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Abstract—Network recovery is one of the greatest concerns
for Mobile Network Operators (MNOs) and first responders
during large-scale natural disasters such as earthquakes. Wire-
less multi-hop relaying has been a promising technique to
quickly and efficiently recover the network coverage in these
scenarios. In this paper, we address the relay placement problem
in such multi-hop networks that how to optimally deploy limited
relays to extend network coverage as much as possible to most
of the population after a disaster occurs. Given the hardness
of this problem, our proposed solution is constructed in two
steps. In specific, we first determine the Steiner locations, where
the relays could be shared by more than two nodes. Then, we
provide an integer programming based formulation and solve
it by exploring the similarity of existing algorithm of classic
Prize-Collecting Steiner Tree (PCST) problem. To evaluate the
proposed solution extensively, we present numerical results
on both real-world and random scenarios, which confirm the
performance of proposed solution outperforms the existing one.

I. INTRODUCTION

During natural disasters, timely and smooth communica-
tion between governments, communities and humanitarian
organizations is essential for disaster relief [1]. Mobile com-
munications is supposed to play an important role in such
disaster situations as it has become the most convenient
and common way for communication in our modern life.
However, because of damages on the telecommunication
infrastructures during disasters, the disruption of mobile net-
works may spread to a large geographical area and continued
for a relatively long period of time, further magnifying chaos
and hampering the rescue and disaster recovery processes in
the affected area.

Since the repair of the damaged network infrastructure
usually takes weeks or even months, fast and efficient emer-
gency network recovery technologies are urgently needed
in the first several days, which are the most critical time
period for disaster relief. To this end, multi-hop wireless
relaying has been proposed as an appealing technique to deal
with disruption of communications during disasters for fast
network recovery without or with less network infrastructure
involved.

The studies [2]–[4] consider using users’ mobile devices
to build a multi-hop wireless network, which can rapidly
extend the network coverage to a large disaster-affected

area without network infrastructure. However, they do not
consider a practical scenario that there are naturally occurring
groups of survivors gathered at shelters, or evacuation sites
in the aftermath of a disaster [5]. For example, in the most
recent case of 2016 Kumamoto earthquake, it was reported
that over 100,000 people had to evacuate away from their
homes to different shelter facilities, e.g. local community
centers or schools [6]. The shelters are supposed to be safe in
terms of food, water and other necessities to support living
for a certain time period but large part of them probably
get disconnected due to the aforementioned damages of
communication infrastructure. The study [7] has investigated
the problem of multi-hop relaying in such a scenario at
central Tokyo area, and demonstrates that a multi-hop relay
network that purely consists of user mobile devices is not
efficient to recovery the network coverage to those shelters.
Based on the above key observation, it is difficult to have a
reliable network connection to interconnect shelters purely
rely on user devices due to sparse distribution and high
mobility of population outside shelters.

The study [7] also identified that the performance can
be greatly improved if some dedicated fixed relays can be
deployed between shelters and still-alive base stations (BSs).
In fact, from the point of view of mobile network operators
(MNOs), it is quite promising to build a fast disaster recovery
network based on a similar concept of multi-hop relaying. In
study [8], a prototype of Movable and Deployable Resource
Unit (MDRU) is experimented to quickly re-construct the net-
work infrastructure in a disaster area with a vehicle-mounted
base station and many dedicated low-cost wireless relays. The
field test in this study shows that it can provide satisfying
network coverage to a large area for a certain period of time.
In addition, this technology can be complemented with user
device based multi-hop relaying technique in static and high
populated areas such as shelters. Therefore, in the scenario
of wireless multi-hop based network disaster recovery, a
naturally raised challenge is, how to properly deploy a limited
number of relays to recover the mobile network services to
the shelters where most of the people are gathered.

Relay placement has been an active research topic in
wireless multi-hop networking in the past few decades. A
lot of researches have been done in the context of wireless



sensor networks [9]–[13]. The study [9] surveys various
node placement problems as effective optimization means
in designing wireless sensor networks (WSNs) for achieving
the desired performance goals, such as throughput, latency,
and data integrity while coping with the computation, energy
and communication constraints. The study [10] investigates
the minimal relay node placement when sensor and relay
nodes have different communication ranges. The study [11]
further investigates the fault-tolerant relay node placement to
maintain certain coverage with minimal relay nodes. There
are also a few other studies on relay node placement for
performance enhancement in mobile networks. For example,
the study [14] investigates the relay placement problem that
deploys the minimum number of relays to meet system
requirements such as user data rate requests, signal quality
and network topology. However, all these relay placement
solutions are optimized for the specific requirements of their
focused scenarios, which can not be easily applied to the
scenario of network disaster recovery.

In this paper, we focus on the relay placement problem
for the wireless multi-hop based network disaster recov-
ery, where the mobile network infrastructure (i.e. BSs) are
partially damaged. The placement of limited number of
relays can be optimized to extend the coverage of still-
alive BSs to shelters in term of maximizing total recovered
population. In our previous work [15], we formulated this
problem directly as a Prize-Collecting Steiner Tree (PCST)
problem on a complete graph consisting of BSs and shelters,
and an approximation solution is thus adopted to achieve
population-aware cost-efficient network recovery. However,
in the previous work, the relays are only considered to be
placed on the straight lines connecting shelters or BSs, which
does not consider the sharing of relays for more nodes at any
locations in order to reduce the number of required relays.
In addition, PCST problem does not explicitly consider the
relay constraint, it is not clear in previous work that how to
properly set parameters for the bisection search processes,
which would lead to a lower performance and higher time
complexity. In order to overcome these shortcomings, we
provide a clear and complete formulation of this problem
based on an improved graph model in this paper. The
contributions are summarized as follows.

• We formulate the problem based on the graph model
incorporating the potential shared relay locations, which
gives us a better solution than previous work.

• We present a clear and complete formulation of the
studied problem, which provides more insight on how to
properly determined the parameters for bisection search
and thus maintains an acceptable running time.

• We evaluate our solution both in the real-world and
random scenarios, which provides comprehensive results
on the performance of proposed solution.

The remainder of this paper is organized as follows. We
introduce the considered scenario of multi-hop based network
disaster recovery and define the relay placement problem in
Section II. In Section III, an improved solution is presented
by incorporating shared relays and properly selected param-

Fig. 1: A wireless multi-hop based network disaster recovery.

eters. Simulation results are provided in Section IV, which
is followed by the conclusion of this study in Section V.

II. NETWORK MODEL AND PROBLEM STATEMENT

In this section, we first introduce the considered scenario of
wireless multi-hop based network disaster recovery. Based on
it, we then define the relay placement problem accordingly.

A. Wireless Multi-hop Based Network Disaster Recovery

In a post-disaster scenario, there are many geographically
distributed shelters such as schools and community facilities,
where people are tend to be gathered after the disaster occurs,
and some surviving BSs which are still in service but can
only cover a few of shelters in the whole affected area. In
this case, the MNOs or first responders try to deploy limited
number of mobile base stations and relays to extend the
network coverage as much as possible to those disconnected
people gathered at shelters, which is illustrated in Fig. 1.
It is also observed that the shelters vary dramatically in
terms of population capacity and density. For instance, in
Tokyo area, the capacity vary from 18 people to 43,900
people, and the distance between two nearest shelters ranges
from 50m to 26, 000m [16]. Note that the mobile base
stations are very limited in number, and mostly deployed
near the sites of damaged BSs for the sake of facilities
reuse, thus we neglect the placement issue of mobile BSs
in this paper. Without loss of generality, the surviving BSs
and mobile BSs are homogeneously interpreted as still-alive
BSs in the considered network disaster recovery scenario.
Contrary to mobile BSs, the relays are low-cost and with
much smaller size, which can be deployed arbitrarily. For
instance, in [8], a movable Wi-Fi relay module is just as
small as a suitcase. Therefore, in such scenario, the relay
placement can be optimized to maximize the population
coverage. We denote the set of disconnected shelters as
S = {s1, s2, · · · , sN}, and their corresponding population
capacity as P = {p1, p2, · · · , pN}, where N = |S|. The set
of still-alive BSs is denoted as B = {b1, b2, · · · , bM}, where
M = |B|. According to the field test in [8], we consider all
links from/to BSs are using cellular radio access interface,
whose communication range is denoted as D, while the rest



links, i.e. relay to relay and relay to shelter, are all using
short range radio such as WiFi, whose communication range
is denoted as d, where D > d.

B. Problem Statement

Previous studies [7], [17] compares different relay place-
ment strategies that minimize the number of relays while
cover all shelters. However, in practice, the MNOs or first
responders are usually face a problem that how to recover
the service coverage as much as possible with limited relays
resources. Therefore, the accommodated population of shel-
ters and budget of relays should be taken into account in the
relay placement problem, which are largely neglected in the
previous studies. We attempt to address these issues in this
research, and we formally define our problem as follows:

Definition 1. (Population-Aware Relay Placement (PARP)
Problem) Given a multi-hop disaster recovery network with
a set B of still-alive BSs, a set S of disconnected shelters
with corresponding population P . The communication ranges
of BS and the other nodes are restricted within D and d,
respectively. A set R of K relay nodes is placed to connect
the shelters to BSs. The goal of this problem is to find an
optimal placement of relays, i.e. set R, such that the total
population of connected shelters is maximized.

III. SOLUTION FOR PARP PROBLEM

To find an optimal solution of PARP problem is not
straightforward. Hence, we consider a similar problem, i.e.
Single-Tiered Relay Placement with BSs (RPwB), which is
first defined in the context of sensor networks [13]. In the
RPwB problem, there are a set of sensors, a set of BSs,
and the communication ranges of sensor and relay are within
certain distances respectively. It seeks to connect all the
sensors such that the required relays are minimized. Let R∗opt
be the optimal solution of PRwB problem, we can easily see
that R∗opt is always a feasible solution for PARP problem
when K ≥

∣∣R∗opt∣∣. This implies that the RPwB problem
is actually a special case of PARP problem. Therefore, our
PARP problem is NP-hard as the RPwB problem is known
to be NP-hard. Given the hardness of the problem, it is
not practical to find a polynomial time optimal solution for
PARP problem unless P = NP [18]. For the PARP problem,
the biggest challenge is the placement of a relay that could
connect three or more nodes. We call such kind of locations
as Steiner locations. Therefore, to solve the PARP problem
efficiently, we propose a solution with two steps. We firstly
try to determine the Steiner locations in advance. Then, based
on a graph constructed with such Steiner locations, we focus
on placing limited number of relays to connect shelters that
maximizes the total population coverage. We explain each
step in detail in the following subsections.

A. Step I: Steiner Locations Determination

In this step, we consider to determine the Steiner locations,
at which a single relay will be more likely deployed to
connect three or more nodes. In fact, we could directly
use the algorithm for RPwB problem to find these possible

Fig. 2: An illustrative example of constructed disk graph.

Steiner locations as well as other relay locations. How-
ever, fixing all potential relay locations could result in a
lower performance in the final results. The basic idea of
the algorithm determining Steiner locations is based on the
following observations. First, to connect an isolated shelter,
it is obvious that a relay needs to be deployed on a range
disk centered at the shelter with radius d. Second, for any
two or more nodes, if their range disks all intersect with
each other, then they can be connected by one relay in
the intersected area. We denote the set of these nodes as
a cluster, and a shelter could be belonging to multiple
clusters. Third, there is no extra benefit for a shelter to be
connected with multiple BSs in terms of reducing number
of relays and maximizing connected shelters, which means
the optimal solution should be multiple independent trees
that are rooted at each BS. Based on above observations, to
determine the Steiner locations, we can construct a disk graph
Gd = (Vd, Ed), where vertices are consists of all shelters and
a virtual BS such that Vd = S

⋃
{b}, where all still-alive BSs

are equivalently treated as one virtual BS b according to the
third observation. As a result, the Euclidean distance from
a shelter to the virtual BS corresponds to the distance to its
nearest BS. An edge between any two vertices u, v ∈ V only
exists if their range disks are intersect with each other and
u, v are both outside of the disk intersected area as shown in
Fig. 2. In other words, an edge exists if any two shelters need
only one relay placed at the intersected area for connection.
Based on the above analysis, we present a simple algorithm
to determine the Steiner locations in Algorithm 1.

Depending on the geometric relationship of intersections
and area formed by the edges in a cluster, there are three
different cases we need to consider to find the Steiner loca-
tions. We use examples in Fig. 3 to illustrate our algorithm.
We assume the locations of shelters are given as (xi, yi),
where 1 ≤ i ≤ 5 as the maximum number of intersected
disks are 5 in a planar space [13]. The Steiner locations are
denoted as (x, y), which is computed as follows.

CASE I: The cluster consists of two intersected disks. The
Steiner locations are selected at the two points that the circles
are crossed, which is shown as red square dots in Fig. 3a,
and can be calculated as

x = x1+x2

2 ±
√

d2−((x1−x2)/2)2−((y1−y2)/2)2

1+(
x1−x2
y2−y1

)2

y = y1+y2
2 ±

√
d2−((x1−x2)/2)2−((y1−y2)/2)2

1+(
y1−y2
x2−x1

)2

(1)



Algorithm 1 Steiner Location Determination (S,B)

1: Construct sets Rs, V ′, Rs ← ∅, V ′ ← ∅;
2: Construct the disk graph Gd = (Vd, Ed);
3: for each edge e do
4: for each cluster V ′ containing edge e do
5: if V ′ is marked then
6: break
7: end if
8: Mark V ′ as a considered cluster;
9: if |V ′| = 2 then

10: Choose the locations rs according to Eq. (1);
11: else if |V ′| = 3 & d∗ ≤ d then
12: Choose the location rs according to Eq. (2);
13: else if |V ′| = 3 & d∗ > d or |V ′| > 3 then
14: Choose the location rs according to Eq. (3);
15: end if
16: Rs = Rs

⋃
{rs};

17: end for
18: end for
19: return Steiner location set Rs.

where the plus-minus sign is obtained reversely in cases
(x1 > x2, y1 > y2) and (x1 < x2, y1 < y2).

CASE II: The cluster consists of three intersected disks
and the intersection area are partially outside the triangle
area that three nodes formed, which is depicted in Fig. 3b.
Assume the longest edge is between (x1, y1) and (x2, y2),
and let d∗ denote the distance between node (x3, y3) and
the longest edge. Therefore, we can identify this case if
d∗ = |(y2−y1)x3+(x1−x2)y3+x2y1−x1y2|√

(y2−y1)2+(x1−x2)2
≤ d. In this case,

the Steiner location is selected at the cross point of circle
C3 and the line that determined by points (x3, y3) and
(x1+x2

2 , y1+y22 ), which is located at the edge of intersection
areas as well. The location can be calculated as

x = x3 ± d√
1+(

y1+y2
2
−y3

x1+x2
2
−x3

)2

, ’+’ ifx1+x2

2 > x3

y = y3 ± d√
1+(

x1+x2
2
−x3

y1+y2
2
−y3

)2

, ’+’ ify1+y22 > y3
(2)

CASE III: The cluster consists of three or more intersected
disks and the intersection area are within the area that the
edges formed, which is depicted in Fig. 3c. In this case, the
Steiner location is determined at the middle point of these
nodes, and can be calculated as{

x = x1+···+xI

I

y = y1+···+yI
I

(3)

Note that in cases I and II, we intentionally select the Steiner
locations as far as possible from the shelters. It is because
that these locations are most likely to be used by the nodes
outside the cluster. If we want to connect a cluster, we always
connect the nearest node in the cluster. If a Steiner location
is determined inside the area of edges, this location is less
likely to be connected with relays from outside nodes. In the

(a) Case I (b) Case II

(c) Case III

Fig. 3: Illustration of Steiner locations in three different cases

next, with these Steiner locations, we consider how to solve
PARP problem that connects population as much as possible
with a budge on number of relays.

B. Step II: Integer Programming Formulation for PARP

In the second step, with predetermined Steiner locations
Rs, we are ready to solve the PARP problem by constructing
a undirected graph G = (V,E, P ), where vertices are
V = S

⋃
Rs
⋃
{b} and have non-negative penalty P that

are population for shelter nodes and 0 for the other nodes.
The edges exist as a complete graph except that the edges in
clusters are replaced with edges via Steiner locations. A non-
negative cost ce for edge e ∈ E is defined as the minimum
number of relays it required for connection, which means if
the edge is chosen in the final solution, the corresponding
number of relays will be evenly deployed on this edge. For
any two vertices u, v ∈ V , it can be calculated as

ce(u, v) =


0, if ‖u, v‖ ≤ d
d‖u,v‖d e − 1, if ‖u, v‖ > d, and u, v ∈ S
d‖u,v‖−Dd e − 1, if u = b or v = b

(4)
Based on the constructed graph G, the goal of PARP problem
is to find a vertex set C ⊆ V \{b} and a tree T ⊆ E rooted
at the virtual BS b. The tree T spans the vertices of V \C
so as to minimize the weights of the vertices in C. For a
feasible solution, vertex set C is the nodes that not connected,
and tree T is where the relays are deployed. Maximizing
the total population coverage is equivalent to minimizing
the weights of unspanned vertices within the relay budget,
therefore, the problem can be formulated as the following
integer programming as

minimize
∑

C⊆V \{b}

w(C)zC (5a)



Fig. 4: An illustrative example of cut-set.

subject to:∑
e∈E

cexe ≤ K −Ns, ∀e ∈ E (5b)∑
e∈δ(C)

xe +
∑

U :U⊇C

zU ≥ 1, ∀C ⊆ V \{b} (5c)

xe ∈ {0, 1}, ∀e ∈ E (5d)
zC ∈ {0, 1}, ∀C ⊆ V \{b} (5e)

where w(C) =
∑
i∈C wi is the total weights of vertex set

C, Ns = |V (T ) ∩Rs| is the number of Steiner locations
included in T , δ(C) is the cut-set of C, i.e. the set of edges
with exactly one endpoint in C. A simple example for the
relationship of vertex set C and the corresponding edge cut-
set δ(C) is illustrated in Fig. 4. The binary variable xe =
1 indicates that the edge e is included in the solution, and
binary variable zC = 1 indicates that any vertex in the set
C is not spanned by the tree T . Thus the constraint (5b)
enforces that at most K relays are required. The constraint
(5c) enforces that for each C ⊆ V \{b}, either a edge e is
selected from cut-set δ(C) or the set C is contained in the
set U of all unspanned vertices. Collectively, it ensures that
all vertices not in any C such that zC = 1 will be included
in a tree that rooted at b. If we apply Lagrangian relaxation
to the constraint (5b), we obtain the following for a fixed
Lagrangian variable 1

λ ≥ 0 as

minimize λ
∑
C

p(C)zC +
∑
e∈E

cexe − (K −Ns) (6)

subject to:

Constraints: (5c), (5d), (5e).

For a given λ, it is easy to see that the relaxed problem
(6) is equivalent to the PCST problem [19] in terms of
integer programming formulation since there is only an extra
constant item (K − Ns) in the objective function. It means
any feasible solution for PCST integer programming is also
feasible for our problem, thus we can easily use an existing
2-approximation PCST algorithm [19] to find a solution in
case of a fixed λ.

For an arbitrary value of λ, we can use a straightforward
bisection search procedure consisting of many PCST sub-
routine calls, which is presented in Algorithm 2. To have
an efficient bisection search, the initial values for lower
and upper boundary λ1, λ2 and the search stop threshold is
key parameters for the performance of the algorithm, which

Algorithm 2 Population-Aware Relay Placement (S,Rs, B)

1: Construct sets T, T ← ∅;
2: Construct graph G = (V,E, P );
3: Initialize variable λ1 = 1∑

V \{b} p
, λ2 =

∑
E ce;

4: repeat
5: λ = λ1+λ2

2 ;
6: (T,Ns)← PCST (G,λ);
7: k =

∑
e∈T ce +Ns;

8: if k < K then
9: λ2 = λ;

10: else if k > K then
11: λ1 = λ;
12: end if
13: until k = K or λ2 − λ1 ≤ 1∑

v∈V \{b} pv
& k < K

14: return A tree T .

need to be carefully selected. From the objective function,
we can easily see that the variable λ actually plays a role
of weighting the penalty and cost in the final decision. In
this sense, based on the physical meanings of penalty as
population and cost as required relays, we can safely set
the initial lower bound as λ1 = 1∑

V \{b} p
, which implies

the cost dominated the decision process, and results in a
solution with less relays. While, the initial upper bound
λ2 =

∑
E ce implies the penalty dominated the decision

process and results in a solution that connecting all shelters
regardless how many relay required. The bisection search will
find a proper value of λ, which meets the requirement of relay
budget. In specific, the algorithm terminates either when it
found a solution with exactly K relays, or a solution with
less than K relays and sufficiently small searching interval
λ2 − λ1. Once we obtain the solution tree, the relays are
placed on the Steiner locations and edges of the tree T with
the constraints of communication distance.

C. Time Complexity Analysis

In the first step, the running time is trivial since it loops
all clusters whose number is usually much smaller than the
number of shelters. In the second step, the worst-case time
complexity of a bisection search is O(log

∑
p ·
∑
c). The

GW-algorithm [19] we adopted for PCST subproblem runs in
O(n2 log n), thus the total running time of our PARP solution
is O(n2 log n log

∑
p ·
∑
c)). Note that n = |V | is the

cardinality of the set of all nodes, which is |S|+ |Rs|+1 for
the proposed solution. The total penalty

∑
p varies linearly

with the number of shelters |S|, and
∑
c varies with the

number of edges in a complete graph as n(n− 1)/2.

IV. EVALUATION RESULTS

In this section, we evaluate the proposed PARP solution
by comparing with the previous solution in both real-world
and random scenarios.

A. Simulation Scenarios

For the real-world scenario, we adopted the same instance
of Katsushika ward as in [15] for comparison, which is one



(a) Locations of shelters and BSs (b) Network avilability

Fig. 5: A real-world scenario

of the central 23 wards in Tokyo with an area of 34.8km2. As
shown in Fig. 5a, there are approximately 190 shelters and
30 mobile BSs of a major MNO in this area. Based on the
study of data-driven network availability analysis [20], we
could obtain a mesh grid in 250m × 250m resolution with
respective network availability in percentage as demonstrated
in 5b, which is estimated for the time 24 hours after the
earthquake occurred. It is shown that in this scenario, the
network availability ranges from 52% in the southwest part
to 98% in the northeast part. Based on it, the evaluation
results are obtained by averaging from 100 samples of still-
alive BSs patterns. For the random scenario, we considered a
square area of 5000m×7000m for comparison with the real-
world instance. The still-alive BSs and shelters are uniformly
generated within this area so that the results are averaged
from 100 samples of random geographical distribution. For
convenience, we simply adopt the communication rages in
the field test [8] for the relay d = 100m and BS D = 500m
respectively in our evaluation. Note that, to keep a constant
number of disconnected shelters for each evaluation settings,
the random generated shelters are only in the area of outside
the coverage of BSs. We denote our solution as PARP and
the previous one in [15] as PCST in the following figures.

B. Performance Analysis

We first evaluated the population coverage with different
relay budgets for PARP and PCST in both the real-world
and random scenario, which is depicted in Fig. 6. For each
sample of evaluation, we set the numbers of shelters and still-
alive BSs in the random scenario the same as the real-world
scenario. The population coverage is defined as the ratio
of total population of connected shelters by the relays and
total population of all shelters. The results show that PARP
algorithm always outperforms the previous PCST algorithm
in both the real-world and random scenario with different
relay budgets.

In order to have a comprehensive understanding of PARP
solution in different scenarios, we leverage the number of
shelters and number of still-alive BSs to further investigate
the performance of population coverage based on the random
scenario. We fix the relay budget as 100, the results in
different number of shelters and number of still-alive BSs

Fig. 6: Population coverage vs. relay budgets.

Fig. 7: Population coverage vs. number of shelters. (K =
100)

are shown in Fig. 7 and Fig. 8 respectively. The area of
random scenario is the same as previous evaluation, there-
fore, changing the number of shelters or BSs only affects
their distribution densities. As more shelters are located in
the same area, the population coverage is increased even
under the same relay budget. As expected, our algorithm
outperforms the PCST algorithm due to the use of Steiner
locations to improve the relay utilization. As the increase of
still-alive BSs, the same performance increasing trend can be
identified but in an exponential manner. The main reason is
that more still-alive BSs in the same area makes shelters not
only close to the BSs, but also easier to be interconnected
due to increased density.

At last, we show the computation time fo both solutions
as in Fig. 9. The running machine is with Intel Xeon E3-
1241 CPU at 3.5 GHz and Windows 10 operating system.
We implemented both algorithms in MATLAB R2017a. We
ran them in the same software/hardware environment for 100
times for the averaged performance. Although our solution
uses a longer time than PCST solution due to the enlarged
scale of the problem with extra Steiner locations, it is still
within the same order of O(n2 log2 n).



Fig. 8: Population coverage vs. number of still-alive BSs.
(K = 100)

Fig. 9: Running time vs. number of shelters. (K = 100)

V. CONCLUSIONS

In this paper, we have studied a population-aware relay
placement solution that maximizes the connected population
with a limited number of relays. The proposed solution is
based on a new graph model that takes into account of Steiner
locations, i.e. potential shared relays. We also presented
a clear and complete formulation of the studied problem,
which provides more insights on how to properly determined
the parameters for bisection search and thus maintains an
acceptable running time. Finally, we evaluate the proposed
algorithm by comparing with previous work in both real-
world and random scenarios. The results demonstrate that
the proposed solution outperforms the previous work with
an affordable increase in the running time.

ACKNOWLEDGMENTS

This research was supported by the joint research fund of
JST Strategic International Collaborative Research Program
(SICORP) and NSF grant 1461886. The information reported
here does not reflect the position or the policy of the funding
agencies.

REFERENCES

[1] Disaster Response Programme, “Dealing with disasters: technical
challenges for mobile operators,” GSM Associations, Jun., 2012.
[Online]. Available: http://www.gsma.com/mobilefordevelopment/
wp-content/uploads/2012/06/Dealing-with-Disasters Final.pdf

[2] Q. T. Minh, K. Nguyen, C. Borcea, and S. Yamada, “On-the-fly estab-
lishment of multihop wireless access networks for disaster recovery,”
IEEE Communications Magazine, vol. 52, no. 10, pp. 60–66, 2014.

[3] H. Nishiyama, M. Ito, and N. Kato, “Relay-by-smartphone: realizing
multihop device-to-device communications,” IEEE Communications
Magazine, vol. 52, no. 4, pp. 56–65, 2014.

[4] Z. Lu, G. Cao, and T. La Porta, “Networking smartphones for dis-
aster recovery,” in 2016 IEEE International Conference on Pervasive
Computing and Communications (PerCom). IEEE, 2016, pp. 1–9.

[5] M. Y. S. Uddin, D. M. Nicol, T. F. Abdelzaher, and R. H. Kravets, “A
post-disaster mobility model for delay tolerant networking,” in Winter
Simulation Conference, 2009, pp. 2785–2796.

[6] T. Yabe, K. Tsubouchi, A. Sudo, and Y. Sekimoto, “Estimating
evacuation hotspots using gps data: What happened after the large
earthquakes in kumamoto, japan,” in Proc. of the 5th International
Workshop on Urban Computing, 2016.

[7] M. Krol, Y. Ji, S. Yamada, C. Borcea, L. Zhong, K. Takano et al.,
“Extending network coverage by using static and mobile relays during
natural disasters,” in 2016 30th International Conference on Advanced
Information Networking and Applications Workshops (WAINA). IEEE,
2016, pp. 681–686.

[8] T. Sakano, S. Kotabe, T. Komukai, T. Kumagai, Y. Shimizu, A. Taka-
hara, T. Ngo, Z. M. Fadlullah, H. Nishiyama, and N. Kato, “Bringing
movable and deployable networks to disaster areas: development and
field test of mdru,” IEEE Network, vol. 30, no. 1, pp. 86–91, 2016.

[9] M. Younis and K. Akkaya, “Strategies and techniques for node
placement in wireless sensor networks: A survey,” Ad Hoc Networks,
vol. 6, no. 4, pp. 621–655, 2008.

[10] E. L. Lloyd and G. Xue, “Relay node placement in wireless sensor
networks,” IEEE Transactions on Computers, vol. 56, no. 1, pp. 134–
138, 2007.

[11] X. Han, X. Cao, E. L. Lloyd, and C.-C. Shen, “Fault-tolerant relay
node placement in heterogeneous wireless sensor networks,” IEEE
Transactions on Mobile Computing, vol. 9, no. 5, pp. 643–656, 2010.

[12] D. Yang, S. Misra, X. Fang, G. Xue, and J. Zhang, “Two-tiered
constrained relay node placement in wireless sensor networks: Compu-
tational complexity and efficient approximations,” IEEE Transactions
on Mobile Computing, vol. 11, no. 8, pp. 1399–1411, 2012.

[13] G. Calinescu, B. Grimmer, S. Misra, S. Tongngam, G. Xue, and
W. Zhang, “Improved approximation algorithms for single-tiered relay
placement,” Journal of Combinatorial Optimization, vol. 31, no. 3, pp.
1280–1297, 2016.

[14] W. Zhang, S. Bai, G. Xue, J. Tang, and C. Wang, “Darp: distance-
aware relay placement in wimax mesh networks,” in INFOCOM, 2011
Proceedings IEEE. IEEE, 2011, pp. 2060–2068.

[15] X. Wang, H. Zhou, L. Zhong, Y. Ji, K. Takano, S. Yamada, and G. Xue,
“Capacity-aware cost-efficient network reconstruction for post-disaster
scenario,” in Personal, Indoor, and Mobile Radio Communications
(PIMRC), 2016 IEEE 27th Annual International Symposium on. IEEE,
2016, pp. 1–6.

[16] Tokyo Metropolitan Government Disaster Prevention Website.
Shelter/temporary refuge map. [Online]. Available: http://www.
bousai.metro.tokyo.jp/foreign/english/bousai/2000011/2000087.html

[17] M. Herlich and S. Yamada, “Comparing strategies to construct local
disaster recovery networks,” in 2016 IEEE 30th International Confer-
ence on Advanced Information Networking and Applications (AINA).
IEEE, 2016, pp. 376–383.

[18] M. R. Gary and D. S. Johnson, “Computers and intractability: A guide
to the theory of np-completeness,” 1979.

[19] M. X. Goemans and D. P. Williamson, “A general approximation tech-
nique for constrained forest problems,” SIAM Journal on Computing,
vol. 24, no. 2, pp. 296–317, 1995.

[20] L. Zhong, K. Takano, F. Jiang, X. Wang, Y. Ji, and S. Yamada, “Spatio-
temporal data-driven analysis of mobile network availability during
natural disasters,” in 2016 IEEE International Conference on Infor-
mation and Communication Technologies for Disaster Management
(ICT-DM). IEEE, 2016.


