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We consider the problem of fairly allocating indivisible goods, focusing on a recently introduced notion of

fairness called maximin share guarantee: each player’s value for his allocation should be at least as high as

what he can guarantee by dividing the items into as many bundles as there are players and receiving his

least desirable bundle. Assuming additive valuation functions, we show that such allocations may not exist,

but allocations guaranteeing each player 2/3 of the above value always exist. These theoretical results have

direct practical implications.
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1 INTRODUCTION

We are interested in the fair allocation of indivisible goods; however, to explain the intricacies of
this problem, we start from discussing the easier case of divisible goods. In the latter setting, known
as cake cutting, we need to divide a heterogeneous cake between players with different valuation
functions (i.e., different players may have different values for the same piece of cake).
When there are only two players, the Cut and Choose protocol provides a compelling method for

dividing a cake—and will play an important conceptual role later on. Under this protocol, player 1
cuts the cake into two pieces that he values equally, and player 2 subsequently chooses the piece
that he prefers, giving the other piece to player 1. The resulting allocation is fair in a precise, formal
sense known as envy-freeness: Each player (weakly) prefers his own allocation to the allocation of
the other player. Envy-free cake divisions exist for any number of players; today we know exactly
how many cuts are needed to achieve such allocations in the worst case (Alon 1987) and how to
constructively find them (Brams and Taylor 1995) (although subtle complexity questions remain
open (Procaccia 2009, 2013)). It is interesting to note that in the standard cake-cutting setting,
envy-freeness implies another natural fairness property called proportionality: each player in the
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set of playersN receives a piece of cake whose value is at least 1/|N | of the player’s value for the
entire cake.
Cake cutting is a nice metaphor for real-world problems such as land division; the study of cake

cutting distills insights about fairness that are useful in related settings, such as the allocation of
computational resources (Ghodsi et al. 2011; Parkes et al. 2015; Kash et al. 2014; Procaccia 2013).
However, typical real-world situations where fairness is a chief concern, notably divorce settle-
ments and the division of an estate between heirs, involve indivisible goods (e.g., houses, cars, and
works of art), which in general preclude envy-free, or even proportional, allocations. As a simple
example, if there are several players and only one indivisible item to be allocated, the allocation
cannot possibly be proportional or envy free. Foreshadowing the approach that we take in the
following, we note that no allocation can be even approximately (in a multiplicative sense) fair
according to these notions, because some players receive an empty allocation of zero value.
So how can we divide an estate without lawyers? Potentially using an intriguing alternative to

classical fairness notions, recently presented by Budish (2011) (building on concepts introduced by
Moulin (1990)). Imagine that player 1 partitioned the items into |N | bundles, and each player in
N \ {1} adversarially chose a bundle before player 1. A smart player would partition the bundles
to maximize his minimum value for any bundle. For the same reason we intuitively view the Cut
and Choose protocol as fair to player 1, even before specifying fairness axioms, the allocation that
leaves player 1 with his least desired bundle seems fair to player 1—as he is the one who divided the
items in the first place. Budish calls the value that player 1 can guarantee in this way hismaximin

share (MMS) guarantee.1 But an allocation based on the division of player 1 may make another
player regret the fact that he was not the one to divide the items. The question is this: can we
allocate the items in a way that all players receive a bundle worth at least as much as their MMS
guarantee? This question was recently addressed by Bouveret and Lemaître (2014), and although
they were able to answer it for special cases (which we list in Section 1.3), they left the general
question open.

1.1 Model, Conceptual Contribution, and Technical Results

Denote the set of players byN and the set of indivisible items to be allocated by G. Furthermore,
for notational convenience, let n = |N | and m = |G|. Each player i is endowed with a valuation
function vali : 2

G → R+. We simplify notation by writing vali (j ) instead of vali ({j}) for an item
j ∈ G. We assume that the valuation functions are additive:

∀S ⊆ G, vali (S ) =
∑
j ∈S

vali (j ).

This assumption is also made in most of the related work on fair division of indivisible goods (see
Section 1.3), including the work of Bouveret and Lemaître (2014) that studies the MMS guarantee
in the same setting. And more importantly, people find it difficult to specify combinatorial pref-
erences, which is why some deployed implementations of fair division methods (see Section 1.2)
rely on additive valuation functions. Finally, our positive result does not hold under larger classes
of valuation functions, such as subadditive and superadditive functions.
For a set S ⊆ G, let Πk (S ) be the set of k-partitions of S . Define the k-maximin share (k-MMS)

guarantee of player i ∈ N as

MMSi (k, S ) = max
(T1, ...,Tk )∈Πk (S )

min
j ∈[k]

vali (Tj ),

1This term should not be confused with the terminology of the systems literature, where max-min fairness simply refers

to maximizing the value any player receives (Demers et al. 1989) rather than an axiomatic notion of fairness.
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where [k] = {1, . . . ,k }; we call a partition that realizes this value player i’s k-maximin partition

of S . The valuation function used to determine a player’s MMS guarantee will be clear from the
context. An allocation (A1, . . . ,An ) ∈ Πn (G) allocates the subset of items Ai to each player i . We
say that (A1, . . . ,An ) is an MMS allocation if and only if

∀i ∈ N , vali (Ai ) ≥ MMSi (n,G).
Our first result is negative.

Theorem 2.1. For any set of players N such that n ≥ 3, there exist a set of items G of sizem ≤
3n + 4, and (additive) valuation functions, that do not admit an MMS allocation.

We find this theorem surprising because extensive automated experiments by several groups of
researchers (including us) have failed to find a counterexample. Indeed, the counterexamples rely
on very precise constructions. In Section 2, we first provide explicit counterexamples for the cases
of three and four players (the latter illustrates the key ideas), and then we give the full proof.
Although it seems that MMS allocations almost always exist, we wish to relax this fairness

notion to guarantee existence. Fortunately, unlike other fairness notions such as envy-freeness,
the MMS guarantee supports a multiplicative notion of approximation. Our main question is this:

Is there a value γ > 0 such that we can always find an allocation A1, . . . ,An that

satisfies vali (Ai ) ≥ γ · MMSi (n,G) for all i?

We answer this question in the positive for

γ = γn � 2�n	odd
3�n	odd − 1

,

where �n	odd is the largest odd number that is smaller or equal to n. Note that γn is always greater
than 2/3, and it is equal to 3/4 for the important cases of three and four players. More precisely,
we prove the following theorem in Section 3.

Theorem 3.1. There always exists an allocation A1, . . . ,An such that for all i ∈ N , vali (Ai ) ≥
γnMMSi (n,G). Moreover, for every ε > 0, an allocationA1, . . . ,An such that for all i ∈ N , vali (Ai ) ≥
(1 − ε )γnMMSi (n,G) can be computed in polynomial time in n andm.

1.2 Practical Applications of Our Results

The theory of fair division has been extensively studied, as shown, for example, by the books by
Moulin (2003) and Brams and Taylor (1996). Despite the abundance of extremely clever fair division
algorithms, very few have been implemented. The work of Budish (2011) is a rare example; his
method is currently used for MBA course allocation at the Wharton School of the University of
Pennsylvania. Another example is the adjusted winner method (Brams and Taylor 1996), which
assumes that there are exactly two players (with additive valuation functions). Adjusted winner
has been patented by NYU and licensed to Fair Outcomes Inc.
Two of us (Kurokawa and Procaccia) are involved in an effort to change this situation by

building a fair-division Web site called Spliddit (Goldman and Procaccia 2014), available at
http://www.spliddit.org. Quoting from the Web site:

Spliddit is a not-for-profit academic endeavor. Its mission is twofold:

—To provide easy access to carefully designed fair division methods, thereby

making the world a bit fairer.

—To communicate to the public the beauty and value of theoretical research in

computer science, mathematics, and economics, from an unusual perspective.
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Since its launch in November 2014, Spliddit has attracted more than 110,000 users (as of September
24, 2017) and has received significant press coverage.
Spliddit contains implementations of existing mechanisms for the division of rent, credit, fare,

and chores. However, for the fifth application—dividing indivisible goods—we were unable to find
satisfactory methods for more than two players, despite discussions with leading experts on fair
division (we survey some existing methods in Section 1.3). This provided strong motivation for
the theoretical work reported here.
The approach that we ultimately implemented relies heavily on Theorem 3.1. We consider three

“levels” of fairness: envy-freeness, proportionality, and (approximate) MMS guarantee. It is easy to
verify that each of these fairness notions implies the ones following it. Users specify their valuation
functions by distributing a fixed pool of points between the items. We then find an allocation
thatmaximizes social welfare—

∑
i ∈N vali (Ai )—subject to the strongest feasible fairness constraint

(using an integer linear programming formulation, which is solved via CPLEX). For MMS, we
maximize the value of γ for which the γ -MMS guarantee is feasible. By Theorem 3.1, achieving
γ > 2/3 of the MMS guarantee is always feasible, so the theorem ensures an outcome that is, well,
fair enough. By providing rigorous fairness guarantees that are easy to explain, it justifies Spliddit’s
tagline: “provably fair solutions.”

1.3 Related Work

1.3.1 Prior Work. Motivated by the problem of allocating courses to students, Budish (2011)
studies a solution concept that he calls approximate competitive equilibrium from equal incomes

(CEEI). Budish shows the existence of an approximate CEEI (with certain approximation pa-
rameters), even when the preferences of players are unrestricted (so they may correspond to
any combinatorial valuation functions). Roughly speaking, an approximate CEEI guarantees that
vali (Ai ) ≥ MMSi (n + 1,G)—that is, each of then players receives its (n + 1)-MMS guarantee. How-
ever, this result takes advantage of an approximation error in the items that are allocated (some
items might be in excess demand or excess supply). The approximation error grows with the over-
all number of items, and with the number of items demanded by each player, but not with the
number of players or the number of copies of each item. Therefore, as the two latter parameters
go to infinity, the error goes to zero. A large economy, in this sense, is plausible in the context
of MBA course allocation, because there are many MBA students and many seats in each course,
but relatively few courses that are offered, and even fewer courses a single student can take. But
Budish’s results do not provide practical guarantees when there are, say, three or four players, and
(very possibly) only one copy of each item—which is the setting in which we are interested.
Like us, Bouveret and Lemaître (2014) focus on the division of indivisible goods between players

with additive valuations. They study a hierarchy of fairness properties, of which the MMS guaran-
tee is the weakest (it is easy to see that allocations satisfying the other properties may not exist).
Among other results, they show that MMS allocations exist in the following cases: (i) valuations
for items are 0 or 1, (ii) the values different players assign to items form identical multisets, and
(iii)m ≤ n + 3. They also present results from extensive simulations using different distributions
over item values; MMS allocations exist in each and every trial.
Also related is the work of Lipton et al. (2004). Among other results, they give a polynomial

time algorithm that computes approximately envy-free allocations, where the approximation is
additive. Specifically, they let α be the largest possible increase in value a player can have from
adding one item to his bundle and produce an allocation such that vali (Ai ) ≥ vali (Aj ) − α for all
i, j ∈ N . This interesting result may not be very practical in and of itself; for example, if one of the
items is extremely valuable, the players would not be guaranteed anything. In contrast, assuming
that items have positive values, an MMS allocation (or any multiplicative approximation thereof)
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gives some player a bundle worth zero (if and) only if any allocation gives some player a bundle
worth zero.
Hill (1987) shows that when valuations are additive, indivisible items can be allocated in a way

that a certain value is guaranteed to each player, and Markakis and Psomas (2011) refine this
guarantee and construct a polynomial time algorithm that achieves it. However, the guaranteed
value is defined using an unwieldy function that depends on the number of players as well as on
the value of the most valuable item, and even for three players the function’s value quickly goes
down to zero as the most valuable item becomes more valuable.
When there are exactly two players, practical methods for dividing indivisible goods are avail-

able. For example, recent work by Brams et al. (2014) gives a method satisfying several desirable
properties, including envy-freeness; its main shortcoming is that it may not allocate all items (it
generates a “contested pile” of unallocated items). The adjusted winner method (Brams and Taylor
1996), mentioned earlier, is another practical method (which is routinely being used, as discussed
in Section 1.2)—but it implicitly assumes that the items are divisible and would typically require
splitting one of the items. In any case, for more than two players, one encounters a great many
paradoxes when contemplating standard fairness notions (Brams et al. 2003). Moreover, gener-
alizing these practical two-player protocols is impossible. For example, adjusted winner can be
interpreted as a special case of the egalitarian equivalent (Pazner and Schmeidler 1978) rule (for
two players and additive valuation functions), but the latter method strongly relies on divisibility
and may end up splitting all goods.
From an algorithmic viewpoint, our work is related to works on the problem of allocating indi-

visible goods to maximize the minimum value any player has for his bundle (under additive val-
uation functions)—also known as the Santa Claus problem (Bezáková and Dani 2005; Bansal and
Sviridenko 2006; Asadpour and Saberi 2007). Woeginger (1997) studies the special case of players
with identical valuations and presents a polynomial time approximation scheme (PTAS) that we
leverage in the following.
Somewhat further afield, recent years have seen quite a bit of computational work on cake

cutting (see Procaccia (2013) for an overview). One question that received some attention from
the theoretical computer science community is the complexity of proportional and envy-free cake
cutting in a concrete complexity model (Magdon-Ismail et al. 2003; Edmonds and Pruhs 2006a,
2006b; Woeginger and Sgall 2007; Procaccia 2009).

1.3.2 Subsequent Work. Since the publication of the earliest version of our results (Procaccia
and Wang 2014), several works have followed up on ours.
The preliminary version of Theorem 3.1 (Procaccia and Wang 2014) achieves a 2/3 − ε approx-

imation of the MMS guarantee in polynomial time only in m—that is, computational efficiency
requires a constant number of players. The main result of Amanatidis et al. (2015) improves the
running time of that algorithm: they achieve a 2/3 − ε fraction of the MMS guarantee in polyno-
mial time for any number of players. They do this by modifying one of the steps of the original
(unintuitive) algorithm of Procaccia and Wang (2014). The current proof of Theorem 3.1 is com-
pletely different from the original one, and, in particular, immediately leads to an (arguably) intu-
itive, polynomial time algorithm. Among other results, Amanatidis et al. (2015) also show that a
7/8-MMS allocation can be guaranteed for three players, improving on our bound of 3/4 for this
case.
Independently of our work on the current proof of Theorem 3.1, Barman and Krishna

Murthy (2017) provide an almost identical (slightly weaker) bound through a relatively simple,
polynomial time algorithm. The two algorithms are technically related in that both build on the
envy-cycle elimination procedure of Lipton et al. (2004). One key difference is that Barman and

Journal of the ACM, Vol. 65, No. 2, Article 8. Publication date: February 2018.



8:6 D. Kurokawa et al.

Krishna Murthy effectively leverage a reduction, due to Bouveret and Lemaître (2014), to the
case where all players have the same ordinal preferences over the items. Barman and Krishna
Murthy also achieve a 1/10 approximation of theMMS guarantee when the valuation functions are
submodular.
A brand newwork byGhodsi et al. (2017) provides even stronger bounds. Most importantly, they

design an algorithm that gives a 3/4-approximation to the MMS guarantee for additive valuations.
Like Barman andKrishnaMurthy (2017), they also examinemore general combinatorial valuations,
achieving approximation ratios of 1/3 for submodular, 1/5 for XOS, and Θ(logm) for subadditive.
In a slightly different direction, Amanatidis et al. (2016) design truthful approximations algo-

rithms for the MMS guarantee. For the so-called cardinal model, where players report their value
for each item, they provide a truthful algorithm that achieves a Θ(m)-approximation of the MMS
guarantee. For the case of two players (where an MMS allocation always exists), they are able to
give a truthful 1/2-approximation of the MMS guarantee and prove that no truthful algorithm can
yield a better ratio.
In our recent work with Caragiannis et al. (2016), we advocate the max Nash welfare solution,

which maximizes the product of utilities, as a method for allocating indivisible goods. We show
that this solution, which is clearly Pareto efficient, satisfies an approximate envy-freeness property
and also provides a Θ(1/

√
n) approximation of the MMS guarantee in theory, and a much better

approximation in practice. The new solution has been deployed on Spliddit since May 2016.

1.4 Open Problems

One obvious question remains open. Theorem 2.1 does not provide an upper bound on the the con-
stant γ > 0 such that γ -MMS allocations always exist, and our constructions in Section 2 provide
very weak upper bounds. Our lower bound, given by Theorem 3.1, is 2/3; as noted earlier, it was
improved to 3/4 by Ghodsi et al. (2017). Further narrowing this gap is, in our view, an important
challenge.
As noted earlier, Budish (2011) introduced a different notion of MMS approximation. In its ideal

form, we would ask for an allocation such that vali (Ai ) ≥ MMSi (n + 1,G). We have designed an al-
gorithm that achieves this guarantee for the case of three players (it is already nontrivial). Proving
or disproving the existence of such allocations for a general number of players remains an open
problem; a positive result would provide a compelling alternative to Theorem 3.1.

2 NONEXISTENCE OF EXACT MMS ALLOCATIONS

In this section, we will show that, in general, MMS allocations are not guaranteed to exist (even
under our assumption of additive valuation functions). But to give some context for this result, let
us briefly discuss a case where they do exist. As pointed out by Bouveret and Lemaître (2014), when
there are two players we can achieve an MMS allocation—essentially via an indivisible analog of
the Cut and Choose protocol. First, let player 1 divide the items according to a 2-maximin partition
S1, S2 of his (i.e., the partition that maximizes minj ∈[2] val1 (S j )). Allocate to player 2 his preferred
subset, and give the other subset to player 1. Player 1 clearly achieves his MMS guarantee, but what
about player 2? By the additivity of val2, there exists j ∈ [2] such that val2 (S j ) ≥ val2 (G)/2.
In addition, in any partition S ′1, S

′
2 there exists k ∈ [2] such that val2 (S

′
k
) ≤ val2 (G)/2, hence

MMS2 (2,G) ≤ val2 (G)/2. It follows that there exists j ∈ [2] such that val2 (S j ) ≥ MMS2 (2,G).
In contrast, MMS allocations may not exist when the number of players is at least three.

Theorem 2.1. For any set of players N such that n ≥ 3, there exist a set of items G of sizem ≤
3n + 4, and (additive) valuation functions, that do not admit an MMS allocation.
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The case ofn = 3 is handled separately in Section 2.1. A single construction works for anyn ≥ 4,
but because it is rather complex, we first illustrate the main ideas in Section 2.2 for the special case
of n = 4 and then provide the full construction in Section 2.3.

2.1 Proof of Theorem 2.1 for n = 3

Let the set of items be G = {(i, j ) | i ∈ [3], j ∈ [4]} (note thatm = 12 < 3n + 4). The valuation func-
tions of the three players are defined using the following two matrices:

S =

⎡⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
, T =

⎡⎢⎢⎢⎢⎢⎣

17 25 12 1
2 22 3 28
11 0 21 23

⎤⎥⎥⎥⎥⎥⎦
,

in conjunction with the three matrices:

E (1) =

⎡⎢⎢⎢⎢⎢⎣

3 −1 −1 −1
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
, E (2) =

⎡⎢⎢⎢⎢⎢⎣

3 −1 0 0
−1 0 0 0
−1 0 0 0

⎤⎥⎥⎥⎥⎥⎦
, E (3) =

⎡⎢⎢⎢⎢⎢⎣

3 0 −1 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎥⎥⎥⎦
.

For each item (i, j ) ∈ G, we let

valk ({(i, j )}) = 106 · Si, j + 103 ·Ti, j + E (k )
i, j .

Our first goal is to compute the MMS guarantee of each player. To this end, we will find it
convenient to label each element of T with three of nine possible labels (1, 2, 3,α , β,γ ,+,−, ∗):

⎡⎢⎢⎢⎢⎢⎣

α 171+
α 251−

β121+
γ 11∗

α 22−
β222∗

γ 32+
γ 282−

α 113∗
β03−

β213∗
γ 233+

⎤⎥⎥⎥⎥⎥⎦
.

T has the following Sudoku-like property: for each label, there are exactly four elements with that
label, and the sum of these four elements is exactly 55. Moreover, any four elements whose sum is
55 must have the same label.
This observation facilitates a straightforward computation of MMS guarantees. Player 1 can di-

vide the 12 items into three subsets: a subset consisting of the four elements labeled with 1 (the first
row), a subset consisting of the four elements labeled by 2 (the second row), and a subset consist-
ing of the four elements labeled by 3 (the third row). For each subset, the sum of its four elements

in S ,T , and E (1) is 4, 55, and 0, respectively. Hence, MMS1 (3,G) = 4 · 106 + 55 · 103 + 0 = 4,055,000.
Player 2’s maximin partition is obtained by dividing the items into three subsets according to the
labels α , β, and γ , and player 3’s maximin partition corresponds to the labels +,−, and ∗; all MMS
guarantees are 4,055,000.
We next characterize MMS allocations of G, with the goal of showing that no such allocations

exist. First note that a valid MMS allocation of G must allocate at least 4 items to each player.
Indeed, for any bundle X ⊆ G such that |X | = 3 and each player i = 1, 2, 3, vali (X ) ≤ 3 · 106 +
76 ∗ 103 + 3 < 4,055,000. Because there are 12 items, each player must receive exactly 4 items.
We now claim that in anMMS allocation each playermust receive four itemswith the same label.

Indeed, as noted earlier, the only bundles whose values inT add up to 55 consist of four items with
identical labels. Suppose that a player is allocated four items with different labels. Since the sum
of all the elements in T is 165 = 55 × 3, there must be a player with four items whose sum in T is
less than 55. This player’s value is at most 4 · 106 + 54 · 103 + 3 < 4,055,000.
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It is easy to verify that there are only three ways to divide G into three subsets such that the
items in each subset have identical labels:

(1) Dividing according to the labels 1,2,3.
(2) Dividing according to the labels α , β,γ .
(3) Dividing according to the labels +,− and ∗.

All three ways will fail to give some player his MMS guarantee of 4,055,000. Indeed, in case (1),
there is a player i1 ∈ {2, 3} who is allocated items labeled by 2 or 3. The sum of the corresponding

elements in E (i1 ) is −1, hence the value i1 obtains is 4 · 106 + 55 · 103 − 1 = 4,054,999 < 4,055,000.
In case (2), a player i2 ∈ {1, 3} must be allocated a subset of items labeled with β or γ ; in case (3), a
player i3 ∈ {1, 2} must be allocated a subset of items labeled with − or ∗. By the same reasoning as
in case (1), in cases (2) and (3), player il , l = 2, 3, ends up with value at most 4,054,999. We conclude
that it is impossible to satisfy the MMS guarantees of all three players. �

2.2 Proof of Theorem 2.1 for n = 4

Because the construction for n ≥ 4 is somewhat intricate, we start by explicitly providing the spe-
cial case of n = 4 as mentioned previously. To this end, let us define the following two matrices,
where ε is a very small positive constant (ε = 1/16 will suffice):

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7
8 0 0 1

8

0 3
4 0 1

4

0 0 1
2

1
2

1
8

1
4

1
2

1
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 ε4 0 −ε4
ε3 0 −ε3 + ε2 −ε2
0 −ε4 + ε 0 ε4 − ε
−ε3 −ε ε3 − ε2 ε2 + ε

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

LetM = S +T . Crucially, the rows and columns ofM sum to 1. LetG contain goods that correspond
to the nonzero elements of M—that is, for every entry Mi, j > 0, we have a good (i, j ); note that
m = 14 < 3n + 4.

Next, partition the four players into P = {1, 2} andQ = {3, 4}. Define the valuations of the players
in P as follows where 0 < ε̃  ε (ε̃ = 1/64 will suffice):

M +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −ε̃
0 0 0 −ε̃
0 0 0 −ε̃
0 0 0 3ε̃

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

In other words, the values of the rightmost column are perturbed. For example, for i ∈ P ,
vali ({(1, 4)}) = 1/8 − ε4 − ε̃ . Similarly, for players inQ , the values of the bottom row are perturbed:

M +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
−ε̃ −ε̃ −ε̃ 3ε̃

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to verify that the MMS guarantee of all players is 1 by partitioning the items based off
their rows (for players in Q) or columns (for players in P ). Moreover, our construction ensures
the unique MMS partition of the players in P (where every subset has value 1) corresponds to the
columns ofM , and the unique MMS partition of the players in Q corresponds to the rows ofM . If
we divide the goods by columns, one of the two players in Q will end up with a bundle of goods
worth at most 1 − ε̃—which is less than his MMS guarantee of 1. Similarly, if we divide the goods

Journal of the ACM, Vol. 65, No. 2, Article 8. Publication date: February 2018.



Fair Enough: Guaranteeing Approximate Maximin Shares 8:9

by rows, one of the players in P will receive a bundle worth only 1 − ε̃ . Any other division will
certainly fail assuming that ε̃ is sufficiently small. �

2.3 Proof of Theorem 2.1 for n ≥ 4

With the illustrative example of n = 4 under our belt, we are now ready for the general case where
n ≥ 4. The crux of the argument is proving the existence of a matrixM ∈ Rn×n with the following
properties:

(1) All entries are nonnegative (i.e., ∀i, j : Mi, j ≥ 0).
(2) All entries of the last row and column are positive (i.e., ∀i : Mi,n ,Mn,i > 0).

(3) All rows and columns sum to 1 (i.e.,M�1 = MT�1 = �1).
(4) Define M+ as the set of all positive entries in M . Then if we wish to partition M+ into n

subsets that sum to exactly 1, then our partition must correspond to the rows ofM or the
columns ofM .

To begin, let S ∈ Rn×n be the following matrix.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2n−1−1
2n−1 0 0 · · · 0 0 1

2n−1

0 2n−2−1
2n−2 0 · · · 0 0 1

2n−2

0 0 2n−3−1
2n−3 · · · 0 0 1

2n−3
...

...
...
. . .
...
...
...

0 0 0 · · · 34 0 1
4

0 0 0 · · · 0 1
2

1
2

1
2n−1

1
2n−2

1
2n−3 · · ·

1
4

1
2

1
2n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For instance, Si, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n−i−1
2n−i if i = j � n
1

2n−j if i = n and j � n
1

2n−i if j = n and i � n
1

2n−1 if i = j = n

0 otherwise.

Now for ε ≈ 0 where ε > 0, and for all i ∈ [n − 2], let ri = ε2n−2i−2, and ci = ε2n−2i−3. Specifically,
this implies

0 < r1  c1  r2  c2  · · ·  rn−2  cn−2 = ε ≈ 0.

Furthermore, let T ∈ Rn×n be the matrix given by (where we will define x , y, z and the ui , and vi
in the following):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 v1 0 · · · 0 0 −r1
u1 0 v2 · · · 0 0 −r2
0 u2 0 · · · 0 0 −r3
...
...
...
. . .

...
...

...
0 0 0 · · · 0 vn−2 −rn−2
0 0 0 · · · un−2 0 −y
−c1 −c2 −c3 · · · −cn−2 −x z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For instance, Ti, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uj if i = j + 1 and j ≤ n − 2
vi if j = i + 1 and i ≤ n − 2
−ri if j = n and i ≤ n − 2
−c j if i = n and j ≤ n − 2
−x if i = n and j = n − 1
−y if i = n − 1 and j = n
z if i = j = n
0 otherwise.

Note the only nonzero entries are on the first diagonals above and below the main diagonal, and
the last row and column.
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Now assign positive values to the ui ,vi ,x ,y, and z such that all rows and columns sum to zero.
A bit of arithmetic then gives

ui =
�
�

∑
j≤i, j≡i (mod 2)

c j
��
�
− �

�

∑
j≤i, j�i (mod 2)

r j
��
�
≈ ci

vi =
�
�

∑
j≤i, j≡i (mod 2)

r j
��
�
− �

�

∑
j≤i, j�i (mod 2)

c j
��
�
≈ ri

x = vn−2 ≈ rn−2
y = un−2 ≈ cn−2

z = �
�

∑
j≤n−2, j≡n (mod 2)

r j + c j
��
�
≈ cn−2.

Now define M = S +T and M+ = {(i, j ) | Mi, j � 0}. Moreover, for a set X ⊆ M+, let
∑
X =∑

(i, j )∈X Mi, j . Then we see for sufficiently small ε that the following properties hold.

[P1] Mi, j ≥ 0 and if Si, j � 0 or Ti, j � 0, thenMi, j > 0.
[P2] Mi, j ≈ Si, j .

[P3] All rows and columns sum to 1 (i.e.,M�1 = MT�1 = �1).
[P4] ∀i ∈ [n − 1] if we haveX ⊆ M+ subject to (i, i ) ∈ X and

∑
X = 1, then exactly one of the

following is true:
(a) (i,n) ∈ X .
(b) (n, i ) ∈ X .
(c) (1,n), (2,n), . . . , (i − 1,n), (n,n) ∈ X .
(d) (n, 1), (n, 2), . . . , (n, i − 1), (n,n) ∈ X .
(e) ∃j,k < i subject to (j,n), (n,k ) ∈ X .
This is easy to see when we take note thatM ≈ S by [P2].

[P5] If X ⊆ M+ subject to
∑
X = ri , then X = {(i, i − 1), (i, i + 1)}.

[P6] If X ⊆ M+ subject to
∑
X = ci , then X = {(i − 1, i ), (i + 1, i )}.

[P7] If X ⊆ M+ subject to
∑
X = x , then X = {(n − 2,n − 1)}.

[P8] If X ⊆ M+ subject to
∑
X = y, then X = {(n − 1,n − 2)}.

We now make a key observation with respect toM .

Lemma 2.2. Suppose that X1, . . . ,Xn is a partition of M+ such that
∑
Xi = 1 for all i . Then for

sufficiently small ε , the partition must correspond to the rows ofM or the columns ofM .

Proof. Let us first consider the subset in the partition that includes (1, 1). Without loss of gen-
erality, assume that this is X1. We wish to prove that X1 is either:

(1) the first row = {(1, 1), (1, 2), (1,n)}, or
(2) the first column = {(1, 1), (2, 1), (n, 1)}.

By [P4], we see that exactly one of (n, 1), (1,n), and (n,n) must be part of X1:

(1) Suppose that (n,n) ∈ X1. Then
∑
X1 ≥ M1,1 +Mn,n = 1 + z > 1. This is therefore

impossible.
(2) Suppose that (1,n) ∈ X1. AsM1,1 +M1,n = 1 − r1,we see that by [P5]wemust have (1, 2) ∈

X1. Then X1 corresponds to the first row.
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(3) Suppose that (n, 1) ∈ X1. As M1,1 +Mn,1 = 1 − c1, we see that by [P6] we must have
(2, 1) ∈ X1. Then X1 corresponds to the first column.

Now suppose that we wish to find a partition as in the lemma’s statement such that the first i − 1
rows are in the partition where i ∈ {2, . . . ,n}. Then we claim that row i must be in the partition as
well. Importantly, this implies that if the first row is to be in the partition, then the partition must
be the rows.
We first consider the case where i ≤ n − 1. LetXi denote the subset in the partition that includes

(i, i ). By [P6], we see that we must have one of the following:

(1) (i,n) ∈ Xi .
If i ≤ n − 2,we find thatMi,i +Mi,n = −ri , and so by [P5] we have (i, i − 1), (i, i + 1) ∈ Xi .
We therefore find that Xi = {(i, i − 1), (i, i ), (i, i + 1), (i,n)}. Furthermore, if i = n − 1, we
find that Mi,i +Mi,n = −y, and so by [P8] we have (n − 1,n − 2) ∈ Xi . Thus, Xi = {(n −
1,n − 2), (n − 1,n − 1), (n − 1,n)}. In either case, Xi is the i

th row.
(2) (n, i ) ∈ Xi .

If i ≤ n − 2, we find that Mi,i +Mn,i = −ci , and so by [P6] we have (i − 1, i ) ∈ Xi . But
(i − 1, i ) is in a previous row, which by our assumption is already assigned to a subset
in the partition. Furthermore, if i = n − 1, we have Mi,i +Mn,i = −x , and so by [P7] we
have (n − 2,n − 1) ∈ Xi . Similarly to before, this element is in a previous row and thus is
already assigned to a subset in the partition.

(3) (1,n), (2,n), . . . , (i − 1,n), (n,n) ∈ Xi .
As (1,n) is in a previous row, it is already assigned to a subset in the partition.

(4) (n, 1), (n, 2), . . . , (n, i − 1), (n,n) ∈ Xi .
This is impossible because

∑
Xi ≥ Mi,i +Mn,1 +Mn,2 + · · · +Mn,i−1 +Mn,n

= 1 − r1 − r2 − · · · − ri−1 + z
= 1 + ri + ri+1 + · · · + rn+2 + y
> 1.

(5) ∃j,k < i subject toMj,n ,Mn,k ∈ Xi .
As (j,n) is in a previous row, it is already assigned to a subset in the partition.

Next, suppose that i = n. In this case, since we are only allowed n subsets in this partition, all
remaining entries (i.e., the last row) must be in the last set. By [P3], we know that this last row
sums to 1.We therefore have shown that if the first row is in the partition, then the partition simply
corresponds to the rows. A similar argument gives an analogous result for columns. As the first
row or first column must be a subset in the partition (namely as X1), we are done. �

To show the n ≥ 4 counterexample, we now consider our construction through the lens of MMS
allocations. We first show that there exists a set of 5n − 6 such goods for n ≥ 4.
Partition the n players into two groups P and Q such that |P |, |Q | ≥ 2, and let G = M+. Note

that there are |M+ | = 5n − 6 such goods. For k ∈ P , we define

valk ({(i, j )}) =
⎧⎪⎪⎨⎪⎪⎩

Mi, j if j < n
Mi, j − ε̃ if j = n and i < n
Mi, j + (n − 1)ε̃ if j = n and i = n,
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and similarly for k ∈ Q , let

valk ({(i, j )}) =
⎧⎪⎪⎨⎪⎪⎩

Mi, j if i < n
Mi, j − ε̃ if i = n and j < n
Mi, j + (n − 1)ε̃ if i = n and j = n,

where ε̃ > 0 and is small enough to ensure all valk ({(i, j )}) ≥ 0. In other words, the player valua-
tions are defined by the entries of M aside from perturbations on the last column for players in P
and on the last row for players in Q .
As all players in P (respectively, Q) can partition the goods into columns (respectively, rows)

such that the value of each subset in the partition is exactly 1, the MMS guarantee of all players in
P (respectively, Q) must be 1.

Next, let us consider an allocation of the goods. Lemma 2.2 tells us that if the valk ({(i, j )}) were
exactly equal to the Mi, j there are only two ways to allocate the goods such that every subset in
the partition has value 1 (i.e., we get an MMS allocation): via the rows or via the columns. But note
that the alteration to the value of a good (i, j ) from Mi, j is at most (n − 1)ε̃ and indeed no subset
of goods can have its total value altered by more than (n − 1)ε̃ for any player. Therefore, we claim
that if we wish to have any hope of achieving an MMS allocation, we must still partition according
to the rows or columns (assuming that ε̃ is sufficiently small). To see this, define

γ = max
(X1, ...,Xn )∈X

min
i ∈N

∑
Xi ,

where X is the set of partitions of M+ excluding the rows and the columns. Importantly, via

Lemma 2.2 and the finite nature of X, we know that γ < 1. Now suppose that ε̃ <
1−γ
n−1 . Then for

any allocation that did not correspond to the rows or columns, some player must have value at
most γ + (n − 1)ε̃ < 1. This proves the claim.
Now note that if we split via rows, the players of P will believe that only the last row is worth at

least 1 and all other rows are worth strictly less than 1. As there are at least two players in P , not
all players can receive their MMS guarantee. A similar issue occurs when we split via the columns
for the players in Q . Therefore, there exists no MMS allocation in this setting.
We have just shown the result for 5n − 6 goods (for n ≥ 4) and now set our sights on 3n + 4

goods. Let ñ = �(n + 4)/2� ≥ 4. We know that we can find 5ñ − 6 goods that do not admit an MMS
allocation for ñ players. Take this set of goods, and let there be n players such that �n/2	 players
are in group P and the remaining �n/2� are in groupQ . Finally, add n − ñ goods each of value 1 to
all players. Note that the number of goods is

m = (5ñ − 6) + (n − ñ) = 4ñ + n − 6 = 4�(n + 4)/2� + n − 6 ≤ 3n + 4.

Further observe that

n − ñ = n − �(n + 4)/2� = �n/2	 − 2.

Thus, we have that of the players who did not receive any of the newn − ñ items of value 1, there
must be at least |P | − (n − ñ) ≥ 2 players in P . Similarly, there must be |Q | − (n − ñ) ≥ 2 players in
Q . As we still must have at least two players in both P andQ when we allocate the original 5ñ − 6
goods, no MMS allocation exists. �

3 EXISTENCE AND COMPUTATION OF APPROXIMATE MMS ALLOCATIONS

To circumvent Theorem 2.1, we introduce a new notion of approximate MMS guarantee: rather
than asking for an allocationA1, . . . ,An such that vali (Ai ) ≥ MMSi (n,G) for all i ∈ N , we look for
γ -approximate MMS allocations such that vali (Ai ) ≥ γ · MMSi (n,G) for some γ > 0.
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To this end, recall that for all k ∈ N, we denote

γk =
2�k	odd

3�k	odd − 1
.

Our main result is that γn-approximate MMS allocations always exist.

Theorem 3.1. There always exists an allocation A1, . . . ,An such that for all i ∈ N , vali (Ai ) ≥
γnMMSi (n,G). Moreover, for every ε > 0, an allocationA1, . . . ,An such that for all i ∈ N , vali (Ai ) ≥
(1 − ε )γnMMSi (n,G) can be computed in polynomial time in n andm.

Paramount to the proof of Theorem 3.1 is Algorithm 1. The only part of the algorithm that is not
elementary is Step 7(a), which says “repeat until no cycles exist.” Intuitively, each time the bundles
are rotated along a cycle, the total number of edges in the envy graph decreases, and therefore the
cycle elimination process must terminate. This claim is formally established by Lipton et al. (2004),
who use it to show that an algorithm that essentially coincides with steps 6 and 7 of Algorithm 1
achieves the α-envy-freeness property discussed in Section 1.3.

ALGORITHM 1

(1) If there is a player who believes any single item is worth γn of his MMS guarantee, give it to him and

eliminate him and his item from all further consideration. Repeat until no such player exists.

(2) If only two players remain, let one of the two players produce a 2-MMS partition and have the other

take his more preferred bundle. The remaining bundle is given to the player who produced the partition

and the algorithm ends.

(3) In lexicographic order, give each remaining player their most favored item not already given away or

eliminated (breaking ties between items lexicographically).

(4) In reverse lexicographic order, give each remaining player his most favored item not already given away

or eliminated (breaking ties between items lexicographically).

(5) If a noneliminated player believes that his last received item (the one given to him in step 4), in addition

to any two items not already given out or eliminated, is worth γn of his MMS guarantee, then

(a) Exchange his current two items for these three items (his last received item remains with him).

(b) Eliminate this player and his three items.

(c) Have all other remaining players (the others who received items in steps 3 and 4) return their items.

(d) Go to step 3.

(6) Create a directed envy graph G = (V ,E), where V represents the remaining players and there is an edge

(i, j ) if and only if i believes that his current bundle is worth strictly less than that of j.
(7) Loop through the following until all items have been allocated:

(a) If there is a cycle inG, then eliminate it by having each player in the cycle give his bundle to the

player before him in the cycle (and receive the bundle from the player after him). Update the edges

so that (i, j ) exists if and only if i believes that his current bundle is worth strictly less than that of j,
as before. Repeat until no cycles exist.

(b) As there is no cycle in G, there exists at least one player who has no incoming edges. Give one of

the items not already given out or eliminated to one of these players.

We prove Theorem 3.1 in two steps. In Section 3.1, we show that Algorithm 1 produces a γn-
approximate MMS allocation. The algorithmwould clearly run in polynomial time, if it were given
an oracle that can computeMMS partitions. In Section 3.2, we explain how to convert the algorithm
to a polynomial time algorithm, at the cost of decreasing the MMS approximation ratio by ε .
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3.1 Proof of Theorem 3.1: Existence

Fix the number of players n, and denote γ = γn . Assume, for the sake of contradiction, that the
existence claim in Theorem 3.1 is false. In particular, we have a counterexamplewhere player i ∈ N
does not achieve the desired γ ratio of his MMS guarantee on the item set G, when Algorithm 1 is
executed on this instance. For notational convenience, further assume that i’s MMS guarantee is 1
in this instance (normalizing if necessary) and that values always refer to those of player i unless
otherwise specified.

Observation 3.2. If i is eliminated at any point, then he achieves aγ fraction of hisMMS guarantee

(i.e., he receives a value of at least γ ).

Observation 3.3. γk is a nonincreasing function of k and is in (2/3, 3/4] for k ≥ 3.

Lemma 3.4. If the set of players eliminated in step 1 of the algorithm in our counterexample (where

i fails to achieve a value of γ ) is nonempty but does not contain i , then there exists a counterexample

where no players are eliminated in step 1.

Proof. Let Ñ be the set of players remaining after step 1 in our counterexample and G̃ the set
of items.
Now consider the execution of the algorithm on the set of players Ñ and items G̃. Observe

that upon completion of step 1, the executions on this instance and the original (i.e., the execution

with N and G) are equivalent. In other words, the players in Ñ are given the same items in both
instances.
Finally, consider i’s value in the altered instance. As each eliminated player took only one item

and because a single item can only occupy a single bundle in an MMS partition, we have that

MMSi ( |Ñ |, G̃) ≥ MMSi ( |N |,G). (1)

Recall that i’s value on the altered instance is equal to his value on the original instance, which

is less than γ |N |MMSi ( |N |,G) ≤ γ ˜|N |MMSi ( |Ñ |, G̃), where the weak inequality follows from Equa-

tion (1) and Observation 3.3. Therefore, i does not achieve the desired γ ˜|N | ratio of his MMS guar-

antee on the altered instance. �

Observation 3.5. If the algorithm terminates on step 2, then all players achieve the desired γ
approximation.

Importantly, Observation 3.2 and Lemma 3.4 suggest that we may safely assume that no player
is eliminated in step 1 in our counterexample—and, in fact, that i is not eliminated at any point.
Observation 3.5 further allows us to assume that the algorithm does not terminate at step 2, and
so, in addition, n ≥ 3. With this in mind, we introduce the following notation:

—For j ∈ N , Φj denotes the set of the two most valuable items (in i’s view) that j possesses at
the beginning of step 6 (breaking ties arbitrarily). In particular, if j is not eliminated in step 5,
he has exactly two items, and otherwise he has exactly three.

—For j ∈ N , Ψj denotes the bundle containing Φj upon completion of the entire algorithm (it
is easy to check that the algorithm will never separate them). Note that j may not receive
this bundle upon algorithm completion due to step 7, but all players receive exactly one of
these bundles.

—For j ∈ N , vj denotes vali (Φj ).
—For j ∈ N , Vj denotes vali (Ψj ).
—p denotes i’s value for the item i received in the last iteration of step 3.
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—q denotes i’s value for the item i received in the last iteration of step 4. Note that p + q = vi
and p ≥ q.

— î denotes the index such that upon algorithm completion i receives bundle Ψî . Note that we
must have Vî < γ .

With this notation, we are now ready for the following key observations and lemmas.

Observation 3.6. vj ≤ Vj (since vj = vali (Φj ) ≤ vali (Ψj ) = Vj ).

Observation 3.7. During steps 6 and 7, i’s value is nondecreasing (since i only exchanges his

bundle for one that he envies).

Observation 3.8. p + q = vi < γ (since by Observation 3.7, i must receive a value of at least vi
upon algorithm completion).

Observation 3.9. q < γ/2 (by Observation 3.8 and q ≤ p).

Lemma 3.10. If j � i is eliminated in step 5, then at most one of j’s three items has value in (q,p],
and the others each have value at most q.

Proof. When j is eliminated in step 5, he retains the item he received in step 4 and receives
two others. The item he received in step 4 is clearly of value at most p, as otherwise i would have
taken this in step 3. Similarly, the other two items each must be of value at most q, as i could have
taken either in step 4. �

Corollary 3.11. If j � i is eliminated in step 5, then Vj ≤ p + 2q < γ + q (by Lemma 3.10 and

Observation 3.8).

Lemma 3.12. If Φj � Ψj , then vj < γ and Vj < γ + q.

Proof. If Φj � Ψj , then we must have one of two cases:

(1) j is eliminated in step 5.

Lemma 3.10 and Observation 3.8 shows us that vj ≤ p + q < γ , and Corollary 3.11 shows
us that Vj < γ + q.

(2) During steps 6 and 7, the bundle initially denoted by Φj and ending as Ψj received at least

one item.

Let us consider the last time this bundle received an item. i must not have envied
whomever held the bundle at the time, and therefore its value to i before the addition
of the new item must be less than γ . Thus,vj < γ . Furthermore, the added item must have
value at most q (as otherwise i would have selected this item in step 4), and therefore we
have Vj < γ + q. �

Corollary 3.13. If vj ≥ γ , then Ψj = Φj and thus Vj = vj as well (by Lemma 3.12).

Lemma 3.14. It holds that vj ≤ Vj ≤ max(vj ,γ + q).

Proof. vj ≤ Vj is true by Observation 3.6. Regarding the second inequality, if Φj = Ψj , then we
clearly haveVj = vj ≤ max(vj ,γ + q). Otherwise, Lemma 3.12 applies andwe see thatVj < γ + q ≤
max(vj ,γ + q). �

Lemma 3.15. If vj ≤ γ + q, we have Vj ≤ γ + q.

Proof. If Φj � Ψj , then Lemma 3.12 applies. Otherwise, Vj = vj , which gives the result. �

For the following observations, recall that players choose in lexicographic order (increasing
index) in step 3 and in reverse lexicographic order (decreasing index) in step 4.
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Observation 3.16. If j ≤ i is not eliminated, then the more valuable of Φj ’s two items (in i’s view)
i values less than γ (as otherwise i would have taken this item in step 1) and the other i values at most

q (as otherwise i would have taken this item in step 4). This further implies vj < γ + q.

Observation 3.17. If j > i is not eliminated, then each of the two items in Φj must have value at

most p to i (as otherwise i would have taken one of these items in step 3). This further impliesvj ≤ 2p.

Lemma 3.18. For all j ≤ i, we have vj ≤ Vj ≤ γ + q.

Proof. If j is eliminated in step 5, then Corollary 3.11 applies and we see that vj ≤ γ + q. Oth-
erwise, by Observation 3.16, we still have that vj ≤ γ + q. Combining this with Lemma 3.14 gives
the result. �

Lemma 3.19. For all j > i, we have vj ≤ Vj ≤ max(2p,γ + q).

Proof. If j is eliminated in step 5, then Corollary 3.11 applies and we see that vj ≤ γ + q as
before. Otherwise, by Observation 3.17, we have that vj ≤ 2p. Combining this with Lemma 3.14
gives the result. �

Lemma 3.20. It holds that p < 1/2.

Proof. Assume for contradiction that p ≥ 1/2. Let S = {j | vj > 1}. We make the following ob-
servations for each j ∈ S :

—j > i .
If j ≤ i, we have

vj ≤ γ + q (by Lemma 3.18)

< γ + (γ − p) (since p + q < γ )
= 2γ − p
≤ 2(3/4) − 1/2 (by Observation 3.3 and our assumption p ≥ 1/2)

= 1.

Thus, if j ≤ i we have v j ≤ 1, and therefore we cannot have that j ∈ S .
—Ψj = Φj .

This follows from Corollary 3.13 and noting that γ < 1.
—There are only two items in Ψj , and each has value at most p.
Since Ψj = Φj , we have that Ψj has only two items. Furthermore, as we know that j > i ,
the two items in Ψj each have value at most p by Observation 3.17.

Now let T = {j | vj ∈ [γ , 1]}. Observe that for all j ∈ T , we have Ψj = Φj , and therefore there
are only two items in Ψj (by Corollary 3.13 and noting that γ < 1). Now consider the following
algorithm (which we use only as a tool in our proof and not as a useful algorithm in and of itself).

(1) Let P = {A1, . . . ,An } be some MMS partition for i .
(2) Flag the item i receives in the last invocation of step 3 (which is worth p).2

(3) Flag the 2|S | items corresponding to the Ψj for j ∈ S .
(4) While T � ∅:

(a) Remove some t ∈ T .
(b) Denote the two items corresponding to Ψt by x and y.

2The concept of flagging can be thought of as inclusion in some flag set, but we find this approach intuitively clearer.
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(c) Denote by G the bundle in P that x belongs to.
(d) Denote by H the bundle in P that y belongs to.
(e) Flag x and y.
(f) If G � H , replace G and H with {x ,y} and (G ∪ H ) \ {x ,y} in P . In other words, if

G � H , we replace P with (P \ {G,H }) ∪ {{x ,y}, (G ∪ H ) \ {x ,y}}.

We claim that an invariant of the loop in the algorithm (and therefore holds upon algorithm
completion) is that for all G ∈ P :

—if there are zero flagged items in G, then i values G at least at 1;
—if there is exactly one flagged item in G, then i values the nonflagged items of G at least at
1 − p.

As initially P is an MMS partition, we know that before we enter the loop for the first time, any
bundle of P without any flagged items must have a value of at least i’s MMS guarantee, which is
1. Furthermore, as all of the 2|S | + 1 items initially flagged must have value at most p, any bundle
with exactly one flagged itemmust have value at least 1 − p for the nonflagged items. Our invariant
thus holds initially.
During a loop iteration, if we have thatG = H , then since flagging x andy forcesG (= H ) to have

at least two flagged items, our invariant continues to hold vacuously. It therefore only remains to
show that when we replace G,H with {x ,y}, (G ∪ H ) \ {x ,y}, our invariant still holds. As the set
{x ,y} contains two flagged items, we need not show anything of this set. We focus now on the set
(G ∪ H ) \ {x ,y}.
During a loop iteration, we have the following cases:

— (G ∪ H ) \ {x ,y} has zero flagged items.
In this case, bothG andH had zero flagged items before the flagging of x andy, and therefore
they each have value at least 1. Thus, the nonflagged items in (G ∪ H ) \ {x ,y} have value
at least

1 + 1 − vali ({x ,y}) ≥ 1 + 1 − 1 = 1

where we have used the fact that vali ({x ,y}) = vt for some t ∈ T and therefore by the
definition of T is at most 1.

— (G ∪ H ) \ {x ,y} has exactly one flagged item.
In this case, exactly one of G \ {x } and H \ {y} has a flagged item (and exactly one flagged
item). Then we have that the nonflagged items of (G ∪ H ) \ {x ,y} have value at least

1 + 1 − p − vali ({x ,y}) ≥ 1 + 1 − p − 1 = 1 − p.

— (G ∪ H ) \ {x ,y} has two or more flagged items.
In this case, we need not prove any property of the bundle.

This proves the loop invariant.
Once this algorithm completes, we have that for all j ∈ S ∪T , both of the two items in Ψj are

flagged, as is i’s first item received (which is worth p). If we let k = |S ∪T |, then we have that the
total value of all nonflagged items is

−p +
∑
j�S∪T

Vj = Vî − p +
∑

j�S∪T∪{î }

Vj

< γ − p + (n − k − 1) (γ + q) (by Vî < γ and Lemma 3.15)
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< γ − p + (n − k − 1) (γ + (γ − p)) (since p + q < γ )
= (2n − 2k − 1)γ − (n − k )p.

We will now contradict this statement by in fact demonstrating that the total value of all
nonflagged items must simultaneously be at least (2n − 2k − 1)γ − (n − k )p—thus completing the
proof.
Denote by α j the number of bundles of the final partition with exactly j flagged items. Then the

total value of nonflagged items must be at least α0 + α1 (1 − p) due to the loop invariant. Impor-
tantly, by counting the number of flagged items, we also have that

2k + 1 =
∑
j≥1

jα j ≥ α1 + 2
∑
j≥2

α j = α1 + 2(n − α0 − α1)

⇒ α1 ≥ 2n − 2k − 1 − 2α0.

Thus, to prove the desired contradiction, it suffices to show that the solution to the following
optimization problem is at least 0:

min
α0,α1,p

α0 + α1 (1 − p) − (2n − 2k − 1)γ + (n − k )p

subject to α1 ≥ 2n − 2k − 1 − 2α0
α0 ≥ max(0,n − 2k − 1).

As p < γ < 1, we have that 1 − p > 0, and so it is best to minimize α1 under the constraint.
In other words, the constraint should be tight at the optimal solution. We can therefore assume
that α1 = 2n − 2k − 1 − 2α0, and with a bit of arithmetic we arrive at the following equivalent
optimization problem:

min
α0,p

α0 (2p − 1) + (2n − 2k − 1) (1 − p − γ ) + (n − k )p

subject to α0 ≥ max(0,n − 2k − 1).

Asp ≥ 1/2,we have that 2p − 1 ≥ 0, and so it is also best to minimize α0—the number of bundles
with zero flagged items. Thus, we have that α0 = max(0,n − 2k − 1), and therefore we have the
further reduced optimization problem:

min
p

max(0,n − 2k − 1) · (2p − 1) + (2n − 2k − 1) (1 − p − γ ) + (n − k )p. (2)

With regard to the final variable of our optimization, p, we see that our objective is linear, and
therefore we need only consider the extreme values of 1/2 and γ . We are left with three cases to
analyze—each of which is a matter of straightforward computation:

—p = 1/2.
The objective of (2) is

(2n − 2k − 1) (1/2 − γ ) + (n − k ) (1/2) = (2n − 2k − 1)
(
1

2
− 2�n	odd
3�n	odd − 1

)
+ (n − k )/2

=
n�n	odd − 3n + �n	odd + 1 − k (�n	odd − 3)

2(3�n	odd − 1)
.
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As the denominator is always greater than 0, to show that this is at least 0 it suffices to show
that the numerator itself is at least 0. The numerator is

n�n	odd − 3n + �n	odd + 1 − k (�n	odd − 3)
≥ n�n	odd − 3n + �n	odd + 1
− (n − 1) (�n	odd − 3) (since �n	odd ≥ 3 and k ≤ n − 1)

= 2�n	odd − 2
≥ 2(3) − 2
> 0.

—n ≥ 2k + 1 and p = γ .
The objective of (2) is

(n − 2k − 1) (2γ − 1) + (2n − 2k − 1) (1 − 2γ ) + (n − k )γ = n − (n + k )γ

= n − (n + k )

(
2�n	odd

3�n	odd − 1

)

=
n�n	odd − 2k �n	odd − n

3�n	odd − 1
.

As before, it suffices to show that the numerator is at least 0. When n is odd, we have that
the numerator is

n2 − 2kn − n = n(n − (2k + 1)) ≥ 0.

If, furthermore, n is even, we have that the numerator is

n(n − 1) − 2k (n − 1) − n = (n − 1) (n − (2k + 1)) − 1
≥ (n − 1) − 1 (because n is even n − (2k + 1) ≥ 1)

≥ 0.

—n ≤ 2k and p = γ .
The objective of (2) is

(2n − 2k − 1) (1 − 2γ ) + (n − k )γ = (2n − 2k − 1) + (−3n + 3k + 2)γ

= (2n − 2k − 1) + (−3n + 3k + 2)
(

2�n	odd
3�n	odd − 1

)

=
�n	odd − 2n + 2k + 1

3�n	odd − 1
.

As before, it suffices to show that the numerator is at least 0; it is at least

(n − 1) − 2n + 2k + 1 = −n + 2k
≥ 0. �

Lemma 3.21. It holds that q > n
n−1 (1 − γ ).

Proof. Suppose for purposes of contradiction that q ≤ n
n−1 (1 − γ ). For all j ∈ N , we have

Vj ≤ max(2p,γ + q) (by Lemmas 3.18 and 3.19)

≤ max
(
2(1/2),γ +

n

n − 1 (1 − γ )
)
(by Lemma 3.20 and our assumption on q)
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= max
(
1,
n − γ
n − 1

)

=
n − γ
n − 1 (since γ < 1).

We then see that
n∑
j=1

Vj = Vî +
∑
j�î

Vj < γ + (n − 1)n − γ
n − 1 = n.

That
∑n

j=1Vj < n clearly contradicts that i’s MMS guarantee is 1. �

Lemma 3.22. n is even.

Proof. Suppose for purposes of contradiction that n is odd. By Lemma 3.21, we must have that

q >
n

n − 1 (1 − γ )

=
n

n − 1

(
1 − 2n

3n − 1

)
(by the definition of γ )

=
n

3n − 1
= γ/2.

This clearly contradicts Observation 3.9’s statement that q < γ/2. �

Corollary 3.23. γ = 2(n−1)
3(n−1)−1 (by the definition of γ and Lemma 3.22).

Lemma 3.24. It holds that n
n−1 (1 − γ ) ≥ 1/3.

Proof.

n

n − 1 (1 − γ ) =
n

n − 1

(
1 − 2(n − 1)

3(n − 1) − 1

)
(by Corollary 3.23)

=
1

3

3n2 − 6n
3n2 − 7n + 4

≥ 1

3

3n2 − 6n
3n2 − 7n + n (since n ≥ 4 by Lemma 3.22 and n ≥ 3)

= 1/3. �

Let us now take a moment to introduce the following notation:

—X : The set of players who are eliminated (in step 5).
—Y : The set of players j � X and j < i where vj ≥ γ .
—Z : The set of players j � X and j > i where vj ≥ γ .
—x = |X |, y = |Y |, and z = |Z |.

Observation 3.25. i � X ∪ Y ∪ Z (since i is not eliminated).

Observation 3.26. For all j � Z , we have Vj ≤ γ + q (by Corollary 3.11 and Lemmas 3.15 and

3.18).

Observation 3.27. For all j ∈ Z , we have Vj = vj ≤ 2p < 1 (by Corollary 3.13, Observation 3.17,

and Lemma 3.20).

Lemma 3.28. î � X ∪ Y ∪ Z .
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Proof. If î ∈ X , then Ψî must go to the eliminated player î (who is thus not i). If î ∈ Y ∪ Z , then
i would receive a value = Vî ≥ vî ≥ γ . �

Lemma 3.29. It holds that Z = ∅ (i.e., z = 0).

Proof. Assume for purposes of contradiction that z ≥ 1. Then we have the following:

n∑
j=1

Vj =
∑
j ∈Z

Vj +Vî +
∑

j ∈N\(Z∪{î })

Vj

<
∑
j ∈Z

1 + γ +
∑

j ∈N\(Z∪{î })

(γ + q) (by Observations 3.26 and 3.27 and Vî < γ )

= z + γ + (n − z − 1) (γ + q)
< z + γ + (n − z − 1) (γ + γ/2) (by Observation 3.9)

= (1 − 3γ/2)z + (3n − 1) (γ/2)
< (1 − 3γ/2) + (3n − 1) (γ/2) (since γ > 2/3 by Observation 3.3 and z ≥ 1)

=

(
1 − 3

2
· 2(n − 1)
3(n − 1) − 1

)
+
3n − 1

2
· 2(n − 1)
3(n − 1) − 1 (by Corollary 3.23)

= n.

That
∑n

j=1Vj < n clearly contradicts that i’s MMS guarantee is 1. �

Lemma 3.30. It holds that x + y > n − 3.

Proof. Assume for purposes of contradiction that x + y ≤ n − 3. Let us consider then − x − y −
1 valuesVj for j ∈ N \ (X ∪ Y ∪ {î}). As i was not eliminated in step 5, i must believe the two most
valuable items not given out or eliminated at the beginning of step 6 sum to value < γ − q. This
statement, along with the fact thatn − x − y − 1 ≥ 2 (since we are assuming x + y ≤ n − 3), implies
that i’s value for the n − x − y − 1 largest items not given out or eliminated at the beginning of
step 6 is at most (n − x − y − 1) (γ − q)/2. Simultaneously, we know that for all j ∈ N \ (X ∪ Y ∪
Z ∪ {î}) = N \ (X ∪ Y ∪ {î}) (we have used Lemma 3.29 for the equality), the value of the bundle
that at step 6 starts as Φj and upon algorithm completion becomes Ψj before it receives its last
item is less than γ (as otherwise, i would envy this bundle). This yields∑

j ∈N\(X∪Y∪{î })

Vj < (n − x − y − 1) (γ + (γ − q)/2).

Noting thatVî < γ and for all j ∈ X ∪ Y we haveVj < γ + q by Corollary 3.11 and Lemma 3.18, we
then get

n∑
j=1

Vj =
∑

j ∈X∪Y
Vj +Vî +

∑
j ∈N\(X∪Y∪{î })

Vj

< (x + y) (γ + q) + γ + (n − x − y − 1) (γ + (γ − q)/2).

We claim this last quantity, a function that we will callV , is smaller than n for the relevant values
of q—that is, q ∈ ( n

n−1 (1 − γ ),γ/2) (the relevant values are determined by Observation 3.9 and
Lemma 3.21). Indeed, observe that V is a linear function in q. Moreover, note that since γ ≤ 3/4
(by Observation 3.3), we have

γ/3 ≤ (3/4)/3 = 1 − 3/4 ≤ 1 − γ ≤ n

n − 1 (1 − γ ).
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This implies that the domain ( n
n−1 (1 − γ ),γ/2) is contained in [γ/3,γ/2]. Thus, to show the desired

inequality V < n, it suffices to show the inequality for q ∈ {γ/3,γ/2}:

V (γ/3) = (x + y) (4γ/3) + γ + (n − x − y − 1) (γ + γ/3)
= (4γ/3) (n − 1/4)
≤ (4(3/4)/3) (n − 1/4) (by Observation 3.3)

= n − 1/4
< n.

V (γ/2) = (x + y) (3γ/2) + γ + (n − x − y − 1) (γ + γ/4)
= (γ/4) (5n + x + y − 1)
≤ (γ/4) (5n + (n − 3) − 1) (since we are assuming x + y ≤ n − 3)
= (γ/2) (3n − 2)

=
3n − 2

2

2(n − 1)
3(n − 1) − 1 (by Corollary 3.23)

= n − n − 2
3n − 4

< n.

We can therefore conclude that
∑n

j=1Vj < V < n—contradicting that i’s MMS guarantee is 1. �

Lemma 3.31. It holds that x + y � n − 2.

Proof. Assume for purposes of contradiction that x + y = n − 2. Consider the set H of items
composed of the following:

—The items in all of the Ψj for all j ∈ X (equivalently, the items that go to the players in X ).

There are 3x such items, and by Lemma 3.10 we know that i values all of these items at a
value of at most q, except for at most x of them that may have value in (q,p].

—The items in all of the Ψj for all j ∈ Y .
By Corollary 3.13, there are 2y such items, but we will imagine as if the y largest items (in
i’s view) are in fact two inseparable items—giving us instead 3y such items. Note that each
such pair of inseparable items are of value < γ and the other y items have value at most q
by Observation 3.16.

—The two items in Φi (which i values at p and q).
—The item i values most (breaking ties arbitrarily) among those not eliminated nor given out at

the beginning of step 6.

Let Δ denote i’s value of this item. Note that Δ ≤ q, as otherwise i would have taken this
item in step 4.

Observe that any single item of H is of value ≤ p and any two items have value at most
max(2p,γ ) ≤ max(2(γ − q),γ ) = 2(γ − q).
We are interested in the value of all items aside from these 3x + 3y + 2 + 1 = 3(n − 1) items,

which we will denote by r . In other words, r = (
∑

j�X∪Y Vj ) − (p + q + Δ). Now fix A1, . . . ,An to
be someMMSpartition for i . In each of the following four encompassing cases, wewill demonstrate
that r ≥ 2γ − p − q:
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(1) There exists an Aj that contains no items inH :

r ≥ vali (Aj )

≥ 1 (since i’s MMS value is 1)

= 2(2(3/4) − 1)
≥ 2(2γ − 1) (by Observation 3.3)

= 2(γ − (1 − γ ))

≥ 2
(
γ − n

n − 1 (1 − γ )
)

≥ 2(γ − q) (by Lemma 3.21)

= 2γ − q − q
≥ 2γ − p − q.

(2) There exists an Aj that contains exactly one item inH .

In this case, there must exist some other Ak with at most two items from H as |H | =
3(n − 1). As observed previously, the single item in Aj ∩H must be of value ≤ p, and the
two items in Ak ∩H must be of value ≤ 2(γ − q). Thus, we have

r ≥ vali (Aj ) + vali (Ak ) − p − 2(γ − q)
≥ 2 − p − 2(γ − q) (since i’s MMS value is 1)

= (2γ − p − q) + (−4γ + 3q + 2)
≥ (2γ − p − q) + (−4(3/4) + 3(1/3) + 2) (since q ≥ 1/3 by Lemma 3.24)

= 2γ − p − q.

(3) n ≥ 6 and all of the Aj contain at least two items inH .

In this case, there must be at least three Aj with exactly two items from H as |H | =
3(n − 1). Without loss of generality, suppose that this is true of A1, A2, and A3. In each of
these three, we must have that the two items fromH have value ≤ 2(γ − q) as mentioned
previously. Thus, we have

r ≥ vali (A1) + vali (A2) + vali (A3) − 3(2(γ − q))
≥ 3 − 3(2(γ − q)) (since i’s MMS value is 1)

= (2γ − p − q) + (−8γ + p + 7q + 3)
≥ (2γ − p − q) + (−8γ + 8q + 3)

≥ (2γ − p − q) +
(
−8γ + 8 n

n − 1 (1 − γ ) + 3
)
(by Lemma 3.21)

= (2γ − p − q)

+

(
−8 2(n − 1)

3(n − 1) − 1 + 8
n

n − 1

(
1 −
(

2(n − 1)
3(n − 1) − 1

))
+ 3

)
(by Corollary 3.23)

= (2γ − p − q) + n2 − 5n − 4
(n − 1) (3n − 4)

> (2γ − p − q) + n2 − 5n − n
(n − 1) (3n − 4) (since we are assuming n ≥ 6)

= (2γ − p − q) + n(n − 6)
(n − 1) (3n − 4)

≥ 2γ − p − q (since we are assuming n ≥ 6).
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(4) n = 4 and all of the Aj contain at least two items inH .

In this special case, there is oneAj with exactly three items inH , and threeAj (without loss
of generality, say A1, A2, and A3) with exactly two items inH due to |H | = 3(n − 1) = 9.
Furthermore, a tedious brute force computation (which we omit) demonstrates that in this
case, the six most valuable items are of value at most 2γ + p + q. Thus, we have

r ≥ vali (A1) + vali (A2) + vali (A3) − (2γ + p + q)

≥ 3 − (2γ + p + q) (since i’s MMS value is 1)

= 4(3/4) − (2γ + p + q)

= 4γ − (2γ + p + q) (by the definition of γ )

= 2γ − p − q.

As the four cases shown earlier encompass all possible scenarios, we do indeed find that r ≥
2γ − p − q. We therefore find

∑
j�X∪Y

Vj = r + p + q + Δ

≥ (2γ − p − q) + p + q + Δ
= 2γ + Δ.

However, we know regarding the two j � X ∪ Y that one of the Vj must go to i (i.e., j = î) and is
therefore of value < γ , whereas the other must have value < γ + Δ. We thus simultaneously find
that ∑

j�X∪Y
Vj < γ + γ + Δ = 2γ + Δ.

This is a clear contradiction. �

Lemma 3.32. It holds that x + y � n − 1.

Proof. Assume for purposes of contradiction that x + y = n − 1. In this case,N \ {X ∪ Y } = {i}.
Similarly to Lemma 3.31’s proof, we introduce a set of interest under the name of H . This is
identical to before, except it does not include the one item whose value was denoted as Δ. For
convenience, we have restated the rest of the set’s contents here:

—The items in all of the Ψj for all j ∈ X (equivalently, the items that go to the players in X ).

There are 3x such items, and by Lemma 3.10 we know that i values all of these items at a
value of at most q, except for at most x of them, which may have value in (q,p].

—The items in all of the Ψj for all j ∈ Y .
By Corollary 3.13, there are 2y such items, but we will imagine as if the y largest items (in
i’s view) are in fact two inseparable items—giving us instead 3y such items. Note that each
such pair of inseparable items are of value < γ , and the other y items have value at most q
by Observation 3.16.

—The two items in Φi (which i values at p and q).

If we again letA1, . . . ,An be an MMS partition for i,we see that there exists someAj that contains
at most two ofH since |H | = 3x + 3y + 2 = 3n − 1. vali (Aj \ H ) must then be at least vali (Aj ) −
max(2p,γ ) ≥ 1 −max(2p,γ ). We therefore find that upon algorithm completion, i must receive a
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value of at least 1 −max(2p,γ ) + p + q. If 2p ≤ γ , we have that

1 −max(2p,γ ) + p + q

= 1 − γ + p + q
≥ 1 − γ + q + q (since q ≤ p)

≥ 1 − 3/4 + 1/3 + 1/3 (by Observation 3.3 and Lemmas 3.21 and 3.24)

= 11/12.

Furthermore, if 2p > γ , we have that

1 −max(2p,γ ) + p + q

= 1 − 2p + p + q
= 1 − p + q
> 1 − (γ − q) + q (since p + q < γ )

= 1 + 2q − γ
≥ 1 + 2(1/3) − 3/4 (by Observation 3.3 and Lemmas 3.21 and 3.24)

= 11/12.

We therefore find that i must achieve a value of at least 11/12 ≥ 3/4 ≥ γ . �

Note that the statements of Lemmas 3.30, 3.31, and 3.32 imply that x + y = n. However, as we
know that i � X ∪ Y by Observation 3.25, we also see that x + y < n. This contradiction concludes
the proof that Algorithm 1 must produce a γ -approximate MMS allocation. �

3.2 Proof of Theorem 3.1: Polynomial Time

Although Algorithm 1 seems rather innocent at first glance, it does make one computational leap
by letting players compute their MMS guarantee, or an MMS partition. It is easy to see that this
is NP-hard; in fact, even when there are two players with identical valuations, it is NP-hard to
determine whether the the MMS guarantee is vali (G)/2—this can be shown via an immediate
reduction from Partition.
Woeginger (1997) studied the problem of computing an MMS partition, albeit under a different

name: scheduling jobs on identical machines to maximize the minimum completion time. He gave
a PTAS and showed that no fully polynomial time approximation scheme (FPTAS) exists unless
P = NP. Using our terminology, this means that given a constant ε > 0,we can compute a partition
A1, . . . ,An of the set of items G so that mini ∈N vali (Ai ) ≥ (1 − ε )MMSi (n,G) in polynomial time.

The modified algorithm is almost identical to Algorithm 1, but for two critical differences:

(1) When we need to compute a player’s MMS guarantee, we instead compute a 1 − ε approx-
imation via the PTAS.

(2) If two players remain in step 2, then we compute a 1 − ε approximation to an MMS parti-
tion via the PTAS.

The analysis of Section 3.1 goes through largely unchanged, giving each player a bundle of value
(1 − ε )γMMSi (n,G). �
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