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Lipids are structurally and functionally diverse biological metabolites that have long proven difficult to study, partic-
ularly as targets for molecular imaging. This challenge arises from their small size, hydrophobicity, rapid diffusion
and trafficking rates, and, perhaps most critically, their status as metabolites whose structures and biosynthesis
are not directly encoded in the genome, making them inaccessible to direct fusion with fluorescent proteins.
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Changes in cellular ]

signaling and behavior

As a result of these challenges, most analytical methods for lipids rely on measuring lipid levels after sample ho-
mogenization and lipid extraction. These studies are critical to our understanding of lipid biology, but bulk bio-
chemical, ex vivo analysis carries no spatial information and thus obscures the role of localization in downstream
biological outcomes. Recent advances have focused on new approaches to study lipids within intact cells and tis-
sues to better elucidate the spatial component of the function of these critical molecules.

ADVANTAGES:

New analytical tools in lipid biology,
such as metabolic labeling followed by
bioorthogonal ligation, enable real-time
observation of lipid signaling in living
cells and link the spatial and temporal
domains of signaling.

Photoactivatable lipids enable rapid
release of signaling lipids with precise
control of time and localization for highly
targeted studies of signaling events in
live cells.

Multifunctional lipids, which can be tailored
to specific applications, couple the spatio-
temporal precision of photoactivatable
groups with photo-crosslinkers and
bioorthogonal handles, which enable
visualization or enrichment of lipids and
their interaction partners.

CHALLENGES:

Metabolic labeling of lipids relies on native
biosynthetic enzymes to incorporate
unnatural groups. Tagged lipids are pro-
duced in the same membrane environ-
ment as their natural counterparts, which
is desirable. Yet, because of their different
chemical makeups, these lipids may be
trafficked differently.

Different lipids can share biosynthetic
enzymes, limiting the points at which
metabolic probes may be introduced to
maintain selectivity to a desired lipid.

When certain highly functionalized, exoge-
nous lipid analogs are added to cells, they
may be trafficked differently and incorpo-
rated into different membranes than their
native counterparts. To partially mitigate
against this problem, localization tags
can direct unnatural lipids desired organ-
elle membranes.
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