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Virtual Experiments Guide Calibration Strategies for a
Real-World Watershed Application of Coupled
Surface-Subsurface Modeling

Xuan Yu'; Christopher Duffy?; Yu Zhang®; Gopal Bhatt*; and Yuning Shi®

Abstract: Virtual experiments have been designed for the development and validation of coupled surface-subsurface modeling. Potentially,
virtual experiments can guide model calibration as well. To address the role of virtual experiments in model calibration, a novel approach was
described for a real watershed calibration of Penn State Integrated Hydrologic Model (PIHM) guided by the V-shaped catchment simulation.
First, a benchmarking experiment of coupled surface-subsurface modeling was developed and documented on the V-shaped catchment. Then,
the performance of hydrologic predictions for the V-shaped catchment was calculated and demonstrated different levels of correlations. The
correlations were found stable, which had the potential to be used as the weights of multiobjective calibration. Therefore, a weighted multi-
objective calibration was developed for a real-world watershed by transferring the correlations obtained from the virtual experiments. Expect-
edly, the parameters calibrated using the weighted approach indicated improvement of the model performance in simulating water-table
depths and evapotranspiration with little sacrifice of model performance in streamflow. In addition, this study also compares the weighted
average calibration and unweighted calibration. The results demonstrate the weighted objective optimization achieved satisfactory compro-
mise for each calibration objective. Overall, the virtual experiment is proved to be an efficient tool to facilitate calibration of complex models.
The proposed weighted objective approach provides an effective calibration strategy for the multiple observation constraints, which can be
applied for the calibration of coupled environmental process models with multiple observations. DOI: 10.1061/(ASCE)HE.1943-5584
.0001431. © 2016 American Society of Civil Engineers.

Author keywords: Calibration; Coupled surface-subsurface modeling; V-shaped catchment; Penn State Integrated Hydrologic Model

(PIHM); Weighted objective function.

Introduction

Virtual experiment validation has been widely applied in the devel-
opment of hydrologic models. Unlike real-world watershed appli-
cations, virtual experiments rely on artificial model domains
[e.g., regular shapes (Henry 1964), simplified stream channels
(Di Giammarco et al. 1996)] and simplified hydrological processes,
so that the key hydrologic dynamics are captured with minimum
tunable parameters (Weiler and McDonnell 2004). Usually,
these virtual simulations can be used to derive analytical or semi-
analytical solutions to guide the development and verification of
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hydrologic models (Di Giammarco et al. 1996; Simpson and
Clement 2003; Zidane et al. 2012; Maxwell et al. 2014) because
it can be easily reproduced and reused. Another important applica-
tion of virtual experiment is synthetic modeling of hydrological
responses in different conditions. For example, Di Giammarco
et al. (1996) validated a mixed one- and two-dimensional approach
of overland flow by comparing model results against analytical sol-
ution of the V-shaped schematic catchment. Miller (1995) analyzed
topographic sensitivity of surface heat and moisture flux on a syn-
thetic terrain. Mallard et al. (2014) used synthetic watersheds with
varying topographic structure and stream network geometry to
understand the geometry influence on stream water composition.
Seo and Schmidt (2013) explored the relationship between channel
network configurations and hydrograph sensitivity to storm kin-
ematics on a series of synthetic circular catchments. Maxwell et al.
(2014) presented the model results of a set of different integrated
hydrologic models on standardized benchmark problems to under-
stand the representation of coupled hydrologic processes. These
modeling scenarios of virtual experiments improved the authors’
understanding of the complexity of coupled hydrological processes.
Predictably, virtual experiments could be a potential guidance of
calibration process, which is rare in the literature.

One major challenge on the calibration of coupled surface-
subsurface modeling is the computational cost. The mathematical
formulation of the multiscale multiprocess physical system can
be quite complicated, leading to a time-consuming numerical model
(Kumar and Duffy 2015; Osei-Kuffuor et al. 2014). Calibration
processes usually require a large number of model simulation runs
to find the optimal parameter set. The calibration of such coupled
surface-subsurface models not only causes exhaustive burden on
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the modelers but deters the attention from the purpose of hydrologic
modeling. One solution is to utilize the statistically efficient optimi-
zation algorithms to search the optimal parameter set (Nicklow et al.
2010), which can decrease the number of model runs and save the
total computational cost. Another solution is to minimize the cali-
bration period (Juston et al. 2009; Singh and Bardossy 2012). It is
always worth finding the appropriate length of observation data for
effective calibration of hydrologic models (Razavi and Tolson 2013;
Vrugt et al. 2006). In general, a virtual experiment usually involves
simplified hydrological processes with less computational cost,
which could be an ideal test bed to analyze sensitivity of model
parameters and to discover the effective calibration strategies.

Another challenge are the multistate objectives of coupled
surface-subsurface models. In real-world applications, coupled
surface-subsurface models try to capture the heterogeneity of hydro-
logic state and flux variables. Consequently, in order to understand
other catchment behaviors beyond streamflow, e.g., surface-subsur-
face flow interactions and watershed connectivity between riparian
zone and upslope area, it is desirable to calibrate and validate model
predictions against multiple observed hydrologic states and fluxes
in the watershed as a multiobjective problem. Under ideal condi-
tions, these objectives should be nonconflicting, which means that
one set of optimal parameters should be selected to satisfy all the
objectives including different hydrologic states and fluxes to the
maximum degree possible. In practical applications, due to errors
in model structure (Butts et al. 2004), uncertainty in parameters
(Shi et al. 2014), and observed data (McMillan et al. 2012), the
objectives of fitting different hydrological responses are usually
not satisfied simultaneously. Traditionally, optimization problems
involving multiple and conflicting objectives have been solved by
combining the objectives into a scalar function (aggregation func-
tion), and next solving the equivalent single-optimization problem
to identify the best-compromise solution (Efstratiadis and
Koutsoyiannis 2010; Hsie et al. 2014). Such aggregated multiobjec-
tive calibration studies tried to find the best weighting coefficients
(Rozosetal. 2004; Lietal. 2010; Dung et al. 2011). It was found that
a direct incorporation of these metrics of different measurements
into the objective function might not be theoretically reasonable
(Rozos etal. 2004). It is has been found that different optimal param-
eter sets can be obtained by changing the weighting coefficients.
Rozos et al. (2004) followed a hybrid strategy based on a combina-
tion of automatic and manual methods by adjusting the weights
according to previous optimization results. Dung et al. (2011)
calibrated a hydrodynamic model against multiple stream water el-
evations. The weight of model performance at each gauging station
was assigned according to the inundation impact. The comparison
result showed that the unweighted calibration performed worse than
the result of innudation-based weighted calibration. However, expert
knowledge was required to subjectively assign the innudation-based
weights (Dung et al. 2011). Therefore, the selection of weights and
formulation of a weighted objective function may lead to controver-
sial solutions according to the experiences of the modelers (Rientjes
et al. 2013).

The aim of this paper is to describe and document the simulation
of a virtual watershed, to explore the model performance correla-
tion of different variable, and then to test if the performance cor-
relation can be applied on the calibration of a real-world watershed.
Specifically, the synthetic virtual experiment was developed to sim-
ulate the hydrologic process at the V-shaped catchment with the
Penn State Integrated Hydrologic Model (PIHM). Then one rainfall
runoff event was tested to justify if it contains sufficient information
for the calibration on the V-shaped catchment. Based on the
correlation of the PIHM performance at each observed variable,
“informativeness” was developed. Finally, a weighted objective

© ASCE

04016043-2

function was formulated according to the informativeness and
was tested on the calibration of a real-world watershed.

Method

PIHM Description

PIHM is a physics-based, spatially distributed hydrologic model
with a coupled surface-subsurface approach. It simulates the water-
shed processes including interception, throughfall, infiltration, re-
charge, evapotranspiration, overland flow, unsaturated soil water,
groundwater flow, and channel routing in a fully coupled scheme
(Qu and Duffy 2007). Evapotranspiration is calculated using the
Penman-Monteith approach adapted from the Noah land surface
model (Chen and Dudhia 2001). Overland flow is described in
two-dimensional (2D) estimation of Saint-Venant equations. Move-
ment of moisture in unsaturated zones is assumed to be vertical and
is modeled using Richard’s equation. The model assumes that each
subsurface layer can have both unsaturated and saturated storage
components. Balance equations of the unsaturated and saturated
zones are formed in a fully coupled way, and the unsaturated
conductivity is determined by the van Genuchten (1980) approach.
The channel routing is modeled using one-dimensional (1D) esti-
mation of Saint-Venant equations. PIHM uses diffusive wave
approximation for channel routing and overland flow. For saturated
groundwater flow, the 2D Dupuit approximation is applied (Qu and
Duffy 2007). Spatially, the modeling domain is decomposed into
Delaunay triangles (DTs). DT is an unstructured mesh that consists
of a set P of points in a plane such that no point in P is inside the
circumcircle of any triangle. PIHM allows users to resolve spatial
data over the watershed and the DT can be constrained by point or
vector data (e.g., stream gauge, wells, soil maps, and land cover)
and the watershed boundary conditions (Kumar 2009). The model
resolves hydrological processes for overland flow, channel routing,
and subsurface flow, governed by a partial differential equation
(PDE) system. The system is discretized on the triangular mesh
and the projected prism from canopy to bedrock. PIHM uses a
semidiscrete, finite-volume formulation for solving the system
of coupled PDEs, resulting in a system of ordinary differential
equations (ODEs) representing all processes within the prismatic
control volume. Detailed descriptions of the rest of modeling
theory and the full set of mathematical formulation can be found
at PIHM (2016) and associated publications (Kumar 2009; Qu and
Duffy 2007).

Virtual Experiment on the V-Shaped Catchment

The original V-shaped catchment was extended to represent
the coupled surface and subsurface processes by incorporating a
2-m-deep subsurface domain (Fig. 1). The spatial mesh was
generated by DistMesh (Persson and Strang 2004). The mesh of
triangles was selected as coarse as possible so that the model com-
putational cost is small. A sandy soil, Bordenan sand, was selected
from unsaturated soil hydraulic database (UNSODA) (Leij 1996) to
represent the homogenous subsurface layer. The subsurface param-
eters are listed in Table 1. The initial condition was prescribed as
1 m deep of saturated zone uniformly. The meteorological data of
2009 at Shale Hills was selected as the model forcing. To simplify
real-world rainfall-runoff processes, only three rainfall equal rain-
fall (i.e., 38.1 mm/h for 6 h) events were applied to simulation of
the hydrological responses. The idea of artificial rainfall events fol-
lowed the irrigation experiment at Shale Hills in 1974 (Lynch
1976). Such a synthetic experiment with artificial rainfall and regu-
lar geometry showed simple hydrologic responses for single and
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Fig. 1. Mesh of the V-shaped catchment and the observation locations

continual rainfall events (Fig. 2). The extended V-shaped catchment
simulation was created as a benchmarking dataset, which is pub-
licly accessible in Yu (2015).

Monte Carlo sampling was conducted throughout the feasible
ranges (Yu et al. 2013) of each parameter (Table 2). The CPU time
to obtain the 3-month synthetic simulation on a PC (processor
3.16 GHz, 4.0 GB RAM) was <3 min. There were 10,000 PIHM
simulations in total. The Nash-Sutcliffe coefficient of efficiency
(NSE) was calculated to evaluate model performances

L, (0;—P;)?

NSE = 1 — _
i1 (0= 0y

(1)
where ¢ = total number of time steps in the calibration period; O; =
observed value at time step 7; 0= average of observed value; P; =
predicted value at time step i; and P = average of predicted value.

The model performances at two different time periods (T1 and
T2) were calculated in all the simulations. The acceptable perfor-
mances [i.e., NSE > 0.36 (Moriasi et al. 2007)] are shown as box
plots in Fig. 3(a). The mean and range of acceptable performances
were similar in T1 and T2, which suggested that the overall per-
formances were not significantly improved or reduced after select-
ing different time periods of rainfall event. The scatter plot shows
the variability of performances in T1 and T2 [Fig. 3(b)]. There are
dense dots scattered around the 1:1 line, suggesting that if it gen-
erated satisfactory simulation at T1, the set of parameters would
probably generate satisfactory simulation results at T2 as well.
There are also some dots far from the 1:1 line, which implies that

Table 1. Soil Hydraulic Property Characteristics for the V-Shaped Catchment
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Fig. 2. Synthetic simulation results of V-shaped catchment: (a) syn-
thetic precipitation; (b) Q; (c) GWa; (d) GWb; (e) ET (note: Q = dis-
charge rate at the outlet; GWa = groundwater table depth at site A;
GWb = groundwater table depth at site B)

there was different information contained in the simulation in T1
and T2. From the practical viewpoint, it is feasible to cut down the
calibration period for computational efficiency, though some infor-
mation would be lost. In the following calibration steps, only one
rainfall-runoff event was simulated.

To determine the importance of each target, the model perfor-
mances during T1 were evaluated. Only satisfactory performances
[NSE > 0.36 (Moriasi et al. 2007)] are shown in Fig. 4(a). The
well-correlated model performance implied the reciprocal relation
between the two targets. The poorly correlated model performance
implied competing relation. Another nine groups of Monte Carlo
experiments of 10,000 PIHM simulations were performed to test
the variability of the correlation. There were 10 groups of Monte
Carlo simulation in total, and 10 correlations for each pair of targets
[i.e., Q, GWa, GWb, and evapotranspiration (ET)], which is shown
in the box plot in Fig. 4(b). Because it was stable among the 10

van Genuchten (1980)

parameters
Saturated hydraulic Saturated water Residual water Air-entry Pore size Macropore
Description conductivity content content suction « distribution 3 conductivity
Value 11.405 0.428 0.0339 1.31 1.72 11,405
Unit mday™! cm® cm™ cm?® cm™ m~! — mday™!

Note: Bordenan sand data are obtained from UNSODA (Leij 1996); the soil code defined in UNSODA is 4,661; the macropore conductivity is estimated as

1,000 times the saturated hydraulic conductivity.
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Table 2. PIHM Parameters and Their Feasible Ranges

Parameter

Hydrological processes

Estimation

Range

Matrix conductivity
Macropore conductivity
Topsoil conductivity

Macropore depth
Porosity

Air-entry suction o
Pore size distribution 3
River bed conductivity

Subsurface flow
Subsurface flow
Infiltration

Subsurface flow
Subsurface flow

Subsurface flow, recharge
Subsurface flow, recharge
Channel routing

Pedotransfer functions from soil texture;

field data®

Hard coded to be 1,000 times matrix

conductivity*

Pedotransfer functions from topsoil

texture; field data

Estimated from root system
Pedotransfer functions from soil texture;

field data®

Pedotransfer functions from soil texture
Pedotransfer functions from soil texture
Hard coded to be 1.0 (vertical) and 0.1

lateral m/day*

River Manning’s roughness ~ Channel routing

Dingman (2002)

Two orders of magnitude (multiply by 0.01-100)
Two orders of magnitude (multiply by 0.01-100)
Two orders of magnitude (multiply by 0.01-100)

0 to the bedrock depth
0-1

One order of magnitude (multiply by 0.1-10)
One order of magnitude (multiply by 0.1-10)
Two orders of magnitude (multiply by 0.01-100)

One order of magnitude (multiply by 0.1-10)

“Parameters have both vertical and lateral values.
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Fig. 3. Satisfactory PIHM performance during T1 and T2: (a) box plot of PIHM performance during T1 and T2; (b) scatter plot of PIHM performance

during T1 and T2; the diagonal line is the 1:1 line

Monte Carlo experiments, the correlation could be used to formu-
late the weighted objective function. Here, informativeness was
defined as the indicator of the weights of each process in the cal-
ibration. The highest level of informativeness suggested that the
fitting of the particular observed variable is the priority of the cal-
ibration. The primary objective of most hydrological models is the
prediction of streamflow. Hence, the value of 1 was prescribed as
the informativeness of streamflow in the weighted calibration strat-
egy. The informativeness of other variables is defined by the model
performance correlation with the streamflow. Finally, the multiob-
jective optimization problem could be solved for a physics-based,
coupled surface-subsurface, computationally expensive model by a
weighted objective calibration strategy.

Weighted Function for Multiobjective Optimization

A multiobjective calibration involves the simultaneous optimiza-
tion of m model residuals with respect to a vector of model param-
eters 0 (Gupta et al. 1998), which can be stated as
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minE(0) = [¢;(0), ...,e,(0)], 0€0O (2)
where the goal is to find values for 0 (a set of model parameters)
within the feasible parameters space © that minimizes the vector
[E(0)] of multiple objectives. The multiple objectives are usually
the model residuals e;(0),i =1,2,3, ..., m at each calibration
objective. Here, the aggregation scheme was applied to solve
the multiobjective optimization problem. The targeting variables
in multiobjective functions are aggregated into a single objective

with appropriate weights

"L w; X e;(0)

«6) = Do wi

(3)

where w; = informativeness of each calibration objective. When the
information is limited to decide the appropriate weights for each
objective, the unweighted case can be used with 1 as the value
of informativeness. The unweighted objective function is expressed
by the following equation:
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e(0)

_ 1— NSEstreamﬂow +1-— NSEsiteA +1-— NSEsiteB +1- NSEET
1+1+141

(4)

The informativeness could be obtained from the previous virtual experiment (Fig. 4). Applying the informativeness values of 1, 0.9094,

0.7260, and 0.2753, the final weighted objective function turned to be

1 — NSEgreamfiow + 0.9094 x (1 — NSEge ) + 0.7260 x (1 — NSEg ) + 0.2753 x (1 — NSEgy)

e(0) =

Application at Shale Hills

Catchment

The Shale Hills watershed is located in central Pennsylvania
(Fig. 5). The watershed is an upland, erosion-cut, deep V-shaped
valley watershed with an underlying low-permeability shale geol-
ogy layer (Lynch 1976). This forested watershed supports an
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Fig. 4. NSE of PIHM performances at different variables and Pearson
correlation coefficients of these NSE at 10 groups: (a) one group
(10,000 simulations) of simulation results of NSE; (b) box plot of
the 10 correlations from each group
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(5)

ephemeral stream flow, which flows into Shavers Creek, and then
to the Juniata River, and ultimately the Susquehanna River. The
Shale Hills watershed has been used as an experiment field in a
series of hydrological studies (Nutter 1964; Lynch 1976; Qu and
Duffy 2007). Recently, the watershed joined the Critical Zone
Observatory (CZO) project supported by U.S. National Science
Foundation as Susquehanna-Shale Hills CZO (SSHCZO).

PIHM parameterization requires the soil parameters and
vegetation parameters. The soil hydraulic parameters for the
van Genuchten (1980) model, including parameters to describe
the inverse of air-entry suction (), pore size distribution (/3), sa-
turated hydraulic conductivity (K,), saturated water content
(hgy), and residual water content (h,.g), can be derived from
the field data or estimated from soil texture (Yu et al. 2013).
In this study, the soil hydraulic parameters were obtained from
field data (Lin 2006). The land surface parameters such as leaf
area index (LAI) and roughness length were projected from
National Land Data Assimilation Systems (NLDAS 1999) vegeta-
tion parameters.

For high-resolution hydrological modeling, hourly meteoro-
logical data are required for precipitation, air temperature, relative
humidity, and wind speed. These data are available from the
weather station at the north ridge with 10-min frequency (Duffy
2012).

Model Setup and Parameterization

PIHMgis (Bhatt et al. 2014), a tightly coupled geographic informa-
tion system (GIS) interface, was applied to set up the modeling at
SSHCZO. The procedures are illustrated in Fig. 6. The 1-m digital
elevation model (DEM) (Guo 2010) was applied to decompose the
watershed into 535 triangles and 20 linear segments of stream chan-
nels. The tree survey data (Eissenstat 2008) were used to spatially
parameterize the land cover at SSHCZO. The soil classes (Lin
2006) were also projected on each computational unit of PIHM.

In the model, soil hydraulic properties are adjusted during the
calibration. The estimation methods of each parameter are pre-
sented in Table 2. The range of each parameter is estimated accord-
ing to the initial value. For example, the saturated hydraulic
conductivity can range two orders of magnitude, while the porosity
ranges from 0 to 1, and the macropore depth ranges from O to the
bedrock depth.

There were two major flooding events in 2009. One was in June,
and the other was in October. The parameters were calibrated
against the flooding process in June of 2009, and the event in
October was used for validation. There were observations including
the streamflow at the outlet (Duffy 2010b), the water-table depths at
the riparian zone (Duffy 2010a), and the upslope area (Lin 2010),
and the total ET of the watershed (Davis 2010) (Fig. 5). The stream-
flow, water-table depths, and ET were averaged into hourly time
series as the calibration objectives (Fig. 7).
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Fig. 5. Map of the SSHCZO catchment showing the locations of streamflow station, weather station, and sites of pressure transducers (map data from
Shale Hills Datasets 2016)
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calibration

Model Calibration and Evolution of the Model

Performance

Applying the informativeness-based, weighted objective function,
PIHM was calibrated against hourly streamflow, water-table depth,
and ET (Fig. 8, Table 3). The covariance matrix adaptation-evolution

© ASCE

strategy (CMA-ES) was used as the search tool (Yu et al. 2013).
CMA-ES is quasi-parameter-free with the population size being
the only parameter to be tuned by the user (Hansen et al. 2003).
To evaluate the biases of model performance, the average of the
pair differences between observed and modeled variables was
calculated
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Table 3. Results from Single-Objective, Informativeness-Based Weighted Average, and Unweighted Average Calibration

Weight in Standard Z-test 99% confidence interval

Objective function Objectives objective function NSE d error statistic [—2.576, 2.576]
Single-objective Streamflow 1 0.977 5.955 2.3724 2.510 Accept
Groundwater Site A 0 —0.867 —0.295 0.0119 —24.748 Reject
Groundwater Site B 0 —0.927 —0.470 0.0144 —32.611 Reject
ET 0 0.457 —1.662 0.1972 —8.430 Reject
Informativeness- Streamflow 1 0.972 —1.363 2.5657 —0.531 Accept
based Groundwater Site A 0.9094 0.919 —0.003 0.0041 —0.683 Accept
weighted average Groundwater Site B 0.7260 0.866 —0.026 0.0074 —-3.514 Reject
ET 0.2753 0.460 —0.571 0.247 —2.313 Accept
Unweighted average Streamflow 0.880 —11.793 5.3561 —2.202 Accept
Groundwater Site A 1 0.877 —0.017 0.0058 —2.897 Reject
Groundwater Site B 1 0914 —0.012 0.0049 —2.490 Accept
ET 1 0.593 —1.646 0.1947 —8.451 Reject

Note: The simulation period is June 2009; the time series are shown in Fig. 8.

N: sample size
d: di - Oi - Pi
o "
SD: i T ;di_d)z
SD (6)
SE: —
}/_
Ziest: =9
-test:  ———
SE

where N = sample size; O; = observed variable at time i; and P; =
model simulated variable at time i; SD = standard deviation; and
SE = standard error. The value of d; is calculated as the sample differ-
ence between O; and P;. The hypotheses was set as Hy: = 0 (i.e., the
difference between the obeserved and modeled variable equals zero),
H,: # 0 (i.e., the difference between the observed and modeled var-
iable does not equal 0). And then the Z-test was used to test the hy-
pothses. Here, 0.01 was used as the significance level. Therefore, the
99% confidence interval was [—2.576, 2.576]. If the Z-test statistic
belonges to the confidence interval, the hypothesis is acceptable: the
obeserved and modeled variables are not signicantly different from
each other.

The calibration by the weighted-objective function improved
the prediction of water-table depths and ET without significant
degredation of the streamflow prediction. According to the Z-test
results (Table 3), both streamflow and groundwater table at Site A
and ET obtained good model performance, i.e., the modeled values
were not siginificantly different from the observed values. Without
informativeness, the unweighted averaged calibration was inclined
to the prediction of the groundwater table at Site B and ET (Fig. 8).
The Z-test results suggested that only the streamflow and ground-
water table at Site B obtained acceptable model performance
(Table 3).

The parameters from the weighted objective calibration
performed continously well in the validation periods. Three sets of
parameters [from single objective (with Q only), informativeness-
based weighted average, and unweighted average] were applied
to simulate the flood event in October 2009 (Fig. 9, Table 4).
The single-objective case had the best performace at streamflow,
while the other two cases improved the performances at ground-
water table and ET. The unweighted calibration overemphasized
the streamflow prediction. The informativeness-based weighted
average case demonstrated a reasonable compromise between
the objectives. The Z-test results suggested that both streamflow
and groundwater table at Site A persisted acceptable model perfor-
mance (i.e., observed and modeled variables are not signicantly dif-
ferent from each other), though the NSE values of the groundwater
table at Site A suggeted poor performance. The validation results
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of ET were not as good as other objectives in all the simulations.
The vegetation parameters were not calibrated in this study and the
ET was calculated from the eddy covariance measurements by a
Campbell Scientific CSAT3 three-dimensional sonic anemometer
(3D Sonic Anemometer, Campbell Scientific, Logan, Utah) and
a LI-COR LI-7500 CO,/H,0 analyzer (LI-COR, Lincoln, Ne-
braska). The method itself includes unavoidable measurement un-
certainty.

Discussion

Significance of Benchmarking Simulation

Bencharking simulations are easily reproducible and reusable to
understand model parameters. During the development of PIHM,
the V-shaped catchment was only used for the validation of PIHM
(Qu 2005). After that, real-world watershed developments and ap-
plications of PIHM rarely paid attention to the V-shaped catchment
case. The authors argue that simplified catchment processes lead to
generalizable insights and understanding. The V-shaped catchment
was extended with subsurface domain and meteorological input to
understand the calibration processes of PIHM. Such documentation
of the V-shaped catchment can be easily repeated, reproduced, and
reused by other modelers and other coupled surface-subsurface
models. Maxwell et al. (2014) listed a series of benchmarking cases
for coupled surface-subsurface models to understand the differen-
ces of each model. Another simple experiment is the Henry prob-
lem (Henry 1964), which has been studied repeatedly to understand
coastal groundwater intrusion. The authors’ virtual experiment in-
corporated subsurface and evapotranspiration, which has potential
of reuse for understanding the integrated watershed hydrologic
processes. This work represents a first step in decomposing the cal-
ibration targets, which may improve the ability to utilize simple
generalization to understand complex system (Wainwright and
Mulligan 2004).

Use Event-Scale Data for Calibration

The calibration period depends on the structure of the model and
characteristic of each parameter. Traditionally, the model calibra-
tion period requires a longer time period than validation because
some parameters do not have phyiscal meanings or cannot be ex-
tracted from physical properties of the model domain. The reason
that event-scale hourly data were enough for this study is the phys-
ics-based characteristic of the parameters, the spatial scale of Shale
Hills watershed, and the hydrologic dynamics of PIHM simulation.
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labeled in the format of date (h): (a) single-objective calibration; (b) informativeness-based weighted average calibration; (c) unweighted average

calibration

Table 4. Validation Results from Single-Objective, Informativeness-Based Weighted Average, and Unweighted Average Calibration

Weight in Standard Z-test 99% confidence interval

Objective function Objectives objective function NSE d error statistic [—2.576, 2.576]
Single-objective Streamflow 1 0936  —38.715 25.160 —1.539 Accept
Groundwater Site A 0 —5.108 —0.173 0.012 —14.139 Reject
Groundwater Site B 0 —2.940 —0.223 0.013 —17.828 Reject
ET 0 —0.856 1.081 0.181 5.981 Reject
Informativeness- Streamflow 1 0.927  —45.180 22.370 —2.020 Accept
based Groundwater Site A 0.9094 —0.069 —0.009 0.006 —1.603 Accept
weighted average Groundwater Site B 0.7260 0.056 —0.127 0.007 —18.200 Reject
ET 0.2753 —0.856 0.954 0.189 5.041 Reject
Unweighted average Streamflow 1 0.816  —46.195 20.780 —2.223 Accept
Groundwater Site A 1 0.5956 0.044 0.009 4.753 Reject
Groundwater Site B 1 0.826 —0.098 0.008 —11.747 Reject
ET 1 —0.850 1.073 0.181 5919 Reject

Note: The simulation period is October 2009; the time series are shown in Fig. 9.

One rainfall-runoff response event includes a complete set of
hydrological processes including infiltration, surface runoff, sub-
surface flow, and stream channel flow. During the event-scale cal-
ibation, PIHM parameters capture the phyiscal meaning, which
drives the coupling dynamics of these processes. These dynamics
are memorized in the parameters so that the model can still be ef-
fective to predict other rainfall-runoff responses.

Meaning of Informativeness of Each
Calibration Objective

Informativeness represents transferable information on parameters
between different watersheds. The idea of calibration is to transfer
model parameters temporally. Here, the real-world watershed
calibration represents transferable information from a simple water-
shed. This study demonstrated that it is effective when the transfer
happens on similar catchment structure and similar target variables.
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Future studies should explore other indirect transfering methods
between real-world watersheds.

The implementation of integrated distributed environmental
models certainly increases the amount of observational data re-
quired to constrain the model parameters (Stisen et al. 2011).
For PIHM, the calibration strategy suggests that streamflow is
strongly dependent on the water-table depth close to stream
(GWa, Fig. 1). In Fig. 4(a), it can be seen that the model perfor-
mances at GWa and Q were well correlated with each other:
i.e., changing a parameter set will either increase or decrease
the NSE of GWa and Q. However, the model performance of
GWb was weakly correlated with the performance of streamflow.
The low correlation of model performance between ET and other
variables suggests that the model performance for an event does
not significantly affect the ET process simulation (Yu et al. 2013;
Shi et al. 2013). In addtion, the observation uncertainty may affect
the informativeness, and low informativenss of ET may suggest
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the large uncertainty of ET observation, which should be further
scrutinized.

The informativeness concept reflects a model coupling scheme
of different processes and enables consideration of the multiple
constraints of the watershed. The unweighted method showed that
the calibration mistakenly focused on the ET and the water table at
Site B, and failed to reproduce the observed outlet streamflow. The
informativeness-based strategy of formulating the weighted objec-
tive function avoids subjective judgements and could be easily
adopted by other integrated models. This study used streamflow
as the dominant objective. The informativeness will be different
if another dominant objective is applied accroding to the prescribed
simulation priority.

Strength of the Informativeness-Based
Weighted Calibration

With the weighted constraint of multiple measurements, the PIHM
simulation results significantly enhanced the prediction of water-
table depths. The key aims of distributed modeling schemes are
to reproduce multiple moisture fluxes and to reflect the spatial
heterogeneities of the hydrological mechanisms (Kim et al. 2012).
Here, the authors improved the representation of multiple processes
by weighted average calibration, and the weighted average function
can be easily extended to more constraints of the model as the types
of observed variables increase.

Calibration with informativeness-based weights directly gener-
ate one optimum solution. Multiobjective optimization problems
can be resolved by nondominated sorting. This method often gen-
erates a large number of Pareto optimal sets. Ususally, a further step
of selection is necessary to obtain a small number of Pareto fronts
as physically sound solutions (Khu and Madsen 2005). It might be
a challenge to select a final set of parameters from the nondo-
mainted solutions. In this study, the informativeness-based weights
decide the final selection of the solution. The authors argue that the
informativeness represents a preference for ordering each calibra-
tion objective in the integrated hydrologic model. The weighted
average aggregation method reduced the computational cost and
avoided the selection process from a large number of Pareto-
optimal solutions, which is efficient for computationally expensive
models.

Conclusion

This paper develops a benchmarking simulation of PIHM on the

V-shaped catchment. The simulation on V-shaped catchment im-

plies the potential of using event-scale period data to calibrate

PIHM. In addition, the model performance correlations of different

targets are proved to be stable in 10 groups of Monte Carlo sim-

ulations. It implies that model performance correlations can be used
as the aggregation for a weighted objective function. Therefore, the
authors tested the informativeness-based, weighted objective cali-
bration of PIHM using observed streamflow, water-table depth, and

ET. The following conclusions are drawn from this paper:

* The virtual experiment on a V-shaped catchment can efficiently
guide the calibration of PIHM by formulating the weighted
objective function according to the model performance
correlations.

* Selection of different rainfall-runoff events does not improve the
PIHM simulation results. Therefore, a simple rainfall-runoff
event can be used for PIHM calibration.

* The informativeness provided a useful framework for objectively
determining weights between each calibration objective. Here,
the authors prescribed streamflow as the dominant objective,
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and the correlations of model performance at other objectives

were used for the evaluation of informativeness. Results suggest

a satisfactory compromise among streamflow, water-table depth,

and ET was achieved with the weighted strategy.

* The comparison between single-objective optimization and
weighted multiobjective optimization suggests that sound
coupled surface-subsurface modeling relies on appropriate cali-
bration against multiple observations.

The proposed calibration framework may be categorized under
the umbrella of physics-based models with comprehensive param-
eter representation of topography, land cover, soil, and geology.
Most of the physics-based parameters would not change signifi-
cantly in different hydrologic conditions, and hold relatively long
stability. Therefore, it is practical to shorten the calibration duration
by picking out less important information. Here, the direct transfer
of the model performance correlations is feasible due to a similar
domain between the V-shaped catchment and the Shale Hills water-
shed. Spatially, the authors hope that these physics-based param-
eters have more transferable information. It would be valuable to
explore other strategies to transfer information across neighboring
or similar catchments with diverse complexity and scales.
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