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Abstract—The Internet of Things (IoT) requires distributed,
large scale data collection via geographically distributed devices.
While IoT devices typically send data to the cloud for processing,
this is problematic for bandwidth constrained applications. Fog
and edge computing (processing data near where it is gathered,
and sending only results to the cloud) has become more popular,
as it lowers network overhead and latency. Edge computing often
uses devices with low computational capacity, therefore service
frameworks and middleware are needed to efficiently compose
services. While many frameworks use a top-down perspective,
quality of service is an emergent property of the entire system
and often requires a bottom up approach. We define services
as multi-modal, allowing resource and performance tradeoffs.
Different modes can be composed to meet an application’s
high level goal, which is modeled as a function. We examine
a case study for counting vehicle traffic through intersections
in Nashville. We apply object detection and tracking to video
of the intersection, which must be performed at the edge due
to privacy and bandwidth constraints. We explore the hardware
and software architectures, and identify the various modes. This
paper lays the foundation to formulate the online optimization
problem presented by the system which makes tradeoffs between
the quantity of services and their quality constrained by available
resources.

I. INTRODUCTION

Emerging Trends: With the burst of the cloud computing
paradigm in the last decade and a half, systems requiring
intensive computations over large data volumes have relied
on shared data centers to which they transfer their data for
processing. However, traditional cloud computing architecture
is problematic in a number of application domains that are
either latency sensitive or cannot transfer data across the
backhaul due to bandwidth constraints or privacy concerns.
To alleviate these situations, engineers have leveraged the
computing power of nearby available resources, leading to
a profound discussion on the opportunistic usage of the
computing resources dispersed in the community. In cases
where the resources are not available near the physical edge,
people have begun to add low power computing devices. These
edge devices are then responsible for processing and sending
data to a central server. Some examples of edge systems are
the SCALE-2 [1] platform which runs air-quality monitoring
sensors, collections of edge devices that provide computing
services with low latency closer to the physical processes [2],
and the Paradrop architecture [3] which provides the capability
to run containerized applications in network routers.

Application of Interest: Finding anomalous traffic patterns
is called traffic anomaly detection, and is critical to helping

city planners optimize urban transportation systems and re-
duce congestion. Many data and model driven methods have
been proposed to identify faulty sensors [4], [5], [6] Some
researchers [7], [8], [9] have worked on detecting traffic events
such as car accidents and congestion using videos, traffic, and
vehicular ad-hoc data, while others have have explored the
root causes of anomalous traffic [10], [11], [12], [13].

Most existing work still focuses on individual road sections
or small regions to identify traffic congestion, but few studies
explore non-recurring congestion (NRC) and its causes for
a large urban area. Recently, deep learning techniques have
achieved success in research fields including image process-
ing, speech recognition, and bioinformatics. They provide an
opportunity to potentially solve the NRC identification and
classification problem. However, the state of the art is still
to collate the data into a server and then perform the NRC
classification periodically; Mobile Edge and Fog Computing
provides a new opportunity.

Challenges: Complex event processing frameworks and
query processing middleware like Internet Flow of things [14]
primarily focus on temporary service composition and data
query aggregation from the top, but often applications require a
bottom-up design perspective. It is well known that, in general,
quality of service is an emergent property of the entire system.
The challenge is to understand how to construct a system
(collection of applications) from software components such
that the system-level properties can be established by reason-
ing about the composition at runtime. However, this is diffi-
cult considering that prior research in distributed application
composition and resource allocation has often assumed global,
reasonably accurate, and trusted knowledge of resource states
or types [15], smaller optimization problem scale [16], limited
churn in resource availability, and coordinated communication
[17]. These assumptions severely restrict the ability to realize
the full potential of the fog computing vision, which requires
the ability to dynamically track, discover, and compose avail-
able resources at ultra-large scales to ensure the optimal set
of objectives, graded by criticality, are met, resources are not
over-committed, and critical constraints are adhered to despite
limited and unreliable communication between the entities
requesting and using resources. Therefore, new uncertainty-
aware algorithmic approaches are required.

One way to handle uncertainty is to make each of the actors
multi-modal. By multi-modal we refer to different operating
modes of the actor, wherein each mode provides the same
interface and service, but differs in the level of algorithm com-
plexity. Consequently, we can trade-off higher performance for
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lower resource consumption. For instance, a traffic analyzer
actor can use a less computationally expensive Background
Subtraction Algorithm when the traffic is expected to be
low, and transition to computationally expensive deep learning
based object classification [18] algorithms in peak hours of
traffic. Once different modes and their performance based on
context and available resources are known, we can set up
an online optimization problem which describes the tradeoff
between the computational performance and availability of
resources, represented using a Pareto front.

Contributions: In this paper we describe the design of a
multi-modal traffic analytics application deployed at the edge.
We further describe its multi-modal configuration in terms of
different variants available to be used. We then discuss the
constraints on a real world deployment of such a system and
how those constraints affect hardware and software decisions.
Our approach is inspired by our earlier approach for modeling
an application’s goals as a high-level function, which are
then decomposed into smaller sub-functions [15]. The forest
of trees thus created describes the various functions in the
systems. The functions at the leaf level are mapped to specific
components that can be used to implement that function.
Then, given the information about the context description
and the constraints related to component composition and
the requirements imposed by the components, application de-
ployment, failure avoidance, fault management, and operations
management of distributed systems can be automated as shown
by our prior work on the CHARIOT platform [15], [19] by
encoding the constraints in the form of a matrix of decision
variables. By decomposing the services themselves into modes
with various performance and resource requirement trade-
offs, the configuration problem defined by CHARIOT can be
extended to include the mode selection and configuration to
optimize for performance as well as resiliency and feasibility.
This can be extended to to work for any edge service that has
modes with similar performance trade-offs.

Outline: In section II we describe the problem and its
constraints. In section III we then describe the hardware and
software architecture we deployed, the detection techniques
available, as well as detail why we made decisions based
on the given constraints. We then detail experiments run on
the system to compare the performance of the tested models
for traffic detection in Section IV. Last we offer concluding
remarks in section VI.

II. THE TRAFFIC ANALYTICS APPLICATION

This paper describes a block level traffic sensing archi-
tecture. At each block we provide a set of cameras with
overlapping views and a set of edge computing devices,
specifically raspberry pis and Nvidia Jetson TX2s. Cameras
are easy to install and use, and are flexible in that the same
cameras can be used for vehicles, pedestrians, and parking
sensing in the future. Using these devices we implement the
hierarchical traffic analytics workflow as shown in figure 1.
Key components in this architecture are the algorithms to
detect and track cars and generate the count and density
information per area of interest. Note that in this paper we

Fig. 1. The traffic analytics workflow

focus on the primary features required to detect non-recurring
congestion, as the specific non-recurring congestion algorithm
has been described in our prior work [20].

A. Constraints

Next we discuss the constraints we considered when we
deployed the analytics workflow in Nashville.

Network Limitations: Initially devices were connected to
the cloud using a single wireless connection, which presents
a bottleneck: high bandwidth image and video data cannot be
sent over the network reliably. This implies that image pro-
cessing should occur at the edge to avoid network congestion.
Recently the city ran fiber cable to the intersections, so the
bandwidth issue is less relevant for the pilot installation. How-
ever, Nashville is interested in scaling to many intersections in
the city, which means that the system must be able to run on
the city’s many wirelessy connected intersections. Therefore,
we have to consider hierarchical block-level edge computing
solutions.

Privacy: Government regulations in Nashville require that
the images captured and used by the system must be kept
on a private network: no identifiable information can be sent
over insecure channels or kept for long periods of time, as it
could potentially leak and cause privacy issues for citizens.
While it is possible to encrypt the data, it would place a large
computational toll on the embedded system. Practically, this
reinforces that the images or video must be processed on the
edge rather than being sent to a cloud.

Resilience: Installation of such a system can be quite expen-
sive, and the city has few resources to devote to maintaining
it. The hardware will be running 24/7, with the cameras out in
the elements, so it is expected that there will be some hardware
failures. Therefore the system needs to be able to tolerate some
level of failure without needing physical intervention.

III. IMPLEMENTATION ARCHITECTURE

A. Software Component Modes

We now discuss the algorithms we chose as modes in our
traffic analytics workflow shown in figure 1.

Open CV: Image Object detection has been studied for
several years. Methods have evolved from relatively simple
techniques such as Background subtraction [21], Haar Cas-
cades [22], and Dense Optical Flow [23]. These techniques
are all freely available in OpenCV, an open source computer
vision library [24]. A large breakthrough in accuracy occurred
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Fig. 2. Hardware Diagram

with the application of deep learning to the object detection
problem [25], [26], making these techniques relatively obsolete
[27], [28].

Faster Recurrent Convolutional Neural Network
(Faster-RCNN): this is an evolution of one of the the first
frameworks to use convolutional neural networks (CNNs)
for object detection, R-CNN [29]. It uses a region proposal
network (RPN) to find regions likely to contain objects, uses a
base network like VGG-16 [30] or Resnet-101 [31] for feature
extraction, and a 3x3 sliding window that moves across the
feature map. These region proposals are then fed into a CNN
for object detection. This multi-step process improves accuracy
at a cost of computation.

Single Shot detector Multibox Detector (SSD): SSD [32]
does the task of object localization and classification in a
“single shot”, i.e. a single forward pass of the network. The
implementation using MobileNet [33], a lightweight network,
is targeted for real time processing on resource constrained
devices.

YOLO v3: This [34] is an evolution of the You Only Look
Once detection framework [35]. Unlike RPNs, it takes the
input image and divides it into grids. For each grid it predicts
class probabilities, bounding boxes, and the box’s confidence
scores. It uses 2 stacked 53 layer networks, making a 106
layer fully convolutional network, and makes detections at 3
different scales.

SORT (Simple Online and Realtime Tracking): Once
an object is detected, it is imperative to track it between
frames to avoid double counting. SORT [36] tracks objects in
real time using a combination of techniques such as Kalman
Filters [37] and the Hungarian Algorithm [38]. It assigns each
detection in the frame an id that is persistent across frames.
Data association is done using the IOU (intersection over
union) distance metric between neighbouring frames. It uses
a simple constant velocity model to predict the dynamics of
objects if detections are lost, thus the quality of tracking is
highly dependent on the quality of object detection algorithm.

B. Hardware Components

Figure 2 shows the hardware layout at two intersections in
the city. The hardware used in the system includes 4 cameras,
4 Raspberry Pi 3s, 2 Nvidia Jetson TX2s, and a 1 terabyte hard
drive for each intersection’s cluster of devices. In addition, our

system has access to a cloud server for storing and accessing
the metrics produced. The specifics of the physical components
are described below.

Cameras: We installed four cameras at each intersection,
ensuring that there is partial overlap between their views.
We used Reolink’s 410s models (https://reolink.com/product/
rlc-410s/), which use Power over Ethernet (PoE). They were
mounted to traffic poles over the intersection to allow access
to unobstructed views of traffic. While this gives flexibility
in how views are chosen to maximize the performance of the
detection algorithms, it comes at the cost of expensive installa-
tion, which involves a costly process including obtaining road
closing permits, police to direct traffic, and the contraction
of an installation company. It is important to ensure that we
decouple the camera from computing resources, which allows
the compute device to still be used even when cameras fail.

GPU Resources: Each intersection has two Nvidia TX2s,
which serve as the primary object detection devices of each
cluster. The detection techniques we consider use deep learn-
ing architectures, which run significantly faster on dedicated
GPUs than on the CPUs of typical embedded devices [39].
Nvidia’s Jetson systems integrate a GPU with 256 cuda
cores with a low power, ARM CPU. Due to the high cost
compared to other components of the system, we are limited
on the number of TX2s, and deploy only two per intersection.
Two devices allows for redundancy in case one fails at an
intersection.

Primary Compute Device: Each intersection has four
Raspberry Pi 3s. These are inexpensive, relatively reliable,
and efficient, making them ideal edge computation devices.
They serve to remove load from the TX2s by connecting to
the cameras to pull video, running a cluster-local database to
backup metrics, and running any computational algorithms that
do not require the GPU.

Storage: Each cluster has a one terabyte hard disk, con-
nected to one of the Raspberry Pis, that stores a cyclic database
of metrics output by the system.

C. Implemented Workflow

Figure 4 shows an overview of the system’s software archi-
tecture, which is composed of several connected components.
Each service is described below, and the source code can be
found at https://github.com/gap101/EdgeTrafficAnalytics.

Camera Service: This service manages a particular camera
feed, and uses Real-Time Messaging Protocol (RTMP) to
receive new frames from the camera. We are able to maintain
about 9 frames per second over our network. We keep the
service running even if the camera feed isn’t being actively
used. The service receives frames from the camera, and serves
them to any number of connected object detection services.

Object Detection: The first step of image processing is
to get good vehicle detections in frames of the videos. We
use modern machine learning based approaches using the
Jetson TX2s. We settled on the three architectures for vehicle
detection detailed in section II: YOLO v3, Faster RCNN,
and SSD. We hypothesized that these models have various
computation vs accuracy trade offs: for example, Faster-RCNN
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Fig. 3. System Components and Goals. These specification is compiled down to a SMT problem which provide runtime adaptation. In our ongoing work we
are working on developing a quality of service based optimization approach to adaptation.

Fig. 4. System Software Architecture Overview. The flow of data through
the system and the devices each service are run on are shown.

is a larger and slower network than SDD, but is more accurate
[40]. We examine the specific tradeoffs in section IV.

Object Tracking and Counting: Once vehicles are de-
tected, their bounding boxes are sent to SORT for tracking
between frames. Unfortunately the object detectors will occa-
sionally miss an object for a few frames, causing SORT to re-
identify it. To address this, we considered a trapezoidal region
of interest (ROI) in the center of the intersection that all cars
pass through. Vehicles are counted when they pass through the
ROI, avoiding false detections and double counting.

Local Cyclic Storage: This service connects to a local
MongoDB cyclic database, which is used to backup the
system’s output in case of network or other unforeseen failures
on the server end. It runs on the Pi connected to the HDD.

Cloud Services: Once an image is processed, the resulting
metrics are sent to a cloud server, which stores the results
in a InfluxDB instance. There is also a dashboard built using
Grafana that allows users to inspect the data in real time.

D. Making the architecture resilient

We designed the architecture to tolerate hardware and
sofware failures. Figure 3 describes the goals of the system
along with the software and hardware components that are

Fig. 5. Diagram of the GPIO pins used in the Pi’s watchdog service. Peroidic
pulses are sent via the heartbeat pin. If they are not detected for 10 seconds,
a reset signal is sent

needed. The high level goal of the system is to count vehi-
cles that go through various intersections where hardware is
deployed. The rest of the diagram describes how that goal can
be reached, and can be treated as a SMT problem [19]. As long
as the constructed SMT problem is satisfied, i.e. the required
hardware with required resources is available, the goal can be
met. For example, by ensuring that at least 3 cameras have
overlapping views of the intersection we can tolerate failures
of two cameras without compromising data acquisition.

Further, to prevent the lockup of computing devices we set
up a hardware watchdog service using the GPIO pins on the
compute devices. Each device sends a heartbeat pulse every
second on one of its pins, which is watched by other devices
in the cluster. If the pulse is not detected for 10 seconds, it
is assumed that the device has frozen, and a hardware reset
signal is sent. A diagram of the watchdog connections between
two of the pis is shown in figure 5.

Lastly, we run all analytic services on the nodes as systemd
scripts which are set to restart upon failure and reboot. Thus,
the service fails only when the computing device itself fails.
To address this, we defined a flexible software architecture that
allows the services to be easily moved between devices. When
a device fails, the services can be moved to any device of the
same type (so object detection running on a TX2 can be moved
to another TX2, for example) using similar reconfiguration
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TABLEI
PENALIZEDACCURACYOF MODELS.THREE3MINUTELONGVIDEOS

WERERANTHROUGHEACH MODEL (PLUSSORT)ATEACHTIMEOFDAY,
ANDTHEACCURACYOFTHE MODELISAVERAGEDACROSSTHEVIDEOS.

THEPENALIZEDACCURACYISDEFINEDASTHERATIO:((NUMBEROF

CARSCORRECTLYCOUNTED)-(NUMBEROFCARSINCORRECTLY

COUNTED))/(ACTUALCARCOUNT).

TimeofDay SSD+SORT YOLO+SORT F-RCNN+SORT

04:00 0.25 .66 .25
08:00 0.60 0.90 0.89
17:00 0.75 0.99 0.95
22:00 0.27 0.91 0.89

AvgAccuracy 0.61 0.95 0.93
AvgErrors/Min 12.6/min 1.83/min 2.75/min

TABLEII
AVERAGEINFERENCETIMEFOREACH MODELPERFRAMEINSECONDS.

SSD YOLO FasterRCNN
0.29sec 0.62sec 1.17sec

strategiesexploredinourpreviousCHARIOTsystem[19].

IV. QUANTIFYINGPERFORMANCEANDRESOURCE

REQUIREMENTS

Tounderstandhowwecanchooseonepossibleanalytical
workflowfromtheavailablealternatives(Yolov3+SORT,
SSD+SORTandF-RCNN+SORT), wecomparedthem
acrossseveraldimensions:penalizedaccuracy,computation
time,andpowerdraw. Weexperimentedusing3minutevideos
atfourdifferenttimesofday:03:00,08:00,17:00,22:00.
Thesetimescoverdifferentlightingandtrafficconditions:late
night withlittletraffic,early morning with mediumtraffic,
eveningwithheavytraffic,andnightwithmediumtraffic.

We definethe penalized accuracy ofthe models as
Ap = #carscorrectlycounted #carsincorrectlycounted

Actual#cars , whichaccounts
fordoublecountingcars.TheresultsareshownintableI.
First,anobviousobservationisthatYOLOandFasterRCNN
arefairlysimilar, with YOLObeingslightly moreaccurate
at95%vs93%averageaccuracy.SSDperformssignificantly
worse,at61%.

Anotherobservationisthatallofthealgorithmsperform
significantlyworseat04:00thanothertimes,whichisdueto
blurryimagescausedbylongshutterspeedsatnight.Thisisn’t
aspronouncedat22:00,astrafficisstilldenseandcarsmove
slowly,minimizingblur.Further,SSD’sperformancedegrades
at22:00, whiletheotheralgorithmsremainfairlyaccurate,
whichimpliesthatSSDisnotwellsuitedforrunninginthe
dark.

Weexaminedtheaveragecomputationtimeneededonthe
TX2toprocessaframeofvideousingeachofthe model.
TheaverageinferencetimeperframeforSSDwas0.29sec,
YOLOtook0.62secandRCNNtook1.17sec.Nonearefast
enoughforrealtimetracking,sowemustprocessthedatain
batches.Lastly,weexaminedthepowerconsumedbytheTX2
whilerunningeachofthemodels. WhileYOLO(13.5watts)
andFasterRCNN(13.9watts)usesimilaramountsofpower,
SSDusesnearly30%less(9.6watts).

Fig.6. ModeSelectionDecisionTree.Notethattheseareoptimalchoices
anduponfailureswecanselectalternativesusingthegoaltreeshowninfigure
3.

V. DISCUSSION

F-RCNNisnotworthconsideringfordeployment,sinceits
performanceandaccuracyisworsethanYOLO.YOLOtakes
twiceaslongasforinferenceasSSD,buthassignificantly
higheraccuracy.ThereforeYOLOispreferredunlessresources
failorbecomeconstrainedduetoahighqueryload.Cameras
produce9framesofvideopersecond,sobasedoffthe
inferencetimeintableII,each TX2running YOLOcan
process11secondsofvideoeach minute, whileSSDcan
process23secondsofvideoeachminute.

SSDhasasteepdropinaccuracyatnight.Thereforeat
nightYOLOispreferred,evenifthesamplingrate mustbe
decreased.

Wederivedthedecisiontreefor whichobjectdetector
touseinfigure6. Atnight, YOLOisusedduetoSDD’s
unacceptableaccuracy.Otherwise,YOLOispreferred,butthe
system willswitchtoSSDifforcedbyeitherapoweror
queryloadconstraint. Weusethisdecisiontreeinconjunction
withCHARIOT[19]tochoosetheappropriateconfiguration
atruntime.Thedecisiontreeisusedtoselectivelyaddcon-
straintstoguidethefeasibilityenginetowardsaspecificset
ofcomponents. Whenthatsetofcomponentsinfeasible,we
searchforthefeasibilityofthenextbestchoiceandsoon.
Notethatinfutureratherthanencodingadecisionorderwe
willsetthisproblemasastochasticoptimizationproblem.

VI. CONCLUSION

WehaveexaminedandimplementedacompleteIoTarchi-
tecturethatcountsvehiclesgoingthroughintersections.Our
decisionsandconstraintsaredetailedsothatreaderscaneasily
applythemtotheirownsystems.Thesystemusesmulti-modal
subcomponents, whichallowsfordifferentconfigurations
dependingonresourceavailabilityandquerydemand.Unlike
edgesystem managementtoolssuchasCHARIOT[19],this
allowsforcomponentreconfigurationbasedonoptimizing
performanceaswellasrecoveringfromfailure. Wecurrently
applyastatic modeswitchingfunction,but wehavelaid
thefoundationforanonlineoptimizationproblem which
describesthetrade-offbetweenthecomputationalperformance
andavailabilityofresources.Thisarchitecturecanbeextended
toworkwithanyedgeservicethathassub-modeswithsuch
atrade-off.
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