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Mass Spectrometry Imaging (MSI) characterizes changes in chemical composition between regions of
biological samples such as tissues. One goal of statistical analysis of MSI experiments is class compar-
ison, i.e. determining analytes that change in abundance between conditions more systematically than
as expected by random variation. To reach accurate and reproducible conclusions, statistical analysis
must appropriately reflect the initial research question, the design of the MSI experiment, and all the
associated sources of variation. This manuscript highlights the importance of following these general
statistical principles. Using the example of two case studies with complex experimental designs, and
with different strategies of data acquisition, we demonstrate the extent to which choices made at key
points of this workflow impact the results, and provide suggestions for appropriate design and analysis
of MSI experiments that aim at detecting differentially abundant analytes.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Mass spectrometry-based imaging (MSI) characterizes and visu-
alizes the chemical makeup of biological tissues [1,2]. A key
advantage of MSI is its spatial registration, which provides unique
information for a variety of applications, such as histological exam-
ination of specimens [3], delineating tumor margins in surgical
settings [4], characterizing sample heterogeneity down to cellular
resolution [5], or drug mapping [6-8]. Images from serial tissues
can be used to characterize the chemical heterogeneity of three-
dimensional volumes [9], or examined against images of the same
tissue obtained by other modalities, e.g. with MRI [10,11]. Such
applications distinguish MSI from other mass spectrometry-based
experiments.

MSlis performed in a variety of workflows. For example, Matrix-
Assisted Laser Desorption lonization (MALDI) [12] requires the
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application of a matrix over the tissue, while Desorption Electro-
spray lonization (DESI) [13] and nanospray Desorption Ionization
(nano-DESI) [14] require less sample preparation. With all the
workflows, mass spectra are acquired at gridded locations across
the tissue. The spatial distribution of the individual analytes, rep-
resented by their mass to charge (m/z) ratios is then visualized
as molecular ion images, and analyzed using computational and
statistical methods [15,16].

Different scientific goals of MSI experiments can be translated
into different statistical goals. The typical statistical goals are class
discovery (i.e., image segmentation, e.g. for characterizing tissue
morphology) and class prediction (i.e., image classification, e.g. for
discovery of biomarkers of disease). A less frequent, but neverthe-
less equally important goal is class comparison. Class comparison
considers regions or conditions pre-defined by an external refer-
ence, such as a pathological examination, located in a same tissue
or across different tissues. Class comparison detects differentially
abundant ions, i.e. ions that change in average abundance in the
individuals from the underlying populations, more systematically
than as expected by random chance. Since class comparison consid-
ers averages across individuals, it is not appropriate for discovery
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of biomarkers of disease. Differentially abundant analytes are not
necessarily predictive of an individual subject’s status of the dis-
ease.

Class comparison of biological samples must take into account
the variation from multiple sources (which may be absent in non-
biological samples such as fingerprints or documents [17,18]).
First, there is a natural variation in analyte abundance across dis-
tinct biological individuals. Second, variation is present within a
same biological tissue, reflecting the heterogeneity of its chemical
composition. Finally, experimental and technological artifacts also
contribute to the overall variation.

Statistical design and analysis of experiments offers a principled
way of accounting for all of these sources when determining differ-
ential abundance [19]. Statistical experimental design specifies the
conditions of interest, as well as the type and the number of biologi-
cal replicates. MSI experiments can support complex experimental
designs. Conditions and replicates can occur in a variety of com-
binations, including comparisons of conditions within or between
tissues, in a single or multiple biological samples subjects. The goal
of the experimental design is to optimize the selection of tissues
andreplicates, and the protocol of data acquisition, to maximize our
ability to detect differentially abundant ions under the constraints
of sample availability and cost.

Statistical analysis of experiments specifies the protocol of data
processing, including details of steps such as baseline subtraction,
peak detection and alignment, and normalization. It further speci-
fies a statistical model that describes the data, and a procedure for
deriving model-based conclusions. To reach accurate and repro-
ducible conclusions, statistical analysis must appropriately reflect
the research question, the experimental design, and all the associ-
ated sources of variation.

Unfortunately, statistical design and analysis of MSI exper-
iments has so far received limited attention. This manuscript
contributes to this area of research. Focusing on the problem of
detecting differentially abundant analyses between pre-defined
conditions, and using the example of two case studies with complex
experimental designs, we highlight the importance of choices made
at key points of the workflow, demonstrate the extent to which
these choices impact our ability to detect differentially abundant
ions, and provide suggestions for appropriate design and analysis
of mass spectrometry-based imaging experiments.

2. Background
2.1. Statistical experimental design

Statistical experimental design defines conditions or treatments
of interest (such as tissue region types, disease status, or treat-
ment group) to be compared, and the type and number of biological
replicates. For example, a group comparison design represents each
condition by tissues from different biological individuals. It can be
extended by subsampling, i.e. a design that includes multiple tissue
sections from a same individual in a condition. Examples of MSI
experiments with group comparison design are in [20,21]. Alter-
natively, a paired design represents each condition by regions of a
same tissue, or multiple tissues from a same biological individual,
over multiple biological individuals. These designs are most effec-
tive, as they use each biological individual as its own control, while
fully characterizing the natural biological variation in the underly-
ing subject population. Examples of MSI experiments with a paired
design are in [22,23].

A special case of paired design is an unreplicated experiment,
i.e. experiment comparing conditions within a single tissue. Such
design is undesirable, as it fails to characterize the biological vari-
ation, and reduces the scope of conclusions in a way that is only

valid for one tissue. Therefore, it leads to overfitting, i.e., mistaking
subject-specific artifacts for differences in the entire populations,
and to irreproducible results.

A second important aspect of statistical experimental design is
the allocation of the tissues to all the steps of sample handling and
data acquisition. In particular, randomization of biological repli-
cates prevents biases due to technological artifacts from known and
unknown sources [15,19]. Randomization is impossible in unrepli-
cated experiments, and this further undermines their value.

This manuscript contrasts group comparisons and paired design
in experiments with tissues from single and multiple biological
individuals.

2.2. Data processing

Data processing is a protocol of data transformation, normaliza-
tion and reduction [24], adapted to each process of data acquisition.
For example, spectra in MALDI-TOF experiments may contain
matrix-specific artifacts. Baseline reduction can help alleviate
these artifacts. In nano-DESI experiments, the data are commonly
acquired as a collection of line scans, where the time to acquire
a mass spectrum varies. Therefore, the analyzed locations are
unevenly spaced within a line, and their number varies between
lines and tissues. In these experiments, data processing uses acqui-
sition time and average raster speed to infer the coordinates of the
analyzed locations, and spectral resampling and interpolation to
generate raster images [25].

Spectra from MSI experiments are often reduced to a set of
peaks, either by a peak-picking algorithm [26] or by selecting spe-
cific compounds of interest. The peaks are then aligned across
spectra and possibly filtered, to eliminate peaks with low signal, or
appearing in a small proportion of the spectra [24]. As an alterna-
tive to peak-picking, the mass spectra may be reduced by binning,
summing over the intensities in the bins. Bins may be chosen with
a fixed width, or with width that increases with the ratio of mass
to charge to account for shifts at large mass values [27].

Tissue composition, instrument variation, or even sample
preparation can cause ion suppression, and incomparable mass
spectra across locations and tissues. Normalization of the mass
spectra to a same scale aims to alleviate these artifacts. The most
common normalization equalizes the total ion current (TIC) across
locations, to account for global intensity variation [28,29]. While
the TIC normalization is adequate for most homogeneous samples
with little variation, it can be hampered in heterogeneous tissues
with biological variation in high-intensity ions [30]. An alternative
is the normalization to internal standards, i.e. molecules known to
be homogeneously distributed across tissue locations [31,32]. This
normalization aims to correct the artifacts of data acquisition in
a way that is not affected by high-intensity ions. Many other nor-
malizations exist, such as those based on median, root mean square,
and noise level [28], variance stabilizing normalization [30], sliding
window normalization [33], and others [29].

Anoptimal choice of normalization is study-specific, and reflects
its biological and technological characteristics. This manuscript
does not aim at suggesting optimal data processing. Instead, we
illustrate the extent to which the choice of normalization affects
the results of downstream statistical analyses.

2.3. Statistical analysis of MSI experiments

According to the general principles of statistical design and anal-
ysis of experiments, statistical analysis must match the research
goal, the experimental design, and the sources of variation that
affect the analytes. We detail these points in the context of MSI
experiments.



KA. Bemis et al. / International Journal of Mass Spectrometry 437 (2019) 49-57 51

Statistical analysis must match the research goal. The
research goal of class comparison is to detect systematic changes
in chemical composition between conditions. This translates into
the statistical goal of testing the hypothesis Hy of no difference
in analyte abundance between the conditions, on average in the
underlying biological populations and tissues, against the alter-
native H, that a difference exists. This statistical goal is achieved
with supervised analysis, where locations on the tissues in the
experiment are annotated with their conditions. It also requires
a statistical model, as we discuss below. The hypotheses are tested
separately for each analyte, and are sometimes referred to as
“univariate comparisons” [15]. The results are characterized in
probabilistic terms, such as statistical power and False Discovery
Rate among the analytes as in [34].

Alternative research goals of MSI experiments translate into dif-
ferent statistical goals, and require different statistical analyses.
For example, finding regions with homogeneous chemical com-
position translates into the statistical goal of class discovery. It
is achieved with unsupervised analysis, e.g., Principal Component
Analysis (PCA) [35]. Since unsupervised analysis takes as input
unlabeled tissues, it is inappropriate for detecting changes between
known conditions.

As another example, predicting the condition of each individ-
ual location on a tissue, or of the entire tissue, translates into the
statistical goal of class prediction. This is the only statistical goal
appropriate for discovery of biomarkers of a disease. Similarly to
class comparison, this statistical goal is achieved with supervised
analysis. Unlike the class comparison, it requires machine learn-
ing algorithms such as Partial Least Squares Discriminant Analysis
(PLS-DA) [36] to make predictions for each individual biological
subject and tissue, while simultaneously using all or a subset of the
analytes. Methods such as PLS-DA are inappropriate for studies of
differential abundance, because statistical properties of predictive
analytes differ from those of differentially abundant analytes.

Statistical analysis must match the experimental design. Sta-
tistical experimental design defines the regions of the tissues that
we would like to compare. The regions can be defined using images
acquired with alternative modalities, such as MRI [10,11], optical
microsopy [37], or using marker analytes, acquired as part of the
MSI experiment. It is important to emphasize that these markers
must be defined in advance (as opposed to be used twice - first to
determine the regions and then to test for differential abundance
between these regions) to avoid overfitting and unduly optimistic
conclusions of hypothesis testing.

Tissues selected for MSI experiments can form a group com-
parison or a paired design, with or without biological replication.
However, the advantages of complex designs, such as paired design
or design with biological replicates, are lost if they are not accord-
ingly analyzed. For example, a statistical analysis ignoring the
paired structure of a design misses the opportunity to use each
biological subject as its own control, thus limiting the effect of
subject-to-subject variation which is not of interest in the experi-
ment [38].

Statistical analysis must match the existing sources of
variation. Statistical analysis requires a statistical model, i.e.
an abstraction describing the systematic variation between the
conditions, and nuisance variation from sources beyond the
experimental control. Nuisance variation includes the biological
between-subject and within-subject variation, and the measure-
ment error.

Linear mixed effects model is a general and flexible class of such
abstractions, applicable to complex designs. A special case is Anal-
ysis of Variance (ANOVA), which describes the variation among
multiple groups. ANOVA-based statistical analysis of two groups
of independent biological replicates is equivalent to a two-sample
t-test with pooled variance. Models for more complex designs may

include, e.g., random effects that distinguish biological variation
and measurement error [39,40].

A key assumption of the linear mixed effects models above is
that the replicates in the experiment are statistically independent.
This is typically true with respect to the biological replicates, which
are distinct tissue donors. However, the assumption does not hold
with respect to locations in a biological tissue. Chemical compo-
sition of biological tissues is prone to spatial autocorrelation, i.e.,
situation where proximate locations in a tissue are more likely to
have similar chemical composition than distant locations in the
same tissue [41]. One solution to this challenge is to only model
one value from each tissue, such as the average abundance of the
analyte within each condition and each biological replicate [15,42].
Although this approach is compatible with linear mixed models, it
ignores the heterogeneity of the tissue.

An alternative approach is to extend the linear mixed model in a
way that explicitly describes spatial autocorrelation. Cassese et al.
[41] proposed such a modeling and testing framework, however it
is limited to a single tissue, and is not directly applicable to com-
plex experimental designs. Another extension, called Hierarchical
Bayesian Spatial Model, combines the flexibility of describing the
experimental designs, the independence of biological replicates,
and the within-tissue spatial autocorrelation [43]. We illustrate the
impact of the modeling choices on the statistical analysis using two
case studies below.

3. Methods
3.1. RCC: DESI-MSI of human renal cell carcinoma

The study was first reported in [22], and discussed in [44]. One of
the goals of the study was to detect differentially abundant analytes
between cancerous and healthy tissues.

Statistical experimental design. The experiment was con-
ducted in a paired design. Pairs of tissues exhibiting renal cell
carcinoma (RCC) and adjacent normal tissue were collected from
eight human volunteers (Fig. 1). The tissues were subjected to
serial hematoxylin and eosin (H&E) staining. The pathology exam-
ination of the stained tissues was unable to define homogeneous
sub-regions of the tissues with respect to the disease at sufficiently
high resolution. Therefore the entire tissue sections were labeled
as either “cancer” or “normal”.

Data acquisition. The tissues were analyzed with DESI MSI in
negative mode on a Thermo LTQ Orbitrap instrument. The data
were recorded in RAW file format, converted to the Analyze 7.5 for-
mat, and imported into the open-source software Cardinal v1.10.0
[45]. The resulting dataset is available in the R package Cardinal-
Workflows on Bioconductor.

Data processing. All the processing was done using Cardinal.
Since no high-intensity features with high biological variation were
anticipated a priori, the data were processed using TIC normaliza-
tion and the spectra peak picked according to local maxima. The
peaks were aligned across spectra and filtered to remove the peaks
that were present in fewer than 1% of locations. This resulted in 160
peaks. Finally, peaks with observed intensities below the boundary
of detection were set to the minimum detected intensity for that
peak. All the peak intensities were log, transformed to match the
assumptions of the downstream statistical analysis.

Statistical analysis. We evaluated the sensitivity of various sta-
tistical analysis approaches with respect to the number of detected
differentially abundant analytes. The importance of matching the
experimental design was evaluated by comparing the statistical
models that either account for, or ignore, the paired nature of the
design. The importance of characterizing the existing sources of
variation was evaluated by comparing models that either account
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Fig. 1. The human renal cell carcinoma (RCC) experiment with paired design. Both “cancer” and “normal” tissues were collected from each of the 8 donors. The images are

H & E stained serial sections used for pathological diagnosis.

for within-tissue spatial autocorrelation or summarize the loca-
tions in a tissue by averaging log, intensities of each analyte in
each tissue. Approaches with more differentially abundant analytes
were more sensitive.

In addition to the sensitivity, the specificity of the approaches
was evaluated by “same-same” comparisons. Locations in each tis-
sue were separated into a top and a bottom half, and compared as
if they were different conditions. Approaches with fewer differen-
tially abundant analytes were more specific.

Finally, the importance of matching the research goal was eval-
uated by comparing the results of hypothesis testing to that of PCA
and PLS-DA.

3.2. CpG: Nano-DESI MSI of ischemic stroke preconditioning in
mouse brain

CpG is an unmethylated oligodeoxynucleotide that has been
shown to stimulate the toll-like receptor 9 and induce neuropro-
tection against ischemic damage, for example ischemic stroke, if
administered as a preconditioning agent. The goal of this exper-
iment was to elucidate chemical effects on the brain after CpG
administration to mice, and to further understand the molecular
mechanisms of this neuroprotection.

Statistical experimental design. The experiment was designed
as a group comparison (i.e., each condition was represented by
different mice) with subsampling (i.e. multiple serial sections of
a same mouse tissue). Samples of brain tissue were harvested from
three mice with the saline treatment (mice A, B, and C) and three
mice with the CpG treatment (mice X, Y, and Z). Three serial sections
were gathered from each mouse brain. Mouse Y from the CpG group
produced only two sections. The dataset consisted of 17 tissues total
(Fig. 2).

Data acquisition. Serial tissue sections from the same mouse
were placed on the same slide for spectral acquisition. The dataset
was acquired in imaging mode, with three micromolar of a lipid
standard lysophosphatidylcholine (LPC) 19:0 (from Avanti Polar
lipids) included in the nano-DESI solvent, which consisted of 9:1
methanol:water [25]. AThermo LTQ-orbitrap instrument was used
to acquire the data in positive mode. The velocity of the stage was
40 um per second, with a scan rate of approximately 1 scan per sec-
ond. Due to the use of automated gain control, the scan rate varied
for each scan. The lines were spaced by 200 um. Assuming 1 scan
per second, the pixel size was approximately 40 x 200 microme-
ters. The MSI data were saved in RAW file format, and converted to
the NetCDF format by the Xcalibur software.

Data processing. Data in the NetCDF format were imported
into Cardinal v1.10.0 using an in-house R script based on Cardinal’s
readImzML function.

During import the data were binned with bin half-width of 200
parts-per-million (ppm), to balance the mass accuracy with the size
of the resulting file. The fixed ppm resulted in variable m/z step

sizes, such that in m/z units the bin width was wider for larger m/z
values. Spectra were then peak picked with respect to local maxima,
resulting in 434 peaks. Peaks with observed intensities below the
boundary of detection were set to the minimum detected intensity
for that peak. The peak corresponding to the sodium adduct of the
LPC standard was located in m/z 560.4 bin, while the potassium
adduct peak was in the m/z 576.4 bin.

Locations without the signal, and locations outside the tissue
boundary were defined as having zero intensities of the standards
(i.e.,m/z560.4 or m/z 576.4), as zero intensities likely corresponded
to locations with unsuccessful sample ionization or injection. For
example, over 5% of the locations on the first tissue section of mouse
A produced no signal. Due to the large number of missing loca-
tions, data from tissue sections indicated with an asterisk in Fig. 2
were judged as lower quality overall. We evaluated the impact of
including or excluding these sections during the statistical analysis.

We evaluated the impact of normalization on detection of dif-
ferentially abundant analytes in this dataset, by comparing the
normalizations that equalize (1) the TIC, (2) the log-intensities of
the standard peak at m/z 560.4, and (3) the log-intensities of the
standard peak at m/z 576.4.

Statistical analysis. In this dataset, we focused on the impor-
tance of characterizing the biological and technological sources of
variation. First, we evaluated the importance of biological repli-
cation, by comparing the analyses with all the mice, versus the
analysis with one mouse per treatment (mice C and Z). Second,
we evaluated the importance of quality control and reduction of
technical variation, by comparing the analyses with or without tis-
sues with low quality data. Finally, we evaluated the sensitivity of
the statistical approaches that either account for within-tissue spa-
tial autocorrelation or summarize the locations by averaging log,
intensities of each analyte in each tissue.

3.3. Methods of statistical analysis for class comparison

Analyses for class comparison specified several statistical mod-
els, which emphasized different aspects of variation. Below we
denote Yy the log; intensity of the analyte in condition i (i.e.,i=1
for the control, and i = 2 for the treatment), donor/mouse j, tissue k
and location L. For experiments with only one tissue per donor, we
set k=1. The models were specified separately for each analyte.

Models for summaries of locations in a tissue. The models
took as input the average of log,-intensities of the analyte across
all the locations in the tissue 17,-]»k,. In experiments with one tissue
per donor in each group (such as the RCC experiment, ignoring the
paired nature of the design), the variation was described using a
linear model [39]:

S iid

Vin. = +ai+e&;, a;=0, &~N(0,0?) (1)

In the model u is the average abundance of the analyte in the con-
trol population (i.e., the baseline), ¢; is the average deviation of the
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CpG Preconditioning Experiment
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Fig. 2. Experimental design of CpG versus Sal MSI dataset. The CpG preconditioning experiment has both biological replicates (multiple mice per treatment) and subsampling
(multiple tissues from each mouse). The images schematically illustrate the number of subsamples. The asterisk (*) indicates sections with lower quality data.

analyte abundance between the treatment and the control popula-
tions (i.e., the quantity of our main interest), and ¢;; simultaneously
represents all the biological and technological sources of varia-
tion. Parameters of the model were estimated by Least Squares.
The model-based conclusions regarding the differential abundance
were identical to those of a two-sample t-test with pooled variance.
When the analysis recognized that the experiment included two
tissues per donor in a paired design (as in the RCC experiment), it
could distinguish the within-subject biological variation and the
technological variation. This was accomplished by extending the
linear model into a linear mixed effects model with an extra random
term S;, which indicates the variation between the individuals j in
condition i:
Yljl =//L+O[i+5j+8,'j1
iid (2)

a1 =0, SNO,02), &

Eijk NN(O, 0?2 )

Parameters of the model were estimated by Maximum Likelihood.
The model-based conclusions were also a version of the t-test. How-
ever, the estimates of biological variation more accurately reflected
the experimental design.

In presence of subsamping (as in the CpG experiment), the
model similarly extended Eq. (1), but added the notation j(i) to
emphasize that tissue donors were nested within each condition,
and represented multiple tissue sections.

Yijk» =u+o;+ Sj(i) + Eijk @)
a1 =0, S;iN(©,02), &5 N(0,0?)

In Egs. (1)-(3), the models were fit separately for each analyte,
and therefore the total number of hypotheses tested was equal to
the number of analytes. To adjust for the multiplicity of testing,
the False Discovery Rate in the list of differentially abundant ana-
lytes was controlled at 5% using the procedure by Benjamini and
Hochberg [46].

Models that account for within-tissue spatial autocorrela-
tion. Taking as input the log-intensities of analytes at individual
locations on the tissue, the models above were extended into
Hierarchical Bayesian Spatial models, to distinguish the biologi-
cal variation within and between the tissues. In experiments with
one tissue per donor in each group (such as the RCC experiment,
ignoring the paired nature of the design), the Hierarchical Bayesian
Spatial Model extended Eq. (1) as follows [43]:

(4)

The term ¢y, is the spatial autocorrelation, which reflects the
similarity or heterogeneity of chemical composition in proximal
locations, and €;5; is the measurement error. The extent of spatial
autocorrelation depends on the condition and the subject. It also
depends on the ability of the experiment to define homogeneous
tissue regions, on the spatial resolution of the MSI, and on whether
the individual tissue locations represent one or multiple cell types.

yijll =uU+q; +Sj(,') + d)ij]l + €1

The spatial autocorrelation is estimated from the data separately
for each analyte.

Similarly, when the analysis recognized that the experiment
included two tissues per donor in a paired design (as in the RCC
experiment), the Hierarchical Bayesian Spatial Model extended Eq.

(2):

Yiji = i+ o + S + Gija; + € (5)

In presence of subsamping (as in the CpG experiment), the
model in Eq. (3) was similarly extended, while emphasizing that
tissue donors were nested within each condition, and were repre-
sented by multiple tissue sections

(6)

Here Ty indicates the variation between tissue sections of a same
donor.

Compared to the models for summaries of locations, the intro-
duction of spatial autocorrelation required a fully Bayesian model
specification. In particular, for the quantity of our main interest «;,

Yijio = o+ @i + Sjiiy + Tkigiy + Pijia + Eija-

oz | y~N (0, r(y)o?)
r(0) = 0.00001,

ap =0,

r(1)=1,

(7)

y~Bern(mp)

When population average of the analyte in the treatment group
differs from that in the control group, the indicator of differen-
tial abundance denoted by y =1, and 0 otherwise. Therefore the
hypothesis Hy of no difference in analyte abundance between
the conditions, versus the alternative H, that a difference exists,
was tested in terms of posterior probabilities P(y = 1|data). The
remaining priors are in A.

Parameters of the model were estimated using Markov Chain
Monte Carlo. To adjust the posterior probabilities for the multiplic-
ity of testing, the False Discovery Rate in the list of differentially
abundant analytes was controlled at 5% using the procedure by
Storey [47]. The datasets and the R code for all the analyses are
available upon request.

4. Results

We used the two case studies above to evaluate the importance
of following the general statistical principles for detection of differ-
entially abundant analytes in MSI experiments. First, we evaluated
the importance of accurately reflecting the experimental design.

Result 1: Recognizing the paired nature of the RCC
experiment enhanced the sensitivity of detecting differential
abundance. Table 1 shows that accounting for the paired nature
of the experimental design lead to better detection of differen-
tially abundant features between “cancer” and “normal”. This is
due to the fact that Egs. (2) and (5) more accurately characterized
the biological variation, and viewed each tissue donor as its own
control.

The advantage of the paired design is illustrated in Fig. 3 for
m/z 821.33. The log, intensity of the feature varied substantially
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Table 1

Number of differentially abundant analytes in the RCC experiment. Ave: Models for
summaries of tissue locations. Spat: Models that account for within-tissue spatial
autocorrelation. Superscripts in parentheses are equations in Section 3.3 describ-
ing the models. “Group comparison”: comparison between “cancer” and “normal”
tissues. Larger numbers indicate better sensitivity. “Same-same comparison”: com-
parison of two halves of the tissue sections, i.e. sections with a same condition.
Smaller numbers indicate better specificity.

Design Group Same-same comparison
comparison Normal Cancer
Ave Spat Ave Spat Ave Spat
Unpaired 13 57(4) om 04 om 0@
Paired 362 1380) 0@ 90 02 296)
Diagnosis “Cancer ENormal
.. .
[ : I
e 3 .
2. i
7] . .
£ . . ! |
E ] i .
= [ 4 | .
K Lol [
2 ‘ = H
(B il
ALL MH0204_33 | | UH0505_12 | | UH0710_33 | | UH9610_15 | | UH9812_03 | | UH9905_18 | | UH9911_05 | | UH9912_01

Donor

Fig. 3. Log, intensities of m/z 821.33 in the RCC experiment. Filled boxes: all the
donors combined. Empty boxes: donor-specific values. Colors indicate the disease.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)

Table 2

Number of differentially abundant analytes in the CpG experiment. Full: using all
tissues in the experiment. Reduced: excluding tissue sections starred in Fig. 2. Ave:
Models for summaries of tissue locations. Spat: Models that account for within-
tissue spatial autocorrelation. Rows in the table correspond to the normalization
strategies. Superscripts in parentheses are equations in Section 3.3 describing the
models. Larger numbers indicate higher sensitivity.

Normalization Full Reduced

Ave®) Spat(® Ave®®) Spat(®)
TIC 0 10 0 23
m/z 560.4 0 7 0 49
m|z576.4 0 7 0 52

between the donors. Combined across all the donors, the log; inten-
sity of the feature overlapped substantially between the conditions.
On the other hand, the shift between tissues of a same donor
pointed more prominently to the same direction (the feature was
up-regulated in “cancer” at various extents in most of the donors).
Combining the within-donor analyses of the feature facilitated the
detection of systematic changes.

Next, we evaluated the importance of accounting for all the
existing sources of variation.

Result 2: Recognizing the spatial autocorrelation in the RCC
and the CpG experiments enhanced the sensitivity, and did not
undermine the specificity, of detecting differential abundance.
For the RCC experiment, Table 1 shows that models recognizing
spatial autocorrelation improved the sensitivity of detecting dif-
ferential abundance, as compared to the models for summaries of
tissue locations. This is particularly true for Eq. (5), which accounted
for the paired nature of the experimental design. Similarly, for the
CpG experiment, Table 2 shows that recognizing spatial autocorre-
lation improved the sensitivity of detecting differential abundance
across the tissue subsets and normalizations.

The improved performance was due to the fact that the Hier-
archical Bayesian Spatial Model could extract richer information
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Fig. 4. Differentially abundant analytes in unreplicated experiments. (a) Compar-
isons in single pairs of “cancer” and “normal” tissues in the RCC experiment. X axis:
160 m/z features. Y axis: tissue donor. Black lines: differentially abundant features
for each donor, after fitting Eq. (5). (b) Comparisons in single pairs of mice in the
CpG experiment, after the TIC normalization and fitting Eq. (6). Left circle: number of
differentially abundant m/z features between mice A (excluding the starred sample
in Fig. 2) and mice X. Right circle: number of differentially abundant m/z features
between mice C and Z. (¢) Same as (b), but with normalization to m/z 560.4. (d) Same
as (b), but with normalization to m/z 576.4.

from the tissues in these experiments, which otherwise included
a relatively small number of tissue donors (8 in the RCC experi-
ments, and 3 per condition in the CpG experiment). For example,
Fig. 3 shows that there was substantial within-tissue variation in
m/z 821.33. The models taking as input tissue-wide averages lost
this information.

At the same time, the columns “same-same comparison” in
Table 1 indicate that the extra model complexity did not substan-
tially undermine the specificity of the results in the RCC dataset.
When controlling the FDR at 5% in the set of 160 spectral features,
we expected on average 160-0.05=8 false positive discoveries. The
results in the “same-same comparisons” among “normal” tissues in
Table 1 are comparable with this number. The ‘same-same compar-
isons” among “cancer” tissues exceed the expected number. This
may be due to heterogeneity of chemical composition in tumor
tissues.

Result 3: Omitting biological replicates in the RCC and CpG
experiments led to overfitting, and to irreproducible results.
In unreplicated experiments, summaries of locations in a tissue
contain no information regarding sources of variation. Therefore,
models in Egs. (1)-(3) cannot be applied. While models in Egs.
(4)-(6) are applicable in principle, doing so undermines the repro-
ducibility of the results. For the RCC experiment, Fig. 4(a) shows
that detection of differential abundance based on a single tissue
donor varied substantially between the donors. More features were
found differentially abundant than in Table 1. Similarly, for the CpG
experiment, Fig. 4(b) shows little overlap in differentially abundant
features in two sets of unreplicated experiments with the TIC nor-
malization, and Fig. 4(c) with the m/z 560.4 normalization. These
results are due to the fact that unreplicated experiments do not
allow us to assess the extent of between-donor variation of ana-
lyte abundance. Therefore, analyses of an unreplicated experiment
overfit the patterns of that particular donor, and the results are too
sensitive and not necessarily reproducible in another donor.

Next, we evaluated the importance of matching the research
goal.

Result 4: Principal Component Analysis (PCA) and Par-
tial Least Squares Discriminant Analysis (PLS-DA) of the RCC
experiment were not successful at determining differentially
abundant analytes. Fig. 5(a) illustrates the result of PCA of tissue
locations. The first two principal components only explained 50.2%
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Fig. 5. Principal Component Analysis of the RCC experiment. (a) Score plot of tissue
locations, in the space of the first two principal components. Each point indicates
a location. Locations are colored according to their classification by pathological
examination. (b) Loadings of tissue locations in the first principal component in (a),
versus estimated posterior probability of differential abundance according to the
Hierarchical Bayesian Spatial Model in Eq. (5). Points are spectral features, colored
according to differential abundance as determined by the Hierarchical Bayesian Spa-
tial Model, while controlling the FDR at 0.05. (c) Same as (a), but after averaging the
log, intensities of each analyte over all the locations in a tissue section. (d) Loadings
of tissue averages in the first principal component in (c), versus — log;o BH-adjusted
p-value based on the paired model for averages in Eq. (2). Points are spectral fea-
tures, colored according to differential abundance determined by the linear model,
while controlling the FDR at 0.05. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of the article.)

of the total variation, and did not fully separate the “cancer” and the
“normal” locations. The systematic pattern of the points indicated
the presence of additional sources of variation, which affected the
chemical composition of the locations, but which was not captured
by the first two principal components.

Frequently, loadings of the analytes in principal components are
interpreted as evidence of their “importance”. Fig. 5(b) contrasts the
loadings of the first principal component with results of model in
Eq. (5). As can be seen, there is little agreement between the two
approaches. In particular, class comparison detected differential
abundance in many features with small loadings. Moreover, class
comparisons controlled the False Discovery Rate in the list of differ-
entially abundant analytes, while the loadings-based approaches of
PCA did not.

Fig. 5(c) and (d) repeats the PCA above for averaged log,
intensities of the analytes in each tissue. The first two principal
components only explained 55.8% of the variation of averages.
The figures point to the same conclusions as above. Overall, Fig. 5
illustrates that for the RCC experiment, PCA was not successful in
detecting differentially abundant analytes.

Fig. 6 shows the results of PLS-DA, which point to the same
conclusions as the results of PCA.

Finally, we evaluated the impact of data processing steps.

Result 5: Excluding tissue sections with poor quality mea-
surements in the CpG experiment improved the sensitivity of
detecting differentially abundant analytes. Table 2 illustrates the
benefit of a quality control step preceding the statistical analysis.
Discarding tissues with poor quality measurements, based on cri-
teria such as the strength of the signals, increased the sensitivity of
detecting differentially abundance with the model that accounts for
spatial autocorrelation. The poor quality measurements inflated the
estimates of biological and technological variation, and excluding
these measurements lead to more sensitive results.
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Fig. 6. Partial Least Squares Analysis of the RCC experiment. (a) Regression coeffi-
cients of PLS-DA, versus estimated posterior probability of differential abundance
according to the Hierarchical Bayesian Spatial Model in Eq. (5). Points are spectral
features, colored according to their differential abundance, as determined by the
Hierarchical Bayesian Spatial Model, while controlling the FDR at 0.05. (b) Regres-
sion coefficients of PLS-DA, versus —logjo transformed adjusted p-values from Eq.
(2).Points are spectral features, colored according to differential abundance as deter-
mined by the linear model, while controlling the FDR at 0.05. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of the article.)
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Fig. 7. Intensities of m/z 756.513 in all the tissues of the CpG experiment, separated
by treatment. Left: after the TIC normalization. Middle: after normalization to the
sodium adduct (m/z 560.4). Right: after normalization to the potassium adduct (m/z
576.4).

Result 6: The choices of normalization in the CpG experiment
impacted the detection of differentially abundant analytes. Fig. 7
illustrates that the choice of normalization strongly affected the
log, intensities of the analytes, and our ability to detect differential
abundance. The TIC normalization is frequently used, as it addresses
artifacts such as variation in electrospray ionization. However, in
the CpG experiment this normalization was possibly affected by
high-intensity features with true biological changes in abundance,
and equalizing the TIC could over-correct the true variation. Table 2
shows that, as the result, the TIC normalization led to fewer dis-
coveries of differentially abundance in high-quality measurements,
and was not effective for this particular experiment. At the same
time, normalization with a standard is also fraught with difficul-
ties. Binning can contaminate the standards with signals from other
analytes, and different analytes may need to be normalized with
different adducts of the standard. For example, in the case of the
CpG experiment it may be possible to identify and separately nor-
malize Naand Kadducts based on the exact mass difference without
identifying the individual molecules.
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5. Discussion

The case studies confirmed that the general principles of sta-
tistical analysis hold for MSI experiments, and should be viewed
as guidelines for maximizing the sensitivity and the accuracy of
detecting differentially abundant analytes.

First, statistical analysis should match the research question,
and use appropriate modeling strategy when the experiment aims
at class comparison, as opposed to class discovery or class predic-
tion.

Second, statistical analysis should match the experimental
design. Some designs are more effective than others. For example,
we have illustrated that for the RCC experiment the paired design
is beneficial, as it allows us to view each subject as its own control
when comparing the healthy and the cancer tissues. However, the
benefit of this design can only be fully exploited if it is followed
with the appropriate statistical analysis.

Third, MSI experiments should avoid unreplicated designs, i.e.
designs that only focus on tissues from a single donor. Unreplicated
experiments limit the scope of conclusions to only that particular
donor. As we have seen in the RCC and in the CpG experiments,
unreplicated designs lead to overly optimistic and irreproducible
results. This is not a surprise because mass spectrometry imag-
ing, as any other measurement technology, does not eliminate the
between-subject variation [48].

Forth, in addition to the between-subject variation, statistical
analysis should also account for the within tissue spatial autocor-
relation. In the case studies in this manuscript, the improvement in
sensitivity of the spatial model over averaging was due to appro-
priately using the individual intensities from all the measured
locations. This enhanced the information from an experiments with
a relatively small number of donors. However, if the experiment
included additional independent tissue donors, the contribution of
the within-tissue variation to the sensitivity of the results would
likely decrease, and the overall sensitivity of the experiment would
likely increase.

Fifth, as we have seen, data processing and quality control
strongly affect the results of the statistical analysis. Subjective
inclusion and exclusion of measurements, and subjective choices of
normalization, can lead to overfitting and to irreproducible results
[49]. Similarly, normalization methods and other analysis choices,
such as presence or absence of log, transformations, or the treat-
ment of zero intensities of the spectral peaks, are also likely to make
animpact [50]. To avoid overfitting and maximize the reproducibil-
ity of the results, a protocol of quality control and data processing
should be specified before conducting the experiment. The protocol
can be based on preliminary from a small-scale pilot investigation,
and rely on objective criteria of quality (such as the strength of the
signal or the amount of missing peaks) and fully automated data
analysis steps.

Finally, studies of differential abundance should be followed by
additional experimental validation. Two approaches are sometimes
considered. First, the same biological samples can be re-analyzed
by orthogonal experiments (such as LC-MS) to identify, quantify
and interpret the analytes. However, this approach does not consti-
tute validation in a statistical sense, as it confounds the systematic
changes induced by the stress or the disease with the biological
or sample processing artifacts of the chosen biological replicates.
The second approach is to repeat the experiment with new bio-
logical specimens, while identifying the analytes. This validation is
preferred, and is the gold standard of reproducible research.

Overall, our results demonstrated that appropriate statistical
analysis is an important aspect of MSI experiments, and should
be carefully considered both before designing the experiment, and
during all the data analysis steps.
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Appendix A. Priors of Hierarchical Bayesian Spatial Model

The assumptions of the model in Eqgs. (4)-(6) are:
a1 =0, aly~N(0,r(y)o3)
r(0) =0.00001, r(1)=1, y~Bern(mp)
Sjlo2~N (0,02), TyloZ~N (0,02)
1
—~Gl(as, bs), —~Glar, br)
g5 or

b 1
Gij| T2 ~ICAR(T?, W), ;NG(GI, bz)
i
1
€ijalod~N (0,02),  —~G(ae, be),

o2
u~Dirac(c)

The intrinsic conditional autoregressive (ICAR) model is as
described in [51]. It is a conditional model of spatial autocorrela-
tion, with spatial effect ¢y, varying around the mean spatial effects
at its neighboring locations according to a Normal distribution
with variance 7:1.2 /(#ofneighborsofl). The neighborhood structures
of locations in each tissue are described by the binary matrices Wi.

The hyperparameters of the Gamma distributions were selected
as shape (as, ar, ar, a¢)=0.001 and rate (bs, br, bz, be)=0.001, com-
mon choices for a vague prior. The hyperparameter of the condition
effect a; was set to 02 = 1000, also forming a vague prior. The
prior probability of differential abundance o =0.1, reflecting the
belief that only a small proportion of features were differentially
abundant.

A typical choice of the prior distribution of the baseline condi-
tion effect w is a non-informative Normal distribution. However,
in our experience with MSI experiments, an informative prior of
the baseline improved substantially the stability and the conver-
gence of MCMC. Therefore, the implementation in this manuscript
specified a Dirac (i.e., point mass) probability distribution, cen-
tered on the parameter C=Zy1jk,/N, (i.e., the mean of feature
log,-intensities in the reference condition).
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