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Abstract—Edge and Fog computing paradigms are used to
process big data generated by the increasing number of IoT
devices. These paradigms have enabled cities to become smarter
in various aspects via real-time data-driven applications. While
these have addressed some flaws of cloud computing some
challenges remain particularly in terms of privacy and security.
We create a testbed based on a distributed processing platform
called the Information flow of Things (IFoT) middleware. We
briefly describe a decentralized traffic speed query and routing
service implemented on this framework testbed. We configure the
testbed to test counter measure systems that aim to address the
security challenges faced by prior paradigms. Using this testbed,
we investigate a novel decentralized anomaly detection approach
for time-sensitive distributed smart transportation systems.

Index Terms—Middleware, Distributed computing, Trans-
portation

I. INTRODUCTION

Internet of Things (IoT) are physically inter-connected
devices embedded with software, sensors and network connec-
tivity that enables them to both share and access information.
In today’s world, the number of IoT devices is expected to
reach 50 billion by 2023 [1] and radically transform aspects
of daily life such as health care and transportation systems. In
order to manage IoT networks and the large amounts of data
they produce, a combination of cloud, edge and fog computing
paradigms are increasingly being studied and leveraged.

Quality-of-Service (QoS) and Security are two key chal-
lenges in large decentralized IoT networks. QoS deals with the
ability to provide services within an acceptable time frame.
Security deals with resilience to unwanted interference and
monitoring. Recently, IoT systems have been targeted due
to (1) the sensitive information they handle, and (2) their
use in launching large-scale Distributed Denial of Service
(DDoS) attacks [2]. Compromised devices affect the system’s
QoS as resources like network bandwidth are diverted towards
unwanted tasks. Detecting these kinds of attacks is therefore
important.

Traditional networks use Intrusion Detection Systems (IDS)
to guard against such attacks. IDS’s deploy special devices
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at key points in the network to collect and analyze network
traffic which can then be used to detect attacks [3]. Similar
approaches have already been proposed and implemented in
IoT, aiming to detect different kinds of security threats.

IDS’s provide network layer security to an IoT system,
allowing middleware to focus on authentication and autho-
rization at the application layer. Middleware are often flexible
enough to provide additional data that can also help in intru-
sion detection. These metadata can be passed alongside regular
information, at the cost of some network overhead. This cannot
be quantified well without an actual network in place. Thus,
an emulation testbed is necessary to study the effects of such
security measures.

Such a testbed can potentially be used to study the effects
of different attacks (e.g. DoS attacks, botnet infection, etc.)
on the network and its QoS. We investigate a novel decentral-
ized anomaly detection approach for time-sensitive distributed
smart transportation systems with a focus on data-integrity
attacks and implement it in a testbed. Our method is based
on related work in power systems [4], in which we extend
in two distinctive ways. First, we extend the work for time
sensitive applications. Secondly, we implement this approach
in a decentralized network architecture.

The testbed would also need to be built into an IoT
middleware platform which is capable of handling potentially
large amounts of data in near real-time. Said platform would
also need to be edge-based to minimize data transfer time.
Combining an edge-based platform with such a testbed would
be a novel approach in this case.

This paper describes the Information Flow of Things (IFoT)
[5] framework and develops a network delay emulation testbed
based on the IFoT middleware. The end goal is to be able to
test proposed security countermeasures for the issues detailed
above. A smart traffic routing service is deployed on the
platform to test its basic distributed processing capabilities,
and then data is obtained from the integrated emulation testbed
to quantify the overall delay introduced to the system.



II. RELATED WORK
A. Edge, Fog, Cloud Computing

Due to the large amount of data produced by billions of IoT
devices, traditional centralized cloud servers will eventually
face the problem of non-negligible delays when providing
IoT-related services. Edge [6] and Fog [7] computing are
approaches to mitigating the reduced quality and increased
service costs of cloud computing.

Edge and fog computing are both “edge-heavy computing”
paradigms where data processing is executed on components
in or near the data source. However, the demerit of these
approaches is the investment needed to replace such network
constituents like Information-Centric Networks (ICNs). In this
paper we propose a more practical solution which extends edge
and fog computing by delegating the processing to the devices
at the source in a distributed manner.

B. Smart Mobility

These computing paradigms have been leveraged to process
and visualize data from sources such as road side units (RSU)
and Vehicular Social Networks [8] to provide services such
as Intelligent Transportation Systems (ITS) already present
in Japan [9]. These are able to provide users with real-time
wide-area traffic congestion information. One such application,
SpeedPro [10], uses GPS location data fused with historical
data to provide more reliable urban traffic speed estimates.

While Edge and Fog computing are promising for these
applications, a number of challenges still exist that must be
addressed. Eisele et al. [11] state that one challenge is to be
able to provide a stable application environment despite the
dynamism, heterogeneity, and increased failure potential of
computing resources at the “edge” away from data centers.

Security and privacy [12] are also points of concern. Due
to their reliance on spatio-temporal data, measures need to be
taken in order to preserve data integrity and to detect anomalies
within such systems [13]. A large focus of research in this
field is on implementation of sensor systems for transportation,
communication and infrastructure monitoring [14], [15], [16],
[17], [11]. Traditional anomaly detection in this context is
based on classification, statistical, state based, clustering or
information theory [18]. Classification methods are usually
based on Support Vector Machines (SVM), Bayesian Models,
Gaussian Processes or Neural Networks [19].

C. Information Flow of Things

Information Flow of Things (IFoT) is a proposed framework
aimed towards processing massive IoT data streams in real-
time manner by edge servers and IoT devices [5]. It is
designed to provide delay-aware services through mechanisms
such as in-situ distributed computing and data aggregation.
It aims to have a better cost-performance index than cloud-
based and edge-based approaches [20]. The goal is to achieve
an improved satisfaction level for delay-sensitive applications
(such as smart city or smart mobility) while being able to
aggregate user data in a secure and timely manner with a
certain level of robustness against privacy and security threats.
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Fig. 1. IFoT Framework Architecture

III. IN-S1ITU DISTRIBUTED PROCESSING PLATFORM

To satisfy the requirements of the IFoT framework, we are
developing a middleware platform [20] which allows services
to be created by Service Creators. These services utilize the
spatio-temporal data generated by sensors and processes it into
useful information. The middleware system is comprised of a
Resource Broker and Service Brokers described in [20]. Only
Service Workers, which are new from the previous literature,
which execute tasks are created and assigned to each Service
Broker is discussed.

A. Service Worker (SW)

Service Workers are clusters of nodes that are able to per-
form operations on sensor data, and handle the computational
tasks required to provide services to users. Each node executes
tasks locally adhering to the shared-nothing architecture. To
meet certain quality of service agreements, more nodes can
be added to the cluster in order to scale up performance.

These are supported by three mechanisms: Environmental
Database, Messaging Protocols and Task Graphs.

Environmental Database: store the data generated by sen-
sors. These are time series DBs stored in the SWs.

Task Graph: are recipes that dictate how services are dis-
tributed and handled by the SWs. These contain instructions
on how the SWs should collect, process and aggregate the
sensor data for a particular service. These are generated by
the SB taking into account service level agreements and QoS
requirements to maximize the use of available nodes.

Publish-Subscribe-based Messaging Protocol (MQTT): used
to facilitate communication between devices. Task graphs,
heartbeat monitoring, and data for aggregation are sent via
MQTT to the participating nodes (such as between SWs and
SBs, or between SBs and RBs).

IV. SMART MOBILITY SERVICE
In this section, we present a service that takes advantage of
the IFoT middleware platform.
A. Smart Mobility Service

We assume that smart cities will feature roads and highways
equipped with road-side units (RSUs). These RSUs receive
information from vehicles such as speed. They are assumed
to be devices with computational resources equal to those of
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Raspberry Pis or similar, and have their own wired network
infrastructure allowing communication with each other.

RSUs connected to the IFoT middleware will host a smart
mobility service that utilizes gathered data and publishes
information about accidents, hazards, detours to its users. The
service will also be able to respond to queries from users
regarding the best routes for travel given the current situation.

Due to the spatio-temporal data being collected and pro-
cessed by this service, it takes advantage of the properties of
the IFoT framework for distributed computing. The middle-
ware also allows security measures to be easily implemented
within the service.

Other use cases While the service described above focuses
on smart mobility, the infrastructure provided by the middle-
ware can take advantage of any spatio-temporally distributed
data. Distributed processing in this case decreases latency lead-
ing to improved QoS. The middleware also provides methods
for introducing new services using various task graphs.

B. Details of the Task Graph

Task graphs dictate how services handle a user query, and
are generated by the SB based on a particular service. Fig. 2
shows the task graph for the smart mobility service.

For this service, the task graph selects which RSUs will
participate in the processing of the query. Selected RSUs
would vary depending on the selected routes, desired QoS,
delay requirements and the current load of RSUs. Afterwards,
the tasks are distributed and executed.

1) Collecting Task: The collecting RSU will query ve-
hicular traffic data from other RSUs specified in the task’s
parameters. Once done, collected data will be distributed to
other RSUs for processing.

2) Processing Task: This includes all distributed processing
that must be done on the data to produce the required result.
In the case of smart mobility, traffic data will be checked for
anomalies and then processed to generate route contexts (e.g.
average speed information over a time-window, etc.) and other
information for the user.

3) Aggregation Task: Once all RSUs have finished process-
ing, their results will be aggregated by one RSU and returned
to the SB for visualization.

C. Resiliency

In terms of resiliency, we are primarily concerned with falsi-
fied data from orchestrated data-integrity attacks and hardware
faults at RSUs and sensors. We define such attacks as scenarios
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where an attacker can compromise a subset of sensors or RSUs
by manipulating sensor readings. At each RSU, an anomaly
detection check is run at a specified time window using a
statistical means detection method based on Bhattacharjee et
al.’s approach to data falsification in power grids [4]. This
work extends their approach in two distinctive ways.

First, we extend their work to time-sensitive applications. In
the case of transportation, such an attack can have cascading
effects on traffic behavior throughout the system. Since these
effects are rapid, the time between the start of the attack
and detection is critical. We address this by using anomaly
detection time windows ranging from 15 to 30 minutes.
This method uses historical data to estimate the ratio of the
harmonic mean to the arithmetic mean, which we refer to as
the Q ratio. It was found on average that this process takes
between one to two time windows to detect an attack.

Secondly, their work focuses on large-scale data. We extend
this analysis to distributed transportation networks in which
anomaly detection is run independently at each RSU and
applied in the IFoT middleware. Using the testbed, we are
able to quickly simulate and investigate the effects of various
attacks on smart transportation networks, as well as the effects
of the anomaly detection on network performance.

Hardware faults at sensors result in missing data readings
at each time window, effectively simulating a large deductive
attack. Thus, this model inherently extends to system failures
in addition to data-integrity attacks.

As shown in Fig. 3, this metric proves to be stable over time,
and responds quickly to simulated data-integrity attacks. This
stability allows for easy integration with efficient sequential
on-line anomaly detection methods as well as historical thresh-
old methods. As anomaly detection done in this way does
not depend on the other RSUs in the network, the detection
process can be distributed throughout the network.

This approach provides numerous benefits over traditional
anomaly detection, including simplified deployment over de-
centralized IoT networks. Additionally, the statistical means
approach is computationally efficient compared to traditional
anomaly detection methods such as Support Vector Machines



Fig. 4. RSU Locations - Grid Layout

(SVM), Bayesian Models, Gaussian Processes and Neural
networks which require large scale, accurate models of system
behavior and significant processing power. Statistical methods
such as this have shown to be a more computationally efficient
alternative [4]. This is particularly important for deployment
on resource-constrained IFoT devices.

D. RSU Location Considerations

An important component of designing a smart city [FoT
framework is in the placement of RSUs throughout the trans-
portation network. In this sense, the number of RSUs available
is a resource constraint in designing smart transportation grids.
The major challenge is therefore determining the optimal
spatial layout of these devices.

Optimal can be defined in any number of ways depending on
device constraints and system goals. By designing a distributed
testbed, optimal parameters such as delay and security can
be compared between various system configurations through
simulation. This reduces network design time and provides
analytic feedback regarding expected system performance.

In the context of the transportation example, we focus on
RSU layout in terms of network transmission delay and data
security. We consider the case where each RSU is responsible
for a subset of sensors streaming speed data into it. Thus, the
RSU location problem is how to efficiently map these sensors
to RSUs. The network layout is constrained by the number
of RSUs available and the processing power of each device,
corresponding to the number of sensors it can feasibly handle.

As a baseline RSU layout configuration we divide the
city into 8x8 grids, resulting in 64 RSUs as shown in Fig.
4. A detailed investigation of delay performance for this
configuration is provided in a later section.

Optimal RSU configurations can also be framed in terms
of data-integrity resiliency. The effectiveness of the anomaly
detection discussed in Section IV-C increases for RSU zones
consisting of sensors with traffic patterns similar and de-
pendent on each other. The grid layout provides a good
proxy for grouping dependent sensors together. We look to
improve this by providing a constrained hierarchical clustering
approach in which sensors are grouped together by historical
traffic pattern. To maintain network performance for data
transmission between sensors and RSUs, we constrain the
clustering procedure geo-spatially by restricting the maximum
distance sensors can be from an RSU. Additionally we set a

maximum number of sensors allowed per RSU in proportion
to RSU processing capability.

V. IMPLEMENTATION

In this section we discuss how the platform is implemented
on a testbed and how a service is deployed. To realize a
testbed based on this architecture, it must meet the following
requirements: (1) should be easy to deploy on heterogeneous
IoT devices and should able to deal with heterogeneous
data streams, (2) should have an area-by-area aggregation
mechanism for spatio-temporal data streams, and (3) should be
able to provide results in a timely manner, taking into account
communication and processing delay between devices.

A. Testbed Implementation

As the platform should be easy to deploy on heterogeneous
devices, it was initially implemented on Raspberry Pis with
Debian using Docker for ease-of-deployment.

We developed a testbed to implement and test the mid-
dleware using various configurations. The platform could be
deployed on the testbed to mimic a large number of nodes,
simulated on a single 2019 Mac mini with 6-core 3.0 GHz i5
processor and 64GB of RAM. Each SB and SW is virtualized
as a Docker service. To simulate constrained computation
resources like Raspberry Pis, each service is assigned a limited
amount of CPU and memory via Docker.

B. Service Simulation

Each RSU is assigned to a node and given unique parame-
ters to simulate real world deployment scenarios. Each one is
given location (latitude and longitude) information as well as
a unique ID for communication between RSUs. Each one also
has an envDB that contains data received from the vehicles
travelling along the road.

In our simulation, we divide a 80km? map of Nashville,
TN into 8x8 grids, where each vertex corresponds to an RSU
collecting data from vehicles in specific sections of the road
network seen in Fig. 4. To evaluate the system, each RSU
is set to behave as either a SW or normal Worker. RSUs are
grouped into clusters with a single SW and one or more Worker
nodes. Data for the simulation uses the 2014 Nashville city
road records [21] which collected speed data from vehicles
travelling the roads. These roads contain sensors placed at
specific traffic message channel (TMC) points which make up
a segment of a road. A combination of speed data, TMC points
and optimal RSU locations are used to determine which RSU
will store which road’s data in their envDB.

Connections between RSUs are assumed to use wired Eth-
ernet connection. In order to simulate the real world work flow
of this service, users are able to query the platform through
the Service Broker’s web interface.

It is assumed that the SB determines the route the system
will select in response to the query of the user. The system
represents the variations of these routes as the variations of
the number of clusters and workers within the cluster. Once
the user has successfully sent a query to the SB, the execution



Fig. 5. Injection Points for Delay Components in Simplified System

timer starts and the task graph for the service is sent to these
clusters.

C. Delay Emulation

Since the RSUs are simulated, data transfer delays are
obtained via synthetic calculations and injected wherever such
communications happen. For instance, after the collection task,
the RSU handling it passes off results to other RSUs for
processing. A short delay is injected here through a sleep
function right before data is sent to each processing RSU.
Since the simulated RSUs are also doing real processing on
the data, delays due to processing will be left as is.

dsposw = dagw +dcr (D

Execution time measurement starts after the user query
arrives at the SB. The SB publishes a message to the cluster
gateway which then routes that message to the SW. This
introduces a delay given by Eq. 1, where dgw is the delay
between the SB and the cluster gateway and dcy, is the delay
between the cluster gateway and any one of the cluster’s RSUs.

dW%W = 2ch (2)

The SW then performs the task designated for it on the
received task graph. Usually, it is given the collection task
and the result - along with the task graph - is passed on to
other RSUs. These then proceed to perform their designated
tasks, using the results passed from the previous step. Passing
data between RSUs introduces a delay as shown in Eq. 2.

dw_sp = daw +dcr 3)

Once all RSUs have finished processing, resulting data must
be aggregated back at the SB. The delay for this is given by
Eq. 3. Fig. 5 summarizes where these delay components are
injected in a simplified system.

dcomp = dtrans + dprop 4

Each delay component is broken down further into relevant
parameters as shown in Eq. 4, where they are defined as:

dirans = data length/bit rate
dprop = link length/propagation rate

(&)

The link length, bit rate, and propagation rate can be
configured for the simulation, while data length is based on
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Fig. 6. Different network configurations for the system

the actual quantity of data sent during run-time. For this
simulation, the values used are shown in Egs. 6 and 7.

bit rate = 2Mbps

daw : link length = 17.6km (6)
propagation rate = 299.792 x 10%m/sec
bit rate = 2Mbps

dor @ link length = 8.0km @)

propagation rate = 299.792 x 105m/sec

VI. EVALUATION

In order to evaluate the system’s utility, we use it to measure
the overall execution time of a service implemented over [FoT.
Overall execution times of tasks processed on a distributed
network can vary depending on the network architecture. In
this simulation, the network can be configured in multiple
ways as shown in Fig. 6. For example, with 8 total RSUs,
Fig. 6a shows how we can split RSUs into 4 clusters, each
having 1 RSU as the SW and 1 dedicated Worker. Fig. 6b
shows how the same network can be configured as 2 clusters,
each with 1 SW, and 3 dedicated Workers.

For example, the testbed can be used to identify which
configuration will lead to the least overall execution time.
Using a Command Line Interface (CLI), this experiment was
repeated with varying combinations of clusters and workers
within a cluster. Fig. 7 shows the total time for the different
combinations of clusters and workers. X axis represents the
different combinations with the following naming convention:
case_AAxBB_nodes where AA is the number of workers in a
cluster and BB is the number of clusters in the system.

As these results show, the testbed allows us to draw pre-
liminary conclusions about how changing the configuration of
the simulated network affects execution speed.

VII. CONCLUSION

Edge and Fog computing paradigms and IoT provide new
opportunities for distributed processing and data analytics.
However these paradigms still face challenges especially with
respect to security and privacy.

In this paper we designed and developed a middleware
platform that meet IFoT framework requirements. Compared
to the current mechanisms, this middleware utilizes the com-
putational capabilities of each node directly. This allows for
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high availability and low latency communication. In addition,
this middleware is suited for services that deal with spatio-
temporal data. We also developed a testbed that is highly
configurable and easy to deploy. A smart transportation service
was developed and deployed on the testbed to demonstrate
how the middleware deals with spatio-temporal data on mul-
tiple nodes. As an example, we show that the testbed can be
used to analyze how the middleware can meet certain QoS
level requirements by configuring its network architecture.
Experimental security measures on top of the middleware
could be evaluated in a similar way.
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