
An Online Decision-Theoretic Pipeline for Responder Dispatch
Ayan Mukhopadhyay*

Vanderbilt University
Nashville, TN

ayan.mukhopadhyay@vanderbilt.
edu

Geoffrey Pettet*
Vanderbilt University

Nashville, TN
geoffrey.a.pettet@vanderbilt.edu

Chinmaya Samal
Vanderbilt University

Nashville, TN
chinmaya.samal.1@vanderbilt.edu

Abhishek Dubey
Vanderbilt University

Nashville, TN
abhishek.dubey@vanderbilt.edu

Yevgeniy Vorobeychik
Washington University

St Louis, MO
yvorobeychik@wustl.edu

ABSTRACT
The problem of dispatching emergency responders to service traffic
accidents, fire, distress calls and crimes plagues urban areas across
the globe. While such problems have been extensively looked at,
most approaches are offline. Such methodologies fail to capture
the dynamically changing environments under which critical emer-
gency response occurs, and therefore, fail to be implemented in
practice. Any holistic approach towards creating a pipeline for
effective emergency response must also look at other challenges
that it subsumes - predicting when and where incidents happen
and understanding the changing environmental dynamics. We de-
scribe a system that collectively deals with all these problems in an
online manner, meaning that the models get updated with stream-
ing data sources. We highlight why such an approach is crucial
to the effectiveness of emergency response, and present an algo-
rithmic framework that can compute promising actions for a given
decision-theoretic model for responder dispatch. We argue that
carefully crafted heuristic measures can balance the trade-off be-
tween computational time and the quality of solutions achieved
and highlight why such an approach is more scalable and tractable
than traditional approaches. We also present an online mechanism
for incident prediction, as well as an approach based on recurrent
neural networks for learning and predicting environmental features
that affect responder dispatch. We compare our methodology with
prior state-of-the-art and existing dispatch strategies in the field,
which show that our approach results in a reduction in response
time of responders with a drastic reduction in computational time.
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1 INTRODUCTION
Emerging Trends and Challenges: Smart and connected com-
munities are Human-in-the-Loop Cyber-Physical systems (H-CPS),
with interactions between humans, the outside environment, and
computational tools that assist in decision-making processes [6].
Analysis and optimization of H-CPS’s is challenging primarily due
to the inherent complexity and the sheer number of agents involved.
Making accurate models is difficult, and simple rule based strategies
often fail to capture the dynamics of the problem space.

Consider the classical problem of emergency response. The goal
of responders is to minimize the variance in the operational de-
lay between the time incidents are reported and when responders
arrive on the scene. However, solving this problem requires not
just sending the nearest emergency responder, but sometimes be-
ing proactive placing emergency vehicles in regions with higher
incident likelihood. Sending the nearest available responder by eu-
clidean distance ignores road networks and their congestion, as
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well as where the resources are stationed. Greedily assigning re-
sources to incidents can lead to resources being pulled away from
their stations, increasing response times if an incident occurs in
the future in the area where responder should be positioned.

Data-driven approaches have been shown to produce more in-
formed solutions to such problems [29] – examples include predict-
ing crime and traffic accidents in urban areas [20, 22], and building
architectures for smart city ecosystems [2]. In this paper, we lever-
age the potential of data-driven approaches and utilize real-world
incident data for making informed decisions about effective station-
ing and dispatch of Emergency Medical Services (EMS) resources
in a large urban community (Nashville, TN).

Contributions:We break down the problem of responder dis-
patch into three atomic sub-components: incident prediction, envi-
ronment simulation, and the dispatching approach. Our contribu-
tions are as follows:
• Incident Prediction: Online Survival Analysis - We define a
novel online approach to incident prediction that predicts
incidents in time and space. Previous work in this domain
has treated this as a batch learning problem [20, 22, 33], in
which incident prediction models are learned once, and are
subsequently used to aid response decisions. This fails to
capture the changing dynamics of urban systems in which
emergency responders operate, and we bridge this gap by
creating an online incident prediction algorithm.
• Dispatch Algorithm - We formulate the problem of dispatch-
ing responders to incidents as a Semi Markov Decision Pro-
cess (SMDP). Such an approach has recently been shown to
work exceptionally well in this domain [21]. However, such
systems have enormous computational load that limit their
deployment in practice. We highlight this issue through the
course of the paper and design an efficient solution that is
fast, scalable and can work in a dynamic environment.
• Decision Theoretic Framework - We compose the Incident
Prediction, Environment Simulation, and Dispatching com-
ponents into a framework that makes real time dispatching
decisions based on traffic congestion and predicted incident
distributions. Each component is modular, so improvements
are easy to integrate into the framework.

Outline: We present and evaluate each of the components sep-
arately, as well as the entire system that combines them into an
online pipeline and show that it results in better performance, and
a remarkable decrease in computational run-time. We begin by
presenting a high-level system model and problem description in
Section 2, and present our solution in Section 3. We show our em-
pirical evaluation in Section 4, go over a summary of prior work in
the field in Section 5 and summarize the paper in Section 6. Table 1
describes the symbols used.

2 PROBLEM DESCRIPTION
The problem deals with an urban area, in which incidents like
traffic accidents, fires, distress calls and crimes happen in space and
time. Such incidents are reported to a central emergency response
system, which then dispatches responders like police vehicles and
ambulances. This system governs the entire pipeline of incident
response, including detecting and reporting incidents, monitoring

Table 1: Notation Table

Symbol Meaning
G Set of equally sized grids
R Set of Responders
t Arrival-time between incidents
w Features that affect incident arrival
f A distribution over t , conditional onw
Ms Responder Dispatch SMDP
Md Responder Dispatch Discrete-Time MDP (DTMDP)
h Horizon of the Monte-Carlo Search Tree
D Historical Dataset of incidents
D
′

Stream Dataset of incidents
L Log-Likelihood of Incidents
Θ A Generative Model of the Urban Area

and placing a fleet of response vehicles, and finally dispatching
responders when incidents occur. Such responders are equipped
with devices that facilitate communication to and from central
control stations. They are then dispatched by a human (guided
by some algorithmic approach), a process which typically takes
seconds, but can be longer if dispatchers are busy [8].

For simplicity we discuss our approach with a single responder
type and a single type of incident, but such homogeneity is not
required for this approach.

Formally, we consider that the entire urban area is divided into
as set of grids G. Incidents happen in these grids with an inter-
arrival temporal distribution f , conditional on a set of featuresw .
Such incidents need to be responded to by a set of responders R.
Each responder is allocated to a specific depot, which are immobile
stations located in a particular grid. Once a responder has finished
servicing an incident, it is directed back to its depot and becomes
available to be re-dispatched while in route. We also assume that if
there are any free responders when an incident is reported, then
some responder must be dispatched to attend to the incident. This
is a direct consequence of the legal bounds within which emer-
gency responders operate, as well as of the critical nature of the
incidents. If an incident happens and there are no free responders
available, then the incident enters a non-priority waiting queue
and is attended to when responders become free.

Dispatch Systems in use today by major metropolitan areas such
as Nashville work as follows: when an incident is reported, the
system dispatches the closest available responder using the eu-
clidean distance (i.e. "as the crow flies") between the incident and
the responder’s current position [8]. This method has several dis-
advantages: 1) The euclidean distance between two locations is
not necessarily representative of the actual time to travel between
them since travel time depends on the road network and its current
congestion. 2) By using the responder’s current location, it ignores
where the responder should be stationed. Nashville‘s incident re-
sponse data shows that this can lead to responders being pulled
away from their depots, causing future incidents around those de-
pots to have longer response times. 3) This method ignores the
likely future incident distribution. Although dispatching the closest
responder is greedily optimal, it may not be the best choice given
the distribution of future incidents.

This motivates us to model responder dispatch formally. We
begin by introducing the problem formulation of the online dispatch
system in this section. We denote by τ ∼ f , a random variable that
represents time between incidents in the urban area.
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Given such a model of incident arrival, we now look at the model
for responder dispatch. We formally model the problem of dynamic
incident response as a semi-Markov decision process (SMDP) [13,
21], and refer to this process as Ms . An SMDP is described by the
following tuple,

{S,A,pi j (a), t(i, j,a), ρ(i,a),α } (1)

where S is a finite state space, A is the set of actions, pi j (a) is the
probability with which the process transitions from state i to state j
when action a is taken, t(i, j,a) is a distribution over the time spent
during the transition from state i to state j under action a, ρ(i,a) is
the reward received when action a is taken in state si , and α is the
discount factor for future rewards.

States: At any point in time t , the state of the problem consists
of the a tuple {I t ,Rt ,Et }, where I t is a collection of grid indices
that are waiting to be serviced, ordered according their times of
occurrence. Rt represents a collection of vectors, where r ti ∈ Rt

captures all relevant information about the ith responder such as it’s
current position and status. The state variable Et captures relevant
environmental factors that affect dynamic dispatch of responders at
time t . Such factors are problem specific, so we leave the choice of
such features to the designer of the responder system, but describe
the specific features used in our system later.

Actions: Actions in our world correspond to directing respon-
ders either to incidents or back to their depots, when the process
encounters a decision-making state. We denote the set of all actions
by A and refer to a generic action by a. We use A(si ) to denote
the set of actions that are available in state si ∈ S , and impose a
constraint that whenever at least one responder is available and
an incident occurs, we immediately dispatch some responder. Since
the entire process evolves in continuous time, one can consider the
existence of a single decision-making state at any instant, which
leads to a single action being needed.

Transitions: The SMDP model evolves as a result of incidents
that happen in space and time, and actions that are taken. The state
transition probabilities are represented by the random variable
pi j (a), which for any state si , represents the probability over the
system transitioning to state sj when action a is taken. Also, the
time taken for the transition is represented by the random variable
t(i, j,a). We collectively refer to the state transition probabilities and
time transition probabilities as transition probabilities throughout
the rest of the paper.

Rewards: Since the broader goal of this problem is to minimize
response times for emergency responders, we choose to look at
costs instead of rewards. For each action a that is taken in state si ,
the system incurs a cost ρ(si ,a), and we seek to find actions for
each state that minimizes the expected sum of costs.

Policy: A policy for a decision-making problem specifies an
action for each state of the system. The goal of solving the SMDP
is to find a policy that maximizes the sum of expected rewards
that the decision process generates as a result of following the said
policy. Our goal is to approximate the optimal policy π∗ which,
starting from for an arbitrary state si , minimizes the sum of expected
discounted costs.

3 OUR SOLUTION
Before introducing the technical details of our solution approach,
we provide a broad overview of the algorithmic approach we take
and the associated technical challenges. We point out that two
characteristics are fundamental to the operation of an emergency
response system - first, it must be equipped with the ability to per-
form real-time computing in order to process the continuous stream
of data received from responders and calls, and secondly, it must
be equipped with principled algorithmic approaches to dispatch
responders as and when incidents happen. We clarify that real-time
computation essentially refers to a soft real-time problem - once
incidents happen, the entire pipeline can afford a short latency to
update existing models and calculate dispatch decisions. With these
characteristics in mind, we start by looking at incident prediction
algorithms. The canonical way to predict incidents in space and
time is using historical data to learn a predictive model and then
simulate incidents [5, 23]. However, since accidents often cascade,
it is imperative that the model is updated as and when incidents
happen. The primary technical challenge here is that re-training the
entire model each time an incident happens (or periodically after
some pre-defined number of incidents) is computationally slow and
puts a heavy toll on the responder-dispatch framework that can
only afford a low latency. This calls for the need to design an online
mechanism to predict incidents that can be updated as incidents
happen. We introduce such a model and explain the algorithmic
details involved in section 3.1.

Having looked at the problem of incident prediction, we now
look at dispatching responders given an incident prediction model.
The SMDP formulation introduced in section 2 is difficult to solve
since the state transition probabilities are unknown and cannot
be computed in closed-form. One way to tackle this problem is to
access a generative model to learn the state-transition probabilities
while learning a policy. This has recently been shown to work well
on the responder-dispatch problem [21]. However, we point out
that such an approach has two major limitations. First, for any
urban system, the state space is practically intractable even without
environment variables. Even on fairly powerful computing systems,
it would take weeks to train the policy [21]. The inclusion of envi-
ronment variables would be computationally infeasible. Secondly,
and partly as a consequence of the first issue, prior approaches are
simply not suited for dynamic environments: if a single responder
breaks down, traffic conditions change, or incident models evolve,
existing approaches [14, 21] prescribe re-learning from scratch,
which takes time that is incompatible with the latency constraints
on the system. In order to alleviate this concern, we take the SMDP
formulation and design an algorithmic approach that bypasses the
need to learn the transition probabilities. This saves vital computa-
tion time and lets us design an online algorithm that is updated in
real-time as the environment evolves (see Section 3.2).

In order to consider the effect of environmental factors on re-
sponder dispatch, it is essential to understand how such factors
evolve. Thismotivates us to create predictivemodels for the environ-
ment. One factor of interest in the context of emergency responder-
dispatch is traffic conditions in urban areas, since they directly
affect travel times of responders. We take this into account by de-
scribing a model that enables us to learn the evolution of traffic in
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(Sec 3.1)
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Figure 1: System Overview

an urban area from prior data, and predict traffic conditions on the
fly while attempting to solve the MDP (see section 3.3).

The high-level process flow that ties the three problems into
one complete pipeline of responder dispatch is shown in figure 1.
The online prediction model consumes actual incident data and
at any point in time, provides a simulator that captures the latest
trends in incident arrival. Also, the model to learn the evolution of
environmental variables is used to find optimal vehicular routes
between any two points in the urban area. These two atomic pieces
are fed into the decision process for responder-dispatch, that given
any state of the SMDP, outputs a decision that governs which
responder should be sent to respond to an incident.

3.1 Real Time Incident Prediction
We now present the technical details and formalize our method-
ology, and begin by looking at a principled incident prediction
algorithm. Formally, we want to learn a probability distribution
over incident arrival in space and time. In order to do so, we lever-
age our prior work in which we have shown how survival models
prove to be extremely effective in predicting incidents like crimes
and traffic accidents [20, 21, 23]. Survival Analysis is a class of meth-
ods used to analyze data comprising of time between incidents of
interest [7]. Survival models can be parametric or non-parametric
in nature, with parametric models assuming that survival time fol-
lows a known distribution. Based on our prior work, we choose a
parametric model over incident arrival, and represent the survival
model as f (τ |γ (w)), where f is the probability distribution for a
continuous random variable τ representing the inter-arrival time,
which typically depends on covariates w via the function γ . The
model parameters can be estimated by the principled procedure
of Maximum Likelihood Estimation (MLE). The spatial granularity
at which such models are learned can be specified exogenously -
a system designer can choose to learn a separate f for each dis-
cretized spatial entity (grids in our case), learn one single model for
all the grids or learn the spatial granularity from data itself. This
choice is orthogonal to the approach described in this paper and
we refer interested readers to our prior work [20] for a discussion
about such models.

We shift our focus directly to survival models that are used to
learn f (τ |γ (w)). Intuitively, given an incident and a set of features,
wewant to predict when the next incidentmight happen. Before pro-
ceeding, we introduce an added piece of notation - we assume the
availability of a dataset D = {(x1,w1), (x2,w2), .., (xn ,wn )}, where
xi represents the time of occurrence of the ith incident and wi

represents a vector of arbitrary features associated with the said
incident. A realization of the random variable τ , used to measure
the inter-arrival time between incidents, can be represented as τi =
xi+1−xi . The function γ is usually logarithmic and the relationship
of the random variable τ with the covariates can be captured by
a log-linear model. Formally, for a time-interval τi and associated
feature vectorwi , this relationship is represented as

loд(τi ) = β1wi1 + β2wi2 + ... + βmwim + y (2)
where, β ∈ Rm represents the regression coefficients andy is the

error term, distributed according to the distribution h. The specific
distribution of f is decided by how the error y is modeled. We
choose to model τ by an exponential distribution (for the sake of
brevity, we refer interested readers to prior work [21] for more
details on why an exponential distribution is particularly useful in
such models). It turns out that wheny follows the extreme value dis-
tribution, then τ is distributed exponentially. Thus, in our incident
prediction model, we assume that h takes the following form

hY (y) = ey−e
y

Using equation 2, for a given set of incidents, the log-likelihood
of the observed data under the specific model can be expressed as

L =
n∑
i=1

log h(τi −w
T
i β) (3)

The standard way to estimate the parameters of the model is to
use a gradient-based iterative approach like the Newton-Raphson
algorithm, yielding a set of coefficients β∗ that maximize the likeli-
hood expression. Now, the model over inter-arrival times is gen-
erative, it can be used to simulate chains of incidents, which is
particularly helpful in building a simulator, the purpose of which
we explain in the next section.

As pointed out before, such an approach is offline. However, it
is imperative to capture the latest trends in incident arrival to ac-
curately predict future incidents, which motivates us to design an
online approach for learning and predicting incidents. We introduce
some added notation before describing the algorithmic approach.
First, we reiterate that β∗ is used to refer to coefficients already
learned from dataset D. Further, we assume that a new set of inci-
dents D

′

= {(x
′

1,w1), (x
′

2,w2), .., (x
′

k ,wk )} is available that consists
of incidents that have happened after (in time) the original set of
incidents. We aim to update the regression coefficients β using D

′

,
assuming that the model already has access to β∗.

In order to address this problem, we use stochastic gradient
descent to update the distribution f in an online fashion. Formally,
we start with the known coefficients β∗ and, at any iteration p of
the process, we use the following update rule

βp+1 = βp + α∇L(βp ,D
′

)

where ∇(L(β∗,D
′

) is the gradient of the log-likelihood function
calculated using D

′

at βp and α is the standard step-size parameter
for gradient based algorithms. Using equation 3, likelihood of the
incidents in the dataset D

′

can be represented by

L =
k∑
i=1

log e(logτi−β
∗w )−e (logτi −β

∗w )
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Algorithm 1: Streaming Survival Analysis
1 INPUT: Regression Coefficients β ∗, Dataset D′ , Tolerance α ,

Likelihood Function L, Maximum Iterations MAX _IT ER ;
2 for p = 1..MAX _IT ER do
3 βp+1 = βp + α∇L(βp, D

′
) ;

4 if L(βp+1, D
′
) < L(βp, D

′
) then

5 Return βp ;

6 Return βp

and subsequently,

∂L

∂βj
=

k∑
i=1
−wi j +wi j {e

(logτi−β ∗wi )}

The update step is repeated until improvements in the likelihood
of the available data. Having already summarized the important
steps in the algorithm in this section, we present it formally in
Algorithm 1.

This mechanism enables us to update the incident prediction
model in an online manner, saving vital computation time for the
responder dispatch system. Also, this implicitly betters the dispatch
algorithm by generating incident chains that capture the latest
trend in incident occurrence.

3.2 Dispatch Algorithm
We begin the discussion on our dispatch algorithm by first explain-
ing how the SMDP problem in formulation 1 can be solved by
canonical policy iteration. A principled algorithmic approach [21]
to solve the responder-dispatch SMDP is to first convert the SMDP
to a discrete-time MDPMd , which can be represented as

{S,A, p̄i j , ρ,Vβ , βα }

where p̄i j (a) = β−1α βα (i,a, j)pi j (a) is the scaled probability state
transition function and βα is the updated discount factor. The trans-
formed MDP is equivalent to the original MDP according to the
total rewards criterion [13, 21], and hence it suffices to learn a policy
forMd . Given such a conversion, the approach to solving the MDP
involves accessing a simulator to learn the state transition probabil-
ities forMd [21]. The algorithm, SimTrans, an acronym for Simulate
and Transform, uses canonical Policy Iteration on the transformed
MDPMd , with an added computation. It tracks the states and ac-
tions encountered by the simulator and gradually builds statistically
confident estimates of the transition probabilities.

This process, however, is extremely slow and fails to work in
dynamic environments since any change in the problem definition
(the number of responders, or the position of a depot) renders
the learned policy stale. In order to tackle this problem, we first
highlight an important observation - one need not find an optimal
action for each state as part of the solution approach since at any
point in time, only one decision-making state might arise that
requires an optimal action. This difference is crucial, as it lets us
bypass the need to learn an optimal policy for the entire MDP.
Instead, we describe a principled approach that evaluates different
actions at a given state, and selects one that is sufficiently close to
the optimal action. We do this using sparse sampling, which creates

Algorithm 2: Real-Time SMDP Approximation Main Proce-
dure
1 INPUT: State s , Current Environment E , Horizon h, Stochastic

Horizon hs , Simulation Budget b , Generative Model Θ ;
2 Set current depth d ← 0;
3 C ← b incident chains generated by Θ(E) ;
4 Set Scores U ← ∅ ;
5 Ā = SelectCandidateActions (s, d, hs ) ;
6 foreach incident chain c ∈ C do
7 u ← ChainEvaluation (c, s, d, Ā, hs , h) ;
8 foreach candidate action a ∈ Ā do
9 U [a] ← U [a] + u[a] ;

10 Return argmina∈Ā(U [a]) ;

Algorithm 3: Select Candidate Actions for Given State
1 Function SelectCandidateActions (State s , Depth d ,

Stochastic Horizon hs )
2 As ← set of available actions in state s ;
3 a∗ = argmina∈As (ρ(s,a)) ;
4 if depth d ≥ hs then
5 Return a∗ ;
6 else
7 Ās = {a |a ∈ As and ρ(s,a) ≤ ϵ ∗ ρ(s,a∗)} ;
8 Return Ās ;

a sub-MDP around the neighborhood of the given state and then
searches that neighborhood for an action. In order to actualize this,
we use Monte-Carlo Tree Search (MCTS).

Another important observation is that the incident prediction
model discussed in section 3.1 is generative and independent of
dispatch decisions, which lets us simulate incidents independently.
Note that since models of travel (discussed in section 3.3) as well
as service times for responders can also be learned from data, the
entire urban area can therefore be simulated. We denote such a
simulator by Θ, which can generate samples of how the urban area
evolves, even though the exact state-transition probabilities are
unknown. This observation lets us simulate future states from a
given state, leading to the creation of a state-action tree as shown
in Fig. 2. We use this to design an algorithmic approach called
Real-Time SMDP Approximation, and explain it next. Through the
course of this discussion, we assume that the simulator can access
a modular (and possibly exogenously specified) model to predict
the environment at any point in time.

Algorithms 2, 3, 4, and 5 describe the various functions of our
MCTS approach. We start our discussion with Algorithm 2, which
is the highest level procedure that is invoked when presented with
a decision-making state. First, b incident chains are sampled using
the generative model Θ (refer to step 3 in Algorithm 2), where each
chain is a time ordered list of sampled incidents. We create multiple
chains in order to limit the impact of variance in the generative
model. Next, the algorithm starts building the MCTS tree. We use
the function node(s,η,d, t) to refer to the creation of a node in the
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Algorithm 4: Evaluate a Chain of Incidents
1 Function ChainEvaluation (Incident Chain c, State s, Depth d,

Candidate Actions Ā, Stochastic Horizon hs , Horizon h)
2 Set scores u ← ∅ ;
3 d ← d + 1 ;
4 foreach action a ∈ Ā do
5 Next state s′ ← UpdateState(s, a, c) ;
6 Utility util = s′.responseTime ;
7 Root← new Node(State = s ‘, util = util) ;
8 Update u[a] ← CreateStateTree(Root, c, d, hs , h) ;

9 Return u

tree, which tracks the current state of the system (s), the cost of
the path from the root to the node (η), the depth of the tree (d) and
the total time elapsed (t ). Also, we use UpdateState(s,a,c) to retrieve
the next state of the system, given the current state s , action a
and chain c . For any state, we start by finding a set of candidate
actions for the given incident (refer to step 5 in Algorithm 2), which
takes the algorithmic flow to Algorithm 3. The candidate actions
are chosen according to the current depth of the MCTS tree - if
the tree is within the stochastic horizon hs , the candidate actions
include all actions with a cost that is at most ϵ times the cost of
the myopically optimal action a∗. The parameter ϵ can be varied
to control the trade off between the computational load of the
algorithm and performance. Once the tree is deeper than hs , the
algorithm picks the bestmyopic action as a heuristic to construct the
tree’s nodes until depth h, since rewards are sufficiently discounted.
After candidate actions are found for the sampled incidents of the
chain, Algorithm 4 is used to evaluate possible decision-making
courses - each available action is tried and the MDP is simulated
to generate future decision-making states, from which the entire
process is repeated. This gradually builds a tree, where each edge
is an action and each node is a decision-making state. We explain
this procedure in Algorithm 5.

The key steps of the procedure are as follows. First, costs are
tracked for every branch as the tree is built (refer to steps 10 and
14 in Algorithm 5), which is based on the response time in seconds
for the assigned responder to the current incident. A lower cost
is better, as it corresponds to lower response times. For any given
node that was generated by action a from parent node p, the cost is

cost = up + (γ
t )((t − up )/(d + 1)) (4)

where up is the parent node‘s cost, γ is the discount factor for
future decisions, and t is the time elapsed between taking action a
at the parent node and the occurrence of the current node. This is
essentially an updated weighted average of the response times to
incidents given the dispatch actions.

Once the tree is completed, the cost for each candidate action for
the dispatch incident is determined by the cost of the best leaf node
in it’s sub-tree, as this represents the result of the best sequence of
future actions that could be taken given the dispatch action. Finally,
the algorithm averages the costs for each dispatch action across the
b generated incident chains, and selects the candidate action with
the minimum overall cost as the best action in the current state
(refer to step 10).

Algorithm 5: Generate State Tree
1 Function CreateStateTree (Parent Node n, Incident Chain c, Depth d,

Stochastic Horizon hs , Horizon h)
2 if d > horizon h then
3 Return n.util ;

4 else
5 A = SelectCandidateActions(n .state, d, hs ) ;
6 d ← d + 1 ;
7 Let ChildUtils← ∅ ;
8 foreach candidate action ai ∈ A do
9 Next state s′ ← UpdateState(n .state, a, c) ;

10 Let costi ← UtilityUpdate(s′, n .cost, d ) ;
11 Let x ← Node(s′, costi , d, t ) ;
12 ChildUtils← ChildUtils ∪ CreateStateTree(x, c, d, hs , h)

13 Return min (ChildUtils)

14 Function UtilityUpdate (State s, Parent Utility up , Depth d , time t )
15 Return up + (γ t )(t − up )/(d + 1)) ;
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Figure 2: State-Action Tree

If all the responders are busy when an incident occurs, the inci-
dent is placed in a waiting queue. As soon as a responder becomes
available, it is assigned to the incident at the front of the queue. This
continues until the queue is emptied, after which the algorithm
returns to using the heuristic policy above.

3.3 Predicting Environmental Factors
We now look at the final component of the proposed pipeline - in
order to capture the effect of environment, we must learn how the
environment evolves. We specifically focus our attention to traffic
conditions, that directly affect the movement of responders. While
information about current traffic conditions can be collected while
making decisions, it does not suffice for long-term planning. As
the dispatch algorithm builds the state-action tree into the future,
estimates of environmental variables are needed ahead of time,
thereby making it imperative to learn predictive models for such
variables. We therefore, design an algorithmic approach to predict
future traffic conditions, and highlight how it can be used with
an appropriate route-finding algorithm to predict travel times for
emergency responders.

Traffic Prediction Model: We model the urban area as a set
of road segments. For each segment, we assume that the dataset
contains an associated set of features, which include data about the
number of lanes, length of a segment, vehicular speed at different
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Table 2: Final Hyper-Parameter Choices

Number of Stations
(Fraction of Nashville Count)

26
(full)

13
(1/2)

6
(1/4)

3
(1/8)

Simulation Budget b 10 10 10 10
Candidate Action Factor ϵ 1.5 1.5 2.5 1.5
Stochastic Horizon hs 1 1 2 1
Discount Factor γ 0.9 0.9 0.99999 0.99999

times and so on. Using this data set and features we learn a function
over vehicular speed on a segment, conditional on the set of features
using a Long Short-Term Memory Neural Network (LSTM) [12]
model. The primary capability of such a framework is to model
long-term dependencies and determine the optimal time lag for time
series problems, which is especially desirable for traffic prediction
in the transportation domain.

Route Finding Algorithm: Armed with a model that can pre-
dict vehicular speed on road segments, we now look for an approach
to find the optimal route between two given points in the urban
area. Specifically, given a source, destination and departure time,
we seek to find the route with minimum expected travel time. To
this end, we design a router based on A∗ search with landmarks
(ALT ) [10]. ALT improves upon euclidean-based A∗ search [11]
by introducing landmarks to compute feasible potential functions
using the triangle inequality, thereby improving the computational
cost involved with such a procedure.

4 PERFORMANCE
4.1 Data and Methodology
Our evaluation uses traffic accident data obtained from the fire and
police departments of Nashville, TN, which has a population of ap-
proximately 700,000. We trained the generative survival model on
9345 incidents occurring between 1-1-2016 and 2-1-2017, and eval-
uated the algorithm on 1386 incidents occurring between 2-1-2017
and 4-1-2017. We gathered information about road segments and
their geographical locations using real-time traffic data collected
from HERE Traffic API [1] for Nashville area. The granularity of
this dataset lets us access real-time vehicular speed for all segments
in Nashville, which is sampled every minute throughout the day.

Caching the Router Results: While we recommend using a
router in real-time using the exact locations of responders and
incidents to make decisions, it is not feasible for our experiments.
Our preliminary analysis showed that each router request takes
approximately 0.2 seconds on average. In order to reduce the query
time needed to find vehicular speed between arbitrary locations, we
cached travel times between locations for different times of the day,
with time discretized every 30 minutes. Our experiments showed
that travel times in Nashville do not change significantly at this
interval (ranging from 2-7 mph). In order to actualize caching, we
used the same grid system described in section 2 for locations, with
any location in the city discretized to the centroid of it’s grid.

4.2 Experimental Setup
We begin by evaluating the streaming survival model separately by
comparing it to a batch-learning approach [21]. Then, we evaluate
the performance of the optimizers that are used for the router, and fi-
nally evaluate the dispatch algorithm. There are two considerations
that need to be made during the evaluation -

(a) (b)

(c) (d)

Figure 3: Distribution of the stations in each experiment overlaid on
an incident occurrence heatmap (the background shows the map of
Nashville, TN): (a) Actual (26) stations; (b) 13 stations; (c) 6 stations;
and, (d) 3 stations.

(1) Decreased Responder Availability: It is reasonable to as-
sume that the base policy of dispatching the closest responder
is correct most of the time and it is only rarely that non-greedy
actions are needed. We hypothesize that such situations occur
more frequently in practice as the strain on the system is greater:
i.e. the incident to responder ratio is higher. This happens since
responders attend not only to traffic accidents, but to a vari-
ety of other incidents (crimes for example). To take this into
account, we ran several experiments with different number of
responders: The full Nashville responder count of 26, and then
cutting it by a factor of half three times to simulate test-beds
with 13, 6, and 3 responders. The locations of the stations in
each of these test-beds compared to Nashville’s incident density
heatmap is shown in figure 3.

(2) Hyper-Parameters: We performed a hyper-parameter search
(refer to the appendix for a concise summary of the hyper-
parameters) for each of the test-beds based on the number of
stations. The parameters that gave the best response time sav-
ings were chosen for each set, shown in table 2. We note that
each hyper-parameter is important and strongly prescribe that
each should be tested and tuned carefully for a new environ-
ment and hardware the system is deployed on, as these values
may not be optimal for more constrained hardware, different
responder distributions, or different cities with other incident
arrival models.
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4.3 Results and Discussion
4.3.1 Streaming Survival Analysis. We learned the batch model
using the entire training data set and then, in the evaluation set,
we considered each week as a stream, and further split 80% of the
stream into a training set and 20% as the test set. We evaluated the
batch model as well as the streaming model on the test set of each of
the streams. Note that the batch model has access to all the data in
the streams in the form of features; the stream model, on the other
hand, gets updated after each data stream is received according to
Algorithm 1. We use the de-facto standard of comparing likelihoods
for evaluation, and present the results in in Figure 4. The streaming
model results in a significant increase in likelihood (we plot the
negative log likelihoods, hence lower is better) and convincingly
outperforms the batch model. We point out a minor caveat - the
updates can be used in practice only if the time taken to update the
model is small as compared to the latency that emergency respon-
ders can afford. To illustrate this, we present the computational
run-times of the stream model (for each stream) in Figure 5, and
observe that it usually takes less than 2 seconds for an update to
run, which justifies the usage of such models in practice.

In order to visually illustrate the benefit of a streaming model, we
look at a fabricated example, where we feed the incident prediction
models with data that is deviant from standard accident patterns.
We show these results as heatmaps in Figure 6. Note that a brighter
color corresponds to higher density of incidents. We see that the
batch model weakly learns the pattern since it has access to the
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Figure 6: Batch Model (a) vs Streaming Model (b): These predicted
heatmaps demonstrate that the streaming model adjusts more
quickly to new incident distributions. Starting with a survival
model learned from the training set, we fed themodels synthetic in-
cident data with incidents only occurring in the yellow boxed area,
whichmeans that themodel should learn that there is now a higher
incident likelihood in this area. The batch model picks up the new
pattern weakly, whereas the streaming model shows higher likeli-
hood in marked box.

updated dataset only in the form of features; the streaming model
on the other hand, identifies the current trend and predicts higher
density of incidents in the concerned region, thereby highlighting
the importance of such models in dynamic environments.

4.3.2 Predicting Travel Times. We briefly show results of our traffic
router before moving to the dispatch algorithm. We compared the
LSTM using three different optimizers (Adam [17], SGD [26], and
Adagrad [9]), and model performance was evaluated using five-
fold shuffled cross validation. Adam, SGD and Adagrad showed
Mean Absolute Errors of 5.47, 4.27 and 6.16 miles/hours respectively.
Therefore, we chose SGD for our router described in Section 3.3.
While evaluating the router on unseen data, the model with SGD
optimizer showed MAE of only 6.419 miles/hour.

4.3.3 Responder Dispatch. In table 3 we present the results of com-
paring the tuned algorithms for each stations configuration. We
compare our solution against the base policy (sending the nearest
responder) using the average response time reduction for incidents
impacted by the algorithm (i.e. incidents with different response
times than the base policy), the number of incidents impacted, and
the average computation time. The first observation is that the
computation times are all well within acceptable limits, as they
are near the human decision maker’s visual reaction times [30].
This demonstrates that the system overcomes the technical chal-
lenge of running and updating in real-time, and can integrate into
emergency response systems described in section 1.

We observe that when there is high responder coverage, demon-
strated by the experiment with 26 stations, the baseline policy is
nearly always used, with only 5 of the 1386 incidents serviced being
impacted by the policy. But as the number of responders decreases,
the baseline policy is sub-optimal for an increasing number of inci-
dents, capping at 150 with 3 stations. This shows that the system
can respond to changing responder availability, and that it is most
useful when the system is strained by high incident demand.

Last, the average time saved for impacted incidents is signifi-
cant, particularly for the experiments with 26 and 3 stations, as 30
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Figure 7: Incident response time difference between the base policy
and our solution. The left chart shows the distribution of response
time decreases for positively impacted incidents, while the right
chart shows increases for negatively impacted incidents. The dis-
tribution of time difference in minutes (x axis) is compared across
each experiment involving the various station counts (y axis).

seconds can be the difference between mortality and survival in
response situations [4]. However, these represent average savings,
and to dissect the performance of our approach, we plot the distribu-
tions of the response time savings for incidents that benefited from
our solution, and response time increases for negatively impacted
incidents in figure 7.

Comparing the box plots, the negatively impacted response times
are more dense near zero compared to the savings. This shows that
in general, the algorithm is not making large sacrifices for indi-
vidual incidents in comparison to the savings generated, which is
reinforced by the overall distribution of response times shown in
figure 8. The response times for the positively impacted incidents
are generally much improved; the median improvement is over
200 seconds for the experiment with 13 stations, for example. Un-
fortunately, however, there are some outliers with unacceptably
large sacrifices. For example, there is an incident in the experiment
with 13 stations that took over 200 additional seconds to respond
to compared to the base policy, which significantly increases the
potential mortality of that incident if it is severe. This raises the
question of integrating severity of incidents into the SMDP model,
and we plan to consider the integration of prioritization of incidents
in future work.
5 RELATED WORK
A Traffic Incident Management Decision Support System is an
information system that supports the process of preparing for, re-
sponding to, and managing the effects of traffic incidents. It must

Table 3: Performance of System Compared to Base Policy

Number of Stations
(Fraction of Nashville Count)

26
(full)

13
(1/2)

6
(1/4)

3
(1/8)

Average Response Time Savings for
Incidents Impacted by Policy (sec-
onds)

38.705 2.231 15.917 34.871

Number of Incidents Impacted by
Policy

5 14 99 150

Average Computation Time per In-
cident (seconds)

0.384 0.198 0.350 0.0343
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Figure 8: Response time distributions of the base policy compared to
our solution for each station experiment. The two are very similar
on average since most incidents have the same responder, demon-
strating that our solution is not worse than the base policy. The ben-
efits of our solution are clearwhen looking at the response times for
incidents with different dispatching decisions, as shown in figure 7.

support functions such as stationing emergency response resources,
dispatching to incidents in real time, and routing resources [34].
Most of these sub-problems have been studied in an orthogonal
manner. We look at prior work for each of the sub-problems. First,
we look at the problem of dispatching responders given a model of
incident arrival. Traditionally, problem has been looked at as a part
of the responder allocation problem [18, 20], in which an allocation
of responders to depots naturally creates an algorithm for dispatch.
The problem has also been studied as part of a joint optimization
problem that balances distribution of resources and response times
[31]. Finally, principled decision-theoretic models have also been
used to study the problem [14, 21], that look at learning a policy of
actions for all states the urban area can be in.

The second sub-problem is that of predicting incidents like traffic
accidents, crimes, fires and others, that need emergency response.
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The availability of such a mechanism is crucial to the first sub-
problem as decision-theoretic approaches can be aided by mecha-
nisms that can simulate the world in which such responders operate.
This specific problem has been widely studied in the past. One of
the most widely studied types of incidents is crime, and a variety
of approaches [15, 27] have been taken to tackle this problem. The
problem of predicting traffic accidents has also received significant
attention [3, 28]. Recently, freeway accidents have been predicted
using panel data analysis approach that predicts incidents based
on both time-varying and site-specific factors [25]. A survey of the
literature on crash prediction models is presented in [16], which
highlights the prevalence of Poisson distribution based models, and
multiple linear regression approaches. There are also approaches
that use clustering techniques to differentiate between incident
types [24]. Finally, there are generic approaches that can work with
multiple incident types [20, 22].

6 CONCLUSION
We designed a complete pipeline for the responder dispatch prob-
lem. We created an online incident prediction model that can con-
sume streaming data and efficiently update existing incident arrival
models. Then, we designed a framework for finding near-optimal
decisions of an SMDP by using Monte-Carlo Tree Search, that
bridges an important gap in literature by making such models com-
putationally tractable. To aid the decision-making algorithm, we
designed a Recurrent Neural Network architecture to learn and
predict traffic conditions in urban areas. Our experiments showed
significant improvements over prior work and existing strategies
in both incident prediction and responder dispatch. We would like
to highlight that while we treated incidents with equal severity, an
interesting direction of future work involves designing the SMDP
reward structure based on priorities, and directing responders based
on incident prediction models that take severity into effect.
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A APPENDIX
In order to ensure brevity in the main body of the paper, we move
some areas of discussion to the appendix. We extend the discussion
on all three components of the responder dispatch pipeline here,
and start with our algorithm for predicting incidents.

A.1 Data Sources

Table 4: Data Sources

Type Source Format Frequency Range
Traffic HERE Traffic Message

Channel
One Minute 10/16 -

Present
Accident Nashville

Fire Depart-
ment

JSON Manually 02/14 -
06/17

Weather Dark Sky JSON Five Minutes 03/16 -
Present

We collect static and real-time data from multiple data sources
in the city of Nashville, TN. Table 4 shows the different data used
in this work.

A.2 Real-Time Incident Prediction
While most of our approach towards learning a probability distri-
bution over inter-arrival time between incidents is described in
the main paper, we describe the features used to learn the survival
model here. Our primary choice of features is governed by prior
work and expert opinions, and we list the features used in our model
in Table 5.

Table 5: Features used in the incident prediction model.

Feature Description

Time of day Each day was divided into 6 equal
time zones with binary features for
each.

Weekend Binary features to consider whether
crime took place on a weekend or
not.

Season Binary features for winter, spring,
summer and fall seasons.

Mean
Temperature

Mean Temperature in a day

Rainfall Rainfall in a day

Past Incidents Separate variables considered for
each discrete crime grid represent-
ing the number of incidents in the
last two days, past week and past
month. We also looked at same in-
cident measures for neighbors of a
grid.

A.3 Dispatch Algorithm
The original problemMs , as formulated in section 3.2 is a Markov-
Decision Process which can be defined as

{S,A,pi j (a), t(i, j,a), ρ(i,a),α }

For any state si and policy π , we define expected discounted
total reward over an infinite horizon as

V π (si ) =
∞∑
n=0
E{e−αTn ρ(sn ,π (sn ))} (5)

where sn is the state at nth decision epoch, and Tn its duration.
The broad goal of solving a general MDP is to learn a policy that
maximizes the sum of expected rewards for any given state. We
look at costs instead of rewards, and seek to find actions for a given
state that minimizes the sum of expected costs.

The evolution of this system can be described by the following
four steps:

(1) Given a decision-making state si , an action a ∈ A is taken.
(2) This action results in the system receiving an instantaneous

reward (or incurring a cost) which is defined by the function
ρ(si ,a).

(3) Upon taking this action, the system transitions to state s j
according to the probability distribution pi j (a)

(4) The transitions are however, not instantaneous. The system
takes time t to make the transition, where t ∼ ti j .

Table 6: Algorithm Hyper-parameter Description

Candidate Action
Factor ϵ :

ϵ controls the number of responders considered
for each incident: any responder with response
time within ϵ times the greedy action’s response
time is considered. Therefore ϵ directly controls
the branching factor of the MCTS tree, and has the
most significant impact on computation time.

Simulation Budget
b :

b is the number of incident chains that are gen-
erated and evaluated from the incident model Θ.
Increasing b decreases the variance inherent when
sampling. Each chain of incidents can be processed
in parallel, so increasing b does not directly in-
crease computation time, assuming enough com-
puting resources are available.

Stochastic
Horizon hs :

hs is the number of predicted incidents to explore
in the future before defaulting to the greedy ac-
tion. Increasing hs also has a pronounced affect
on computation time. Each level of the search tree
that is expanded increases the number of states to
simulate.

Discount �Factor γ : γ is the discount applied to future predicted inci-
dent rewards, and is in the range (0,1). High values
of γ weight far future incidents more similarly to
those about to happen, while low values give much
more weight to incidents that are happening soon.
Unlike the other hyper-parameters, varying γ has
no effect on computation time, a value that mini-
mizes response times for each environment should
be chosen.

The first step (and the most general approach) in solving such a
problem is to convert this into a Discrete-Time Markovian process.
However, even after discretization, it is particularly challenging to
solve this problem since - a) the state-space is practically intractable,
and b) the state transition probabilities pi j (a) are unknown. In order
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Table 8: LSTM Hyperparameter tuning table

Optimizer MAE

Adam 5.47

SGD 4.27

Adagrad 6.16

0 10 20 30
Response Time (Minutes)

Real Response Time Distribution

Figure 9: Response time distribution for EMS response for the
Nashville Fire Department from 01-02-2016 to 01-02-2017.

Table 7: Summary and dimension of implemented features for traf-
fic prediction model.

Feature Dim. Description

Hour of day, Day
of week

2 Hour of the day and Day of week
used to sample speed data

Length 1 Length of the street segment, col-
lected from OpenStreetMap

Freeflow speed 1 Freeflow speed on the street seg-
ment, collected from HERE API.
This dataset is private and is col-
lected by our research group

Number of lanes 1 Number of lanes on the street
segment, collected from Open-
StreetMap

TAZ 741 Binary indication of Traffic Anal-
ysis Zone (TAZ) corresponding to
this feature vector, collected from
US Census Bureau. A TAZ can con-
tain multiple network segments.

Realtime speed 1 The realtime speed value collected
from HERE API. This dataset is pri-
vate and is collected by our research
group

to alleviate these issues, SimTrans uses canonical policy iteration
with an added computational step. At each step of policy itera-
tion, it uses a simulator to estimate values of states it encounters;
this provides crucial data about how state transitions occur in the
system, which is then used to learn the distribution pi j (a).

While policy iteration is guaranteed to converge to the optimal
policy, this approach has major drawbacks. First, due to the size
of the state-space, even on fairly powerful computing systems, it
takes weeks to learn the optimal policy. Finding such a policy with
the inclusion of environment variables would be computationally
infeasible. Secondly, and partly as a consequence of the first issue,
SimTrans is simply not suited for for dynamic environments: if a
single responder breaks down, traffic conditions change, or incident
models evolve, the policy must be relearned from scratch, which
takes time that is incomparable to the latency that such emergency
responder systems can afford.

In order to alleviate these concerns, the paper described an al-
gorithm based on Monte-Carlo Tree Search, that looks to learn a
near-optimal action for a given state only, instead of focussing on
learning a policy over the entire state space. We describe the algo-
rithm in the main paper, but present a summary of the exogenous
parameters here in the appendix, for easy reference.

A.4 Traffic and Congestion Prediction
As mentioned in the main paper, we assume that the entire urban
area under consideration is divided into a set of road segments V
and every vi ∈ V has a set of features associated with it.

For building the search tree for the dispatching approach de-
scribed in the section 3.2, we need to accurately estimate the time it
takes for a responder to get to an incident. In order to facilitate this,
we developed a predictive model to estimate speed on each road
segment for a given time interval. The model needs to be contextu-
alized with features that affect speed, and from our experience and
prior work, we chose hour of day, day of week, number of lanes
on the road, and the traffic analysis zone as our principal features.
These features are described in Table 7.

To find the best optimizer for our LSTM model, we trained it
with three different optimizers– Adam [17], SGD [26], Adagrad [9]
and model performance was evaluated using five-fold shuffled cross
validation. Table 8 shows Mean absolute error (MAE) in miles/hour
units for different optimizers. The result shows that SGD performs
better with our LSTM model than other optimizers, hence it is
chosen for our route finding algorithm. In test dataset, LSTMmodel
with SGD optimizer has MAE of 6.419 miles/hour. There are
other state-of-the-art models for estimating traffic speeds [19, 32],
however, we have not explored them in this paper. Our system
design is modular and other algorithms can easily fit in.

A.5 Real Incident Response Times
Figure 9 shows the Nashville Fire Department’s actual response
times to incidents for one year of data from February 2016 to Feb-
ruary 2017.
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