction with the six param-
eters estimated in this paper are left for future studies. It is possible
that if more parameters are estimated using EnKF, the optimized pa-
rameters may provide better predictions. The efficiency of assimilat-
ing different observations is another future research topic.

The results of the NLDAS, MODIS, and NLDAS+MODIS test cases
demonstrate the robustness of the EnKF in land surface hydro-
logic model parameter estimation. The EnKF is capable of provid-
ing reliable estimates of model parameters when using atmospheric
reanalysis and remote sensing products to drive the model. In ad-
dition, most of the a priori soil, river bed, and vegetation parame-
ters used for the study are empirical or from a research database
|e.g., the Soil Survey Geographic (SSURGO) database and the modi-
fied International GeosphereBiosphere Programme (IGBP) MODIS 20-
category vegetation (land use) data, see Tables 1, 2, and 3 in 37]. These
input data are available with national and in some cases global spatial

coverage. Therefore the EnKF data assimilation system is not limited
to measurement-rich watersheds like Shale Hills, but could readily
be extended to other watersheds. Data infrastructures like the Hy-
droTerre system [24] enable convenient expansion to different water-
sheds. The rapid evolution of computing power and the rise of parallel
computing technique will allow the Flux-PIHM EnKF data assimila-
tion system to be implemented at larger river basins.
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