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a  b  s  t  r a  c t

Mass Spectrometry  Imaging (MSI)  characterizes  changes in chemical composition between  regions  of

biological  samples such  as  tissues.  One  goal  of statistical  analysis  of MSI  experiments  is class compar-

ison,  i.e. determining analytes that change  in abundance  between  conditions  more  systematically  than

as  expected by  random variation.  To reach accurate  and reproducible  conclusions,  statistical  analysis

must  appropriately reflect  the  initial research  question, the  design  of the  MSI  experiment,  and all  the

associated  sources  of variation. This  manuscript  highlights  the importance  of following these general

statistical  principles.  Using  the  example  of two  case  studies  with  complex experimental designs,  and

with  different strategies of data  acquisition,  we  demonstrate  the  extent to  which choices  made  at  key

points of this  workflow  impact the  results, and provide suggestions  for  appropriate design and  analysis

of MSI  experiments  that  aim  at detecting  differentially  abundant analytes.

© 2018  Elsevier B.V.  All  rights  reserved.

1. Introduction

Mass spectrometry-based imaging (MSI) characterizes and visu-

alizes the chemical makeup of biological tissues [1,2]. A  key

advantage of MSI  is its spatial registration, which provides unique

information for a variety of applications, such as histological exam-

ination of specimens [3],  delineating tumor margins in surgical

settings [4], characterizing sample heterogeneity down to  cellular

resolution [5], or  drug mapping [6–8].  Images from serial tissues

can be used to characterize the chemical heterogeneity of three-

dimensional volumes [9],  or examined against images of the same

tissue obtained by other modalities, e.g. with MRI [10,11]. Such

applications distinguish MSI  from other mass spectrometry-based

experiments.

MSI  is performed in a variety of workflows. For example, Matrix-

Assisted Laser Desorption Ionization (MALDI) [12] requires the
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application of a  matrix over the tissue, while Desorption Electro-

spray Ionization (DESI) [13] and nanospray Desorption Ionization

(nano-DESI) [14] require less sample preparation. With all the

workflows, mass spectra are  acquired at gridded locations across

the tissue. The spatial distribution of the individual analytes, rep-

resented by their mass to  charge (m/z)  ratios is then visualized

as molecular ion images, and analyzed using computational and

statistical methods [15,16].

Different scientific goals of MSI  experiments can be translated

into different statistical goals. The typical statistical goals are class

discovery (i.e., image segmentation, e.g. for characterizing tissue

morphology) and class prediction (i.e., image classification, e.g. for

discovery of biomarkers of disease). A less frequent, but  neverthe-

less equally important goal is class comparison. Class comparison

considers regions or conditions pre-defined by an external refer-

ence, such as a  pathological examination, located in a same tissue

or across different tissues. Class comparison detects differentially

abundant ions, i.e. ions that change in average abundance in the

individuals from the underlying populations, more systematically

than as expected by random chance. Since class comparison consid-

ers averages across individuals, it is not appropriate for discovery
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of biomarkers of disease. Differentially abundant analytes are not

necessarily predictive of an individual subject’s status of the dis-

ease.

Class comparison of biological samples must take into account

the variation from multiple sources (which may  be absent in non-

biological samples such as fingerprints or documents [17,18]).

First, there is a natural variation in analyte abundance across dis-

tinct biological individuals. Second, variation is present within a

same biological tissue, reflecting the heterogeneity of its chemical

composition. Finally, experimental and technological artifacts also

contribute to the overall variation.

Statistical design and analysis of experiments offers a  principled

way of accounting for all of these sources when determining differ-

ential abundance [19]. Statistical experimental design specifies the

conditions of interest, as well as the type and the number of biologi-

cal replicates. MSI  experiments can support complex experimental

designs. Conditions and replicates can occur in  a variety of com-

binations, including comparisons of conditions within or between

tissues, in a single or multiple biological samples subjects. The goal

of the experimental design is to optimize the selection of tissues

and replicates, and the protocol of data acquisition, to maximize our

ability to detect differentially abundant ions under the constraints

of sample availability and cost.

Statistical analysis of experiments specifies the protocol of data

processing, including details of steps such as baseline subtraction,

peak detection and alignment, and normalization. It further speci-

fies a statistical model that describes the data, and a procedure for

deriving model-based conclusions. To reach accurate and repro-

ducible conclusions, statistical analysis must appropriately reflect

the research question, the experimental design, and all the associ-

ated sources of variation.

Unfortunately, statistical design and analysis of MSI  exper-

iments has so far received limited attention. This manuscript

contributes to this area of research. Focusing on the problem of

detecting differentially abundant analyses between pre-defined

conditions, and using the example of two case studies with complex

experimental designs, we  highlight the importance of choices made

at key points of the workflow, demonstrate the extent to  which

these choices impact our ability to detect differentially abundant

ions, and provide suggestions for appropriate design and analysis

of mass spectrometry-based imaging experiments.

2. Background

2.1. Statistical experimental design

Statistical experimental design defines conditions or  treatments

of interest (such as tissue region types, disease status, or treat-

ment group) to be compared, and the type and number of biological

replicates. For example, a group comparison design represents each

condition by tissues from different biological individuals. It can be

extended by subsampling,  i.e. a  design that includes multiple tissue

sections from a same individual in  a  condition. Examples of MSI

experiments with group comparison design are in [20,21]. Alter-

natively, a paired design represents each condition by regions of a

same tissue, or multiple tissues from a  same biological individual,

over multiple biological individuals. These designs are most effec-

tive, as they use each biological individual as its own control, while

fully characterizing the natural biological variation in  the underly-

ing subject population. Examples of MSI  experiments with a  paired

design are in [22,23].

A special case of paired design is an unreplicated experiment,

i.e. experiment comparing conditions within a  single tissue. Such

design is undesirable, as it fails to characterize the biological vari-

ation, and reduces the scope of conclusions in a  way  that is  only

valid for one tissue. Therefore, it leads to overfitting,  i.e., mistaking

subject-specific artifacts for differences in the entire populations,

and to  irreproducible results.

A  second important aspect of statistical experimental design is

the allocation of the tissues to all the steps of sample handling and

data acquisition. In particular, randomization of biological repli-

cates prevents biases due to technological artifacts from known and

unknown sources [15,19].  Randomization is impossible in unrepli-

cated experiments, and this further undermines their value.

This manuscript contrasts group comparisons and paired design

in  experiments with tissues from single and multiple biological

individuals.

2.2. Data processing

Data processing is  a protocol of data transformation, normaliza-

tion and reduction [24], adapted to each process of data acquisition.

For example, spectra in MALDI-TOF experiments may contain

matrix-specific artifacts. Baseline reduction can help alleviate

these artifacts. In nano-DESI experiments, the data are commonly

acquired as a collection of line scans, where the time to acquire

a mass spectrum varies. Therefore, the analyzed locations are

unevenly spaced within a line, and their number varies between

lines and tissues. In these experiments, data processing uses acqui-

sition time and average raster speed to  infer the coordinates of  the

analyzed locations, and spectral resampling and interpolation to

generate raster images [25].

Spectra from MSI  experiments are often reduced to  a  set of

peaks, either by a  peak-picking algorithm [26] or by selecting spe-

cific compounds of interest. The peaks are then aligned across

spectra and possibly filtered, to eliminate peaks with low signal, or

appearing in  a  small proportion of the spectra [24]. As an alterna-

tive  to peak-picking, the mass spectra may  be reduced by binning,

summing over the intensities in the bins. Bins may be chosen with

a  fixed width, or with width that increases with the ratio of  mass

to charge to account for shifts at large mass values [27].

Tissue composition, instrument variation, or  even sample

preparation can cause ion suppression, and incomparable mass

spectra across locations and tissues. Normalization of the mass

spectra to a  same scale aims to  alleviate these artifacts. The most

common normalization equalizes the total ion current (TIC) across

locations, to  account for global intensity variation [28,29]. While

the TIC normalization is adequate for most homogeneous samples

with little variation, it can be hampered in  heterogeneous tissues

with biological variation in high-intensity ions [30]. An alternative

is  the normalization to internal standards, i.e. molecules known to

be homogeneously distributed across tissue locations [31,32].  This

normalization aims to  correct the artifacts of data acquisition in

a  way that is  not  affected by high-intensity ions. Many other nor-

malizations exist, such as those based on median, root mean square,

and noise level [28],  variance stabilizing normalization [30],  sliding

window normalization [33],  and others [29].

An optimal choice of normalization is  study-specific, and reflects

its biological and technological characteristics. This manuscript

does not  aim at suggesting optimal data processing. Instead, we

illustrate the extent to which the choice of normalization affects

the results of downstream statistical analyses.

2.3. Statistical analysis of MSI  experiments

According to  the general principles of statistical design and anal-

ysis of experiments, statistical analysis must match the research

goal, the experimental design, and the sources of variation that

affect the analytes. We detail these points in  the context of MSI

experiments.
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Statistical analysis must match the research goal. The

research goal of class comparison is  to detect systematic changes

in chemical composition between conditions. This translates into

the statistical goal of testing the hypothesis H0 of no difference

in analyte abundance between the conditions, on average in the

underlying biological populations and tissues, against the alter-

native Ha that a difference exists. This statistical goal is  achieved

with supervised analysis,  where locations on the tissues in  the

experiment are  annotated with their conditions. It also requires

a statistical model, as we discuss below. The hypotheses are tested

separately for each analyte, and are sometimes referred to as

“univariate comparisons” [15]. The results are characterized in

probabilistic terms, such as statistical power and False Discovery

Rate among the analytes as in [34].

Alternative research goals of MSI  experiments translate into dif-

ferent statistical goals, and require different statistical analyses.

For example, finding regions with homogeneous chemical com-

position translates into the statistical goal of class discovery. It

is achieved with unsupervised analysis, e.g., Principal Component

Analysis (PCA) [35].  Since unsupervised analysis takes as input

unlabeled tissues, it is inappropriate for detecting changes between

known conditions.

As another example, predicting the condition of each individ-

ual location on a  tissue, or of the entire tissue, translates into the

statistical goal of class  prediction. This is  the only statistical goal

appropriate for discovery of biomarkers of a  disease. Similarly to

class comparison, this statistical goal is achieved with supervised

analysis. Unlike the class comparison, it requires machine learn-

ing algorithms such as Partial Least Squares Discriminant Analysis

(PLS-DA) [36] to  make predictions for each individual biological

subject and tissue, while simultaneously using all or a subset of the

analytes. Methods such as PLS-DA are inappropriate for studies of

differential abundance, because statistical properties of predictive

analytes differ from those of differentially abundant analytes.

Statistical analysis must match the experimental design. Sta-

tistical experimental design defines the regions of the tissues that

we would like to  compare. The regions can be defined using images

acquired with alternative modalities, such as MRI  [10,11],  optical

microsopy [37],  or using marker analytes, acquired as part of the

MSI experiment. It is  important to emphasize that these markers

must be defined in advance (as opposed to be used twice - first to

determine the regions and then to test for differential abundance

between these regions) to avoid overfitting and unduly optimistic

conclusions of hypothesis testing.

Tissues selected for MSI  experiments can form a group com-

parison or a paired design, with or without biological replication.

However, the advantages of complex designs, such as paired design

or design with biological replicates, are lost if  they are not accord-

ingly analyzed. For example, a statistical analysis ignoring the

paired structure of a  design misses the opportunity to use each

biological subject as its own control, thus limiting the effect of

subject-to-subject variation which is not of interest in the experi-

ment [38].

Statistical analysis must match the existing sources of

variation. Statistical analysis requires a  statistical model, i.e.

an abstraction describing the systematic variation between the

conditions, and nuisance variation from sources beyond the

experimental control. Nuisance variation includes the biological

between-subject and within-subject variation, and the measure-

ment error.

Linear mixed effects model is a  general and flexible class of such

abstractions, applicable to complex designs. A special case is Anal-

ysis of Variance (ANOVA), which describes the variation among

multiple groups. ANOVA-based statistical analysis of two  groups

of independent biological replicates is equivalent to  a  two-sample

t-test with pooled variance. Models for more complex designs may

include, e.g., random effects that distinguish biological variation

and measurement error [39,40].

A key assumption of the linear mixed effects models above is

that the replicates in the experiment are  statistically independent.

This is  typically true  with respect to  the biological replicates, which

are distinct tissue donors. However, the assumption does not  hold

with respect to  locations in a  biological tissue. Chemical compo-

sition of biological tissues is prone to spatial autocorrelation,  i.e.,

situation where proximate locations in a  tissue are more likely to

have similar chemical composition than distant locations in the

same tissue [41].  One solution to this challenge is to  only model

one value from each tissue, such as the average abundance of  the

analyte within each condition and each biological replicate [15,42].

Although this approach is  compatible with linear mixed models, it

ignores the heterogeneity of the tissue.

An alternative approach is to  extend the linear mixed model in a

way that explicitly describes spatial autocorrelation. Cassese et al.

[41] proposed such a  modeling and testing framework, however it

is limited to  a  single tissue, and is  not directly applicable to com-

plex experimental designs. Another extension, called Hierarchical

Bayesian Spatial Model, combines the flexibility of describing the

experimental designs, the independence of biological replicates,

and the within-tissue spatial autocorrelation [43].  We illustrate the

impact of the modeling choices on the statistical analysis using two

case studies below.

3. Methods

3.1. RCC: DESI-MSI of human renal cell carcinoma

The study was first reported in [22], and discussed in  [44]. One of

the goals of the study was to detect differentially abundant analytes

between cancerous and healthy tissues.

Statistical experimental design. The experiment was con-

ducted in a  paired design. Pairs of tissues exhibiting renal cell

carcinoma (RCC) and adjacent normal tissue were collected from

eight human volunteers (Fig. 1). The tissues were subjected to

serial hematoxylin and eosin (H&E) staining. The pathology exam-

ination of the stained tissues was  unable to define homogeneous

sub-regions of the tissues with respect to the disease at sufficiently

high resolution. Therefore the entire tissue sections were labeled

as either “cancer” or “normal”.

Data acquisition. The tissues were analyzed with DESI MSI  in

negative mode on a Thermo LTQ Orbitrap instrument. The data

were recorded in RAW file format, converted to  the Analyze 7.5 for-

mat, and imported into the open-source software Cardinal v1.10.0

[45].  The resulting dataset is  available in  the R  package Cardinal-

Workflows on Bioconductor.

Data processing. All the processing was done using Cardinal.

Since no high-intensity features with high biological variation were

anticipated a priori, the data were processed using TIC normaliza-

tion and the spectra peak picked according to  local maxima. The

peaks were aligned across spectra and filtered to remove the peaks

that were present in  fewer than 1% of locations. This resulted in  160

peaks. Finally, peaks with observed intensities below the boundary

of detection were set to the minimum detected intensity for that

peak. All the peak intensities were log2 transformed to match the

assumptions of the downstream statistical analysis.

Statistical analysis. We evaluated the sensitivity of various sta-

tistical analysis approaches with respect to the number of  detected

differentially abundant analytes. The importance of matching the

experimental design was evaluated by comparing the statistical

models that either account for, or ignore, the paired nature of  the

design. The importance of characterizing the existing sources of

variation was  evaluated by comparing models that either account
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Fig. 1. The human renal cell carcinoma (RCC) experiment with paired design. Both “cancer” and “normal” tissues were collected from each of the 8 donors. The  images are

H  & E stained serial sections used for pathological diagnosis.

for within-tissue spatial autocorrelation or  summarize the loca-

tions in a tissue by  averaging log2 intensities of each analyte in

each tissue. Approaches with more differentially abundant analytes

were more sensitive.

In addition to the sensitivity, the specificity of the approaches

was evaluated by “same-same” comparisons. Locations in  each tis-

sue were separated into a top and a  bottom half, and compared as

if they were different conditions. Approaches with fewer differen-

tially abundant analytes were more specific.

Finally, the importance of matching the research goal was eval-

uated by comparing the results of hypothesis testing to that of PCA

and PLS-DA.

3.2. CpG: Nano-DESI MSI  of ischemic stroke preconditioning in

mouse brain

CpG is an unmethylated oligodeoxynucleotide that  has been

shown to stimulate the toll-like receptor 9 and induce neuropro-

tection against ischemic damage, for example ischemic stroke, if

administered as a preconditioning agent. The goal of this exper-

iment was to elucidate chemical effects on the brain  after CpG

administration to mice, and to  further understand the molecular

mechanisms of this neuroprotection.

Statistical experimental design. The experiment was  designed

as  a group comparison (i.e., each condition was represented by

different mice) with subsampling (i.e. multiple serial sections of

a same mouse tissue). Samples of brain tissue were harvested from

three mice with the saline treatment (mice A, B, and C)  and three

mice with the CpG treatment (mice X, Y, and Z). Three serial sections

were gathered from each mouse brain. Mouse Y  from the CpG group

produced only two sections. The dataset consisted of 17 tissues total

(Fig. 2).

Data acquisition. Serial tissue sections from the same mouse

were placed on the same slide for spectral acquisition. The dataset

was acquired in imaging mode, with three micromolar of a  lipid

standard lysophosphatidylcholine (LPC) 19:0 (from Avanti Polar

lipids) included in the nano-DESI solvent, which consisted of 9:1

methanol:water [25].  A Thermo LTQ-orbitrap instrument was used

to acquire the data in positive mode. The velocity of the stage was

40 �m per second, with a scan rate of approximately 1 scan per sec-

ond. Due to the use of automated gain control, the scan rate varied

for each scan. The lines were spaced by  200 �m.  Assuming 1 scan

per second, the pixel size  was approximately 40 × 200 microme-

ters. The MSI  data were saved in RAW file format, and converted to

the  NetCDF format by  the Xcalibur software.

Data processing. Data in the NetCDF format were imported

into Cardinal v1.10.0 using an in-house R  script based on Cardinal’s

readImzML function.

During import the data were binned with bin half-width of 200

parts-per-million (ppm), to balance the mass accuracy with the size

of the resulting file. The fixed ppm resulted in variable m/z step

sizes, such that in m/z  units the bin width was wider for larger m/z

values. Spectra were then peak picked with respect to local maxima,

resulting in 434 peaks. Peaks with observed intensities below the

boundary of detection were set to the minimum detected intensity

for that peak. The peak corresponding to the sodium adduct of the

LPC standard was located in  m/z  560.4 bin, while the potassium

adduct peak was in  the m/z 576.4 bin.

Locations without the signal, and locations outside the tissue

boundary were defined as having zero intensities of the standards

(i.e.,  m/z  560.4 or m/z 576.4), as zero intensities likely corresponded

to  locations with unsuccessful sample ionization or  injection. For

example, over 5% of the locations on the first tissue section of mouse

A  produced no signal. Due to the large number of missing loca-

tions, data from tissue sections indicated with an asterisk in Fig.  2

were judged as lower quality overall. We  evaluated the impact of

including or excluding these sections during the statistical analysis.

We evaluated the impact of normalization on detection of dif-

ferentially abundant analytes in this dataset, by comparing the

normalizations that equalize (1) the TIC, (2) the log-intensities of

the standard peak at m/z  560.4, and (3) the log-intensities of the

standard peak at m/z  576.4.

Statistical analysis. In  this dataset, we  focused on  the impor-

tance of characterizing the biological and technological sources of

variation. First, we evaluated the importance of biological repli-

cation, by comparing the analyses with all the mice, versus the

analysis with one mouse per treatment (mice C and Z). Second,

we evaluated the importance of quality control and reduction of

technical variation, by comparing the analyses with or without tis-

sues with low quality data. Finally, we evaluated the sensitivity of

the statistical approaches that either account for within-tissue spa-

tial autocorrelation or summarize the locations by averaging log2

intensities of each analyte in  each tissue.

3.3. Methods of statistical analysis for class comparison

Analyses for class comparison specified several statistical mod-

els, which emphasized different aspects of variation. Below we

denote Yijkl the log2 intensity of the analyte in  condition i (i.e., i = 1

for the control, and i = 2 for the treatment), donor/mouse j, tissue k

and location l. For experiments with only one tissue per donor, we

set k  =  1.  The models were specified separately for each analyte.

Models for summaries of locations in a tissue. The models

took as input the average of log2-intensities of the analyte across

all the locations in the tissue Ȳijk · . In experiments with one tissue

per donor in  each group (such as the RCC experiment, ignoring the

paired nature of the design), the variation was  described using a

linear model [39]:

Ȳij1 · = � +  ˛i + εij,  ˛1 = 0, εij
iid
∼N(0,  �2)  (1)

In the model � is the average abundance of the analyte in  the con-

trol population (i.e., the baseline), ˛i is the average deviation of the
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Fig. 2. Experimental design of CpG versus Sal MSI  dataset. The CpG preconditioning experiment has both biological replicates (multiple mice per treatment) and subsampling

(multiple tissues from each mouse). The images schematically illustrate the  number of subsamples. The asterisk (*) indicates sections with lower quality data.

analyte abundance between the treatment and the control popula-

tions (i.e., the quantity of our main interest), and εij simultaneously

represents all the biological and technological sources of varia-

tion. Parameters of the model were estimated by Least Squares.

The model-based conclusions regarding the differential abundance

were identical to those of a  two-sample t-test with pooled variance.

When the analysis recognized that the experiment included two

tissues per donor in a  paired design (as in the RCC experiment), it

could distinguish the within-subject biological variation and the

technological variation. This was accomplished by  extending the

linear model into a  linear mixed effects model with an extra random

term Sj, which indicates the variation between the individuals j in

condition i:

Ȳij1 · = � + ˛i + Sj + εij1

˛1 =  0, Sj
iid
∼N(0,  �2

S
), εijk

iid
∼N(0, �2)

(2)

Parameters of the model were estimated by Maximum Likelihood.

The model-based conclusions were also a version of the t-test. How-

ever, the estimates of biological variation more accurately reflected

the experimental design.

In presence of subsamping (as in the CpG experiment), the

model similarly extended Eq. (1), but added the notation j(i) to

emphasize that tissue donors were nested within each condition,

and represented multiple tissue sections.

Ȳijk · = � + ˛i + Sj(i) + εijk

˛1 = 0, Sj(i)
iid
∼N(0,  �2

S
), εijk

iid
∼N(0, �2)

(3)

In Eqs. (1)–(3), the models were fit separately for each analyte,

and therefore the total number of hypotheses tested was  equal to

the number of analytes. To adjust for the multiplicity of testing,

the  False Discovery Rate in the list of differentially abundant ana-

lytes was controlled at 5% using the procedure by Benjamini and

Hochberg [46].

Models that account for within-tissue spatial autocorrela-

tion. Taking as input the log-intensities of analytes at individual

locations on the tissue, the models above were extended into

Hierarchical Bayesian Spatial models, to  distinguish the biologi-

cal variation within and between the tissues. In experiments with

one tissue per donor in each group (such as the RCC experiment,

ignoring the paired nature of the design), the Hierarchical Bayesian

Spatial Model extended Eq. (1) as follows [43]:

Yij1l = � + ˛i + Sj(i) + �ij1l + �ij1l.  (4)

The term �ij1l is the spatial autocorrelation, which reflects the

similarity or heterogeneity of chemical composition in proximal

locations, and �ij1l is the measurement error. The extent of spatial

autocorrelation depends on the condition and the subject. It  also

depends on the ability of the experiment to define homogeneous

tissue regions, on the spatial resolution of the MSI, and on whether

the individual tissue locations represent one or multiple cell types.

The spatial autocorrelation is estimated from the data separately

for each analyte.

Similarly, when the analysis recognized that the experiment

included two tissues per donor in a  paired design (as in the RCC

experiment), the Hierarchical Bayesian Spatial Model extended Eq.

(2):

Yij1l = � + ˛i + Sj + �ij1l +  �ij1l. (5)

In presence of subsamping (as in the CpG experiment), the

model in Eq. (3) was  similarly extended, while emphasizing that

tissue donors were nested within each condition, and were repre-

sented by multiple tissue sections

Yijkl =  � +  ˛i + Sj(i) + Tkj(i) + �ijkl +  �ijkl. (6)

Here Tkj(i) indicates the variation between tissue sections of a same

donor.

Compared to  the models for summaries of locations, the intro-

duction of spatial autocorrelation required a fully Bayesian model

specification. In particular, for the quantity of our main interest ˛i,

˛1 = 0, ˛2 | �∼N (0, r(�) �2
˛)

r(1) = 1, r(0) =  0.00001, �∼Bern(�0)
(7)

When population average of the analyte in  the treatment group

differs from that in the control group, the indicator of differen-

tial abundance denoted by � = 1,  and 0 otherwise. Therefore the

hypothesis H0 of no difference in analyte abundance between

the conditions, versus the alternative Ha that a  difference exists,

was tested in terms of posterior probabilities P (� = 1|data). The

remaining priors are in  A.

Parameters of the model were estimated using Markov Chain

Monte Carlo. To adjust the posterior probabilities for the multiplic-

ity of testing, the False Discovery Rate in  the list of differentially

abundant analytes was  controlled at 5%  using the procedure by

Storey [47]. The datasets and the R code for all the analyses are

available upon request.

4.  Results

We  used the two case studies above to evaluate the importance

of following the general statistical principles for detection of  differ-

entially abundant analytes in MSI  experiments. First, we evaluated

the importance of accurately reflecting the experimental design.

Result 1: Recognizing the paired nature of the RCC

experiment enhanced the sensitivity of  detecting differential

abundance. Table 1 shows that accounting for the paired nature

of the experimental design lead to better detection of  differen-

tially abundant features between “cancer” and “normal”. This is

due to  the fact that Eqs. (2) and (5) more accurately characterized

the biological variation, and viewed each tissue donor as its own

control.

The advantage of the paired design is illustrated in  Fig. 3 for

m/z  821.33. The log2 intensity of the feature varied substantially
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Table  1

Number of differentially abundant analytes in the RCC  experiment. Ave: Models for

summaries of tissue locations. Spat: Models that account for within-tissue spatial

autocorrelation. Superscripts in parentheses are equations in Section 3.3 describ-

ing  the models. “Group comparison”: comparison between “cancer” and “normal”

tissues. Larger numbers indicate better sensitivity. “Same-same comparison”: com-

parison of two halves of the tissue sections, i.e. sections with a  same condition.

Smaller numbers indicate better specificity.

Design Group Same-same comparison

comparison Normal Cancer

Ave Spat Ave  Spat Ave Spat

Unpaired 13(1) 57(4) 0(1) 0(4) 0(1) 0(4)

Paired 36(2) 138(5) 0(2) 9(5) 0(2) 29(5)

Fig. 3. Log2 intensities of m/z 821.33 in the RCC experiment. Filled boxes: all the

donors combined. Empty boxes: donor-specific values. Colors indicate the disease.

(For  interpretation of the references to color in this figure legend, the reader is

referred to the web  version of the article.)

Table 2

Number of differentially abundant analytes in the CpG experiment. Full: using all

tissues in the experiment. Reduced: excluding tissue sections starred in Fig. 2.  Ave:

Models for summaries of tissue locations. Spat: Models that account for within-

tissue spatial autocorrelation. Rows in the table correspond to the normalization

strategies. Superscripts in parentheses are equations in Section 3.3 describing the

models. Larger numbers indicate higher sensitivity.

Normalization Full Reduced

Ave(3) Spat(6) Ave(3) Spat(6)

TIC 0 10 0 23

m/z 560.4 0 7  0 49

m/z 576.4 0 7  0 52

between the donors. Combined across all the donors, the log2 inten-

sity of the feature overlapped substantially between the conditions.

On the other hand, the shift between tissues of a same donor

pointed more prominently to the same direction (the feature was

up-regulated in “cancer” at various extents in  most of the donors).

Combining the within-donor analyses of the feature facilitated the

detection of systematic changes.

Next, we evaluated the importance of accounting for all the

existing sources of variation.

Result 2: Recognizing the spatial autocorrelation in the RCC

and the CpG experiments enhanced the sensitivity, and did not

undermine the specificity, of detecting differential abundance.

For  the RCC experiment, Table 1 shows that models recognizing

spatial autocorrelation improved the sensitivity of detecting dif-

ferential abundance, as compared to the models for summaries of

tissue locations. This is particularly true for Eq.  (5),  which accounted

for the paired nature of the experimental design. Similarly, for the

CpG experiment, Table 2 shows that recognizing spatial autocorre-

lation improved the sensitivity of detecting differential abundance

across the tissue subsets and normalizations.

The improved performance was due to the fact that the Hier-

archical Bayesian Spatial Model could extract richer information

Fig. 4. Differentially abundant analytes in unreplicated experiments. (a) Compar-

isons in single pairs of “cancer” and “normal” tissues in the RCC experiment. X  axis:

160  m/z features. Y axis: tissue donor. Black lines: differentially abundant features

for  each donor, after fitting Eq. (5).  (b) Comparisons in single pairs of mice in the

CpG experiment, after the TIC normalization and fitting Eq. (6).  Left circle: number of

differentially abundant m/z features between mice A (excluding the starred sample

in Fig. 2) and mice X. Right circle: number of differentially abundant m/z  features

between mice  C and Z. (c) Same as (b), but with normalization to  m/z 560.4. (d) Same

as (b), but with normalization to m/z 576.4.

from the tissues in these experiments, which otherwise included

a relatively small number of tissue donors (8 in the RCC experi-

ments, and 3 per condition in the CpG experiment). For example,

Fig.  3 shows that there was  substantial within-tissue variation in

m/z 821.33. The models taking as input tissue-wide averages lost

this information.

At the same time, the columns “same-same comparison” in

Table 1  indicate that the extra model complexity did not  substan-

tially undermine the specificity of the results in  the RCC dataset.

When controlling the FDR at 5% in  the set of 160 spectral features,

we expected on average 160·0.05=8 false positive discoveries. The

results in  the “same-same comparisons” among “normal” tissues in

Table 1 are comparable with this number. The ‘same-same compar-

isons” among “cancer” tissues exceed the expected number. This

may be due to heterogeneity of chemical composition in tumor

tissues.

Result 3: Omitting biological replicates in the RCC and CpG

experiments led to overfitting, and to  irreproducible results.

In unreplicated experiments, summaries of locations in  a  tissue

contain no information regarding sources of variation. Therefore,

models in Eqs. (1)–(3) cannot be  applied. While models in Eqs.

(4)–(6) are applicable in principle, doing so undermines the repro-

ducibility of the results. For the RCC experiment, Fig. 4(a) shows

that detection of differential abundance based on a  single tissue

donor varied substantially between the donors. More features were

found differentially abundant than in Table 1. Similarly, for the CpG

experiment, Fig. 4(b) shows little overlap in  differentially abundant

features in  two sets of unreplicated experiments with the TIC nor-

malization, and Fig. 4(c) with the m/z  560.4 normalization. These

results are due to the fact that unreplicated experiments do not

allow us to  assess the extent of between-donor variation of ana-

lyte abundance. Therefore, analyses of an unreplicated experiment

overfit the patterns of that  particular donor, and the results are too

sensitive and not necessarily reproducible in  another donor.

Next, we  evaluated the importance of matching the research

goal.

Result 4: Principal Component Analysis (PCA) and Par-

tial Least Squares Discriminant Analysis (PLS-DA) of the RCC

experiment were not successful at determining differentially

abundant analytes. Fig. 5(a) illustrates the result of PCA of tissue

locations. The first two  principal components only explained 50.2%
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Fig. 5. Principal Component Analysis of the RCC experiment. (a) Score plot of tissue

locations, in the space of the first two principal components. Each  point indicates

a location. Locations are colored according to  their classification by pathological

examination. (b) Loadings of tissue locations in the first principal component in (a),

versus estimated posterior probability of differential abundance according to the

Hierarchical Bayesian Spatial Model in Eq.  (5).  Points are spectral features, colored

according to differential abundance as determined by the Hierarchical Bayesian Spa-

tial  Model, while controlling the FDR at 0.05. (c) Same as (a), but after averaging the

log2 intensities of each analyte over  all  the locations in  a  tissue section. (d) Loadings

of  tissue averages in the first principal component in (c), versus − log10 BH-adjusted

p-value based on the paired model for averages in Eq. (2).  Points are spectral fea-

tures, colored according to differential abundance determined by  the linear model,

while controlling the FDR at 0.05. (For interpretation of the references to  color in

this figure legend, the reader is  referred to the web  version of the article.)

of  the total variation, and did not fully separate the “cancer” and the

“normal” locations. The systematic pattern of the points indicated

the presence of additional sources of variation, which affected the

chemical composition of the locations, but which was not  captured

by the first two principal components.

Frequently, loadings of the analytes in  principal components are

interpreted as evidence of their “importance”. Fig. 5(b) contrasts the

loadings of the first principal component with results of model in

Eq. (5). As can be seen, there is  little agreement between the two

approaches. In particular, class comparison detected differential

abundance in many features with small loadings. Moreover, class

comparisons controlled the False Discovery Rate in the list  of differ-

entially abundant analytes, while the loadings-based approaches of

PCA did not.

Fig. 5(c) and (d) repeats the PCA above for averaged log2

intensities of the analytes in each tissue. The first two principal

components only explained 55.8% of the variation of averages.

The figures point to the same conclusions as above. Overall, Fig. 5

illustrates that for the RCC experiment, PCA was not successful in

detecting differentially abundant analytes.

Fig. 6 shows the results of PLS-DA, which point to the same

conclusions as the results of PCA.

Finally, we evaluated the impact of data processing steps.

Result 5: Excluding tissue sections with poor quality mea-

surements in the CpG experiment improved the sensitivity of

detecting differentially abundant analytes. Table 2 illustrates the

benefit of a quality control step preceding the statistical analysis.

Discarding tissues with poor quality measurements, based on cri-

teria such as the strength of the signals, increased the sensitivity of

detecting differentially abundance with the model that accounts for

spatial autocorrelation. The poor quality measurements inflated the

estimates of biological and technological variation, and excluding

these measurements lead to more sensitive results.

Fig. 6. Partial Least Squares Analysis of the RCC experiment. (a) Regression coeffi-

cients  of PLS-DA, versus estimated posterior probability of differential abundance

according to the Hierarchical Bayesian Spatial Model in Eq. (5).  Points are spectral

features, colored according to  their differential abundance, as determined by  the

Hierarchical Bayesian Spatial Model, while controlling the FDR at  0.05. (b)  Regres-

sion coefficients of PLS-DA, versus −  log10 transformed adjusted p-values from Eq.

(2). Points are spectral features, colored according to differential abundance as deter-

mined by the linear model, while controlling the FDR at 0.05. (For interpretation of

the  references to  color in this figure legend, the  reader is  referred to  the web version

of the  article.)

Fig. 7. Intensities of m/z 756.513 in all the tissues of the CpG experiment, separated

by  treatment. Left: after the TIC normalization. Middle: after normalization to the

sodium adduct (m/z 560.4). Right: after normalization to the potassium adduct (m/z

576.4).

Result 6: The choices of normalization in the CpG experiment

impacted the detection of differentially abundant analytes. Fig. 7

illustrates that the choice of normalization strongly affected the

log2 intensities of the analytes, and our ability to  detect differential

abundance. The TIC normalization is  frequently used, as it addresses

artifacts such as variation in electrospray ionization. However, in

the CpG experiment this normalization was possibly affected by

high-intensity features with true biological changes in abundance,

and equalizing the TIC could over-correct the true variation. Table 2

shows that, as the result, the TIC normalization led to fewer dis-

coveries of differentially abundance in  high-quality measurements,

and was not effective for this particular experiment. At the same

time, normalization with a standard is  also fraught with difficul-

ties. Binning can contaminate the standards with signals from other

analytes, and different analytes may  need to be normalized with

different adducts of the standard. For example, in the case of  the

CpG experiment it may  be possible to identify and separately nor-

malize Na and K  adducts based on the exact mass difference without

identifying the individual molecules.
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5. Discussion

The case studies confirmed that the general principles of sta-

tistical analysis hold for MSI  experiments, and should be viewed

as guidelines for maximizing the sensitivity and the accuracy of

detecting differentially abundant analytes.

First, statistical analysis should match the research question,

and use appropriate modeling strategy when the experiment aims

at class comparison, as opposed to class discovery or class predic-

tion.

Second, statistical analysis should match the experimental

design. Some designs are more effective than others. For example,

we have illustrated that for the RCC experiment the paired design

is beneficial, as it allows us to view each subject as its own control

when comparing the healthy and the cancer tissues. However, the

benefit of this design can only be fully exploited if it is followed

with the appropriate statistical analysis.

Third, MSI  experiments should avoid unreplicated designs, i.e.

designs that only focus on tissues from a  single donor. Unreplicated

experiments limit the scope of conclusions to only that particular

donor. As we have seen in the RCC and in  the CpG experiments,

unreplicated designs lead to overly optimistic and irreproducible

results. This is not a surprise because mass spectrometry imag-

ing, as any other measurement technology, does not eliminate the

between-subject variation [48].

Forth, in addition to the between-subject variation, statistical

analysis should also account for the within tissue spatial autocor-

relation. In the case studies in this manuscript, the improvement in

sensitivity of the spatial model over averaging was due to appro-

priately using the individual intensities from all the measured

locations. This enhanced the information from an experiments with

a relatively small number of donors. However, if the experiment

included additional independent tissue donors, the contribution of

the within-tissue variation to  the sensitivity of the results would

likely decrease, and the overall sensitivity of the experiment would

likely increase.

Fifth, as we have seen, data processing and quality control

strongly affect the results of the statistical analysis. Subjective

inclusion and exclusion of measurements, and subjective choices of

normalization, can lead to  overfitting and to irreproducible results

[49].  Similarly, normalization methods and other analysis choices,

such as presence or absence of log2 transformations, or the treat-

ment of zero intensities of the spectral peaks, are also likely to make

an impact [50]. To avoid overfitting and maximize the reproducibil-

ity of the results, a protocol of quality control and data processing

should be specified before conducting the experiment. The protocol

can be based on preliminary from a  small-scale pilot investigation,

and rely on objective criteria of quality (such as the strength of the

signal or the amount of missing peaks) and fully automated data

analysis steps.

Finally, studies of differential abundance should be followed by

additional experimental validation. Two approaches are sometimes

considered. First, the same biological samples can be re-analyzed

by orthogonal experiments (such as LC–MS) to identify, quantify

and interpret the analytes. However, this approach does not consti-

tute validation in a statistical sense, as it confounds the systematic

changes induced by the stress or the disease with the biological

or sample processing artifacts of the chosen biological replicates.

The second approach is  to repeat the experiment with new bio-

logical specimens, while identifying the analytes. This validation is

preferred, and is the gold standard of reproducible research.

Overall, our results demonstrated that appropriate statistical

analysis is an important aspect of MSI  experiments, and should

be carefully considered both before designing the experiment, and

during all the data analysis steps.
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Appendix A. Priors of Hierarchical Bayesian Spatial Model

The assumptions of the model in  Eqs. (4)–(6) are:

˛1 = 0, ˛2|�∼N
(

0, r(�) �2
˛

)

r(0) = 0.00001, r(1) = 1, �∼Bern (�0)

Sij|�
2
S
∼N

(

0, �2
S

)

, Tijk|�2
T ∼N

(

0, �2
T

)

1

�2
S

∼G(aS, bS),
1

�2
T

∼G(aT ,  bT )

��ijk|	2
i
∼ICAR(	2

i
,  Wijk),

1

	2
i

∼G(a	, b	)

�ijkl|�
2
�∼N

(

0, �2
�

)

,
1

�2
�

∼G (a�, b�) ,

�∼Dirac(c)

The intrinsic conditional autoregressive (ICAR) model is as

described in [51]. It is a  conditional model of spatial autocorrela-

tion, with spatial effect �ijkl varying around the mean spatial effects

at its neighboring locations according to a  Normal distribution

with variance 	2
i

/(#ofneighborsofl).  The neighborhood structures

of locations in each tissue are  described by the binary matrices Wijk.

The hyperparameters of the Gamma  distributions were selected

as shape (aS,  aT,  a	 , a�) = 0.001 and rate (bS, bT,  b	 , b�)  =  0.001, com-

mon  choices for a vague prior. The hyperparameter of the condition

effect ˛2 was  set to �2
˛ =  1000, also forming a  vague prior. The

prior probability of differential abundance �0 = 0.1, reflecting the

belief that only a small proportion of features were differentially

abundant.

A typical choice of the prior distribution of the baseline condi-

tion effect � is a  non-informative Normal distribution. However,

in our experience with MSI  experiments, an informative prior of

the baseline improved substantially the stability and the conver-

gence of MCMC.  Therefore, the implementation in this manuscript

specified a  Dirac (i.e., point mass) probability distribution, cen-

tered on the parameter c =
∑

y1jkl/N, (i.e., the mean of  feature

log2-intensities in  the reference condition).
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