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Leximin Allocations in the Real World
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As part of a collaboration with a major California school district, we study the problem of fairly allocating
unused classrooms in public schools to charter schools. Our approach revolves around the randomized lex-

imin mechanism. We extend previous work to show that the leximin mechanism is proportional, envy-free,
Pareto optimal, and group strategyproof, not only in our classroom allocation setting, but in a general frame-
work that subsumes a number of settings previously studied in the literature. We also prove that the leximin
mechanism provides a (worst-case) 4-approximation to the maximum number of classrooms that can possi-
bly be allocated. Our experiments, which are based on real data, show that a non-trivial implementation of
the leximin mechanism scales gracefully in terms of running time (even though the problem is intractable
in theory), and performs extremely well with respect to a number of efficiency objectives. We establish the
practicability of our approach, and discuss issues related to its deployment.
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1 INTRODUCTION

Over the course of the last seven decades, the study of fair division has given rise to a slew of
elegant solutions to a variety of problems [9, 24, 32], which span the practicability spectrum from
abstract (e.g., cake cutting [30]) to everyday (e.g., rent division [1]). Building on its rich history,
the field of fair division—and computational fair division, in particular—is poised to make a signif-
icant impact on society through applications that are beginning to emerge. For example, Budish’s
fair division approach [10]—which leads to challenging computational questions [26, 27]—is now
regularly used by the Wharton School of the University of Pennsylvania to allocate seats in MBA
courses. And the not-for-profit website Spliddit (www.spliddit.org—which offers provably fair
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11:2 D. Kurokawa et al.

solutions for the division of goods, rent, and credit [19]—has already been used by more than
100,000 people.
One of the beautiful consequences of these applications is that people have become aware of

fair division theory, and are reaching out with problems that are possibly specialized, yet just
as significant in terms of societal impact. This was foreseen by the esteemed economist Hervé
Moulin, who wrote to one of us (Procaccia) by email on June 3, 2013 (in the context of Spliddit’s
early development):

“I believe that, with few exceptions (school choice?) academics like us are not going to
invent from their armchair the best applications of our models, concepts and solutions,
although we have a good sense of the type of problems where they can help. Thus the
reward of helping people who have a real fair division problem by explaining our
solutions, is that they in return pose interesting and difficult new questions, food for
our thoughts. So if the website lets users ask questions of their own, it could be a
goldmine of ideas, as well as a costly proposition if there are too many questions!”

This article presents a solution to one of these “interesting and difficult new questions,” posed
by a representative of one of the largest school districts in California. Since the details are confi-
dential, we will refer to the school district as the Pentos Unified School District (PUSD), and to the
representative as Mr. Mopatis. Mr. Mopatis contacted us in May 2014 after learning about Spliddit
(and fair division, more generally) from an article in the New York Times.1 He is tasked with the
allocation of unused space (most importantly, classrooms) in PUSD’s public schools to the district’s
charter schools, according to California’s Proposition 39, which states that “public school facilities
should be shared fairly among all public school pupils, including those in charter schools.”2 While
the law does not elaborate on what “fairly” means, Mr. Mopatis was motivated by the belief that a
provably fair solution would certainly fit the bill. He asked us to design an automated allocation
method that would be evaluated by PUSD, and potentially replace the existing manual system.
To be a bit more specific, the setting consists of charter schools and facilities (public schools).

Each facility has a given number of unused classrooms—its capacity, and each charter school has
a number of required classrooms—its demand. In principle, the classrooms required by a charter
school could be split across multiple facilities, but such offers have always been declined in the
past, so we assume that an agent’s demand must be satisfied in a single facility (if it is satisfied
at all). Other details are less important and can be abstracted away. For example, classroom size
turns out to be a non-issue, and the division of time in shared space (such as the school gym or
cafeteria) can be handled ad hoc.
Of course, to talk of fairness we must also take into account the preferences of charter schools,

but preference representation is a modeling choice, intimately related to the design and guarantees
of the allocation mechanism. Moreover, fairness is not our only concern: to be used in practice,
the mechanism must be relatively intuitive (so it can be explained to decision makers) and com-
putationally feasible. The challenge we address is therefore to

... design and implement a classroom allocation mechanism that is provably fair as
well as practicable.

1.1 Our Approach and Results

We model the preferences of charter schools as being dichotomous: charter schools think of each
facility as either acceptable or unacceptable. This choice is motivated by current practice: Under

1http://goo.gl/Xp3omV.
2http://goo.gl/bGH6dT.
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Leximin Allocations in the Real World 11:3

the 2015/2016 request form issued by PUSD, charter schools are essentially asked to indicate ac-
ceptable facilities (specifically, they are asked to “provide a description of the district school site
and/or general geographic area in which the charter school wishes to locate” using free-form text).
In other words, formally eliciting dichotomous preferences—by having charter schools select ac-
ceptable facilities from the list of all facilities—is similar to the status quo, a fact that increases the
practicability of the approach.
A natural starting point, therefore, is the seminal paper of Bogomolnaia and Moulin [7], who

study the special case of our setting with unit demands and capacities, under dichotomous prefer-
ences. They propose the leximin mechanism, which returns a random allocation with the following
intuitive property: it maximizes the lowest probability of any charter school having its demand
satisfied in an acceptable facility; subject to this constraint, it maximizes the second lowest prob-
ability; and so on.
In Section 3, we show that the leximin mechanism remains compelling in the classroom allo-

cation setting. Specifically, we prove that it satisfies the following properties: (i) proportionality—
each charter school receives its proportional share of available classrooms; (ii) envy-freeness—each
charter school prefers its own allocation to the allocation of any other school; (iii) Pareto optimal-
ity (a.k.a. ex-ante efficiency)—no other randomized allocation is at least as good for all charter
schools, and strictly better for at least one; and (iv) group strategyproofness—even coalitions of
charter schools cannot benefit by misreporting their preferences. The beauty of these properties,
as well as the leximin mechanism itself, is that they are intuitive and can easily be explained to a
layperson. This feature, once again, significantly contributes to the practicability of the approach.
As an interesting aside, we show that the leximin mechanism still satisfies the foregoing properties
in a much more general setting, thereby generalizing results from a variety of other papers in fair
division and mechanism design.
In Section 4, we study the leximinmechanism from a combinatorial optimization viewpoint. The

section’s main result is that the expected number of classrooms allocated by the leximin mecha-
nism is always at least 1/4 of the maximum number of classrooms that can possibly be allocated.
We do not view this result as enhancing the practicability of our approach, but rather as signifi-
cantly contributing to its intellectual merit. We further conjecture that an improved bound of 1/2
is feasible.
In Section 5, we observe that the problem of computing a leximin allocation is NP-hard in

our setting, and describe our implementation of the leximin mechanism—a task which has proved
quite challenging. A naïve approach to the computation of leximin allocations solves a sequence
of linear programs, each with an exponential number of variables. On a high level, the crux of our
implementation is that we work with the duals of these linear programs—each with an exponential
number of constraints—and formulate a separation oracle as an integer linear program.
Finally, in Section 6, we present our experiments. Using an instance generator that is grounded

in historical data from PUSD, we show that our algorithm for computing leximin allocations scales
quite gracefully. In particular, even when there are 300 charter schools (which is more than any
school district in the U.S. has), the algorithm terminates in a few minutes on average. Remarkably,
we also observe that, in our experiments, the leximin mechanism satisfies (on average) at least
98% of the maximum number of charter schools that can possibly be satisfied, and allocates (on
average) at least 98% of the maximum number of classrooms that can possibly be allocated.

1.2 Related Work

The problem of fairly dividing a set of indivisible goods has been studied extensively. As an
early, seminal example, Hylland and Zeckhauser [20] propose a compelling pseudo-market mech-
anism to compute a lottery over deterministic assignments, given cardinal preferences. Their
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11:4 D. Kurokawa et al.

mechanism satisfies proportionality, envy-freeness, and ex-ante efficiency, but fails to provide
strategyproofness. A more serious objection to their mechanism is that they elicit cardinal util-
ities from agents—a difficult task in practice. A market approach also drives the work of [10] on
approximate competitive equilibrium from equal incomes. His approximation guarantees are prac-
tical as long as the supply of each good is relatively large, which is not the case in the classroom
allocation setting (where the number of available classrooms in a facility is typically small).
Bogomolnaia and Moulin [6] study random assignment under ordinal preferences. They intro-

duce the probabilistic serial (PS) mechanism, which satisfies ex-ante efficiency as well as ordinal
fairness. Informally, the probabilistic serial mechanism allows agents to “eat” (at identical speeds)
their shares of different goods one by one in the order in which they rank the goods. However,
similarly to the pseudo-market mechanism of Hylland and Zeckhauser [20], the probabilistic serial
mechanism pertains to the basic setting of assigning n indivisible goods to n agents.
Budish et al. [11] propose a general framework, which, by generalizing the classic Birkhoff

von-Neumann theorem [4, 36], extends both mechanisms to handle real-world combinatorial do-
mains, e.g., with group quotas, endogenous capacities, multi-unit non-additive demands, sched-
uling constraints, and so on. Their extension of the probabilistic serial mechanism would be a
potential starting point in our setting, if we wished to elicit ordinal preferences from the agents.
However, note that in our setting a charter school demanding d classrooms must either receive all
d classrooms at a single facility or no classrooms at all—this restriction is incompatible with the
framework of [11]. There are other extensions of the probabilistic serial mechanism with multi-
unit demands [3, 12, 22, 31], but all of them leverage the standard Birkhoff von-Neumann theorem
to allocate at most d goods to an agent, and cannot ensure that the agent receives exactly d goods
(or no goods at all). We consider it an interesting open problem to extend the probabilistic serial
mechanism to the classroom allocation setting with ordinal preferences.
As noted above, Bogomolnaia and Moulin [7] show that if we move to a setting with dichoto-

mous preferences, much stronger guarantees can be provided. In particular, they show that for
the classic setting with n agents and n goods the leximin mechanism satisfies proportionality,
envy-freeness, Pareto optimality, and strategyproofness. We generalize (some of) their results by
proving that the leximin mechanism satisfies these four properties in our setting as well. Other
properties established by [7], such as the Lorenz dominance of the leximin probability vector, do
not hold in our setting (as we demonstrate below).
[8] study a more general dichotomous preferences setting where every agent essentially accepts

a subset of feasible deterministic allocations.3 They propose the utilitarian mechanism, which uni-
formly randomizes over all deterministic allocations maximizing social welfare, and show that it
satisfies envy-freeness, Pareto optimality, and strategyproofness, but violates proportionality and
suffers from “tyranny of the majority.”4 This makes the mechanism highly undesirable in our set-
ting; see the discussion in Section 4.

2 THE MODEL

We begin by formalizing the classroom allocation setting that motivates our work. Let N =
{1, . . . ,n} denote the set of charter schools (hereinafter, agents), and let M = {1, . . . ,m} denote
the set of public schools (hereinafter, facilities). We want to design a mechanism for assigning the
agents to the facilities. Each facility f has a capacity cf , which is the number of units available at

3As we discuss in Section 3.2, this general dichotomous preference setting captures our classroom allocation setting, but

our proofs extend to an extremely general setting that actually captures the general dichotomous preference setting as a

special case.
4Apparently, this result was later independently discovered by Freitas [15].

ACM Transactions on Economics and Computation, Vol. 6, No. 3–4, Article 11. Publication date: October 2018.
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the facility (in our motivating example, each unit is a classroom). The preferences of agent i are
given by a pair (di , Fi ), wheredi ∈ N denotes the number of units demanded by agent i—or, simply,
the demand of agent i—and Fi ⊆ M denotes the set of facilities acceptable to agent i . Crucially, we
assume that agent i’s preferences are dichotomous in nature: the agent has utility 1 if it receives
di units from any single facility f ∈ Fi (in this case, we say agent i is assigned to facility f ), and
0 otherwise. Without loss of generality, we assume that every agent i has an acceptable facility
f ∈ Fi that has sufficient capacity to meet its demand (i.e., cf ≥ di ).

5

A deterministic allocation is a mapping A : N → M ∪ {0}, where Ai = A(i ) denotes the facility
to which agent i is assigned (and Ai = 0 means agent i is not assigned to any facility). A is feasible
if it respects the capacity constraint at each facility:

∀f ∈ M,
∑

i ∈N :Ai=f

di ≤ cf .

Let A denote the space of all feasible deterministic allocations. Formally, the utility to agent i
under a feasible deterministic allocation A ∈ A is given by

ui (Ai ) =

{
1 if Ai ∈ Fi
0 otherwise.

A feasible randomized allocation is simply a distribution over feasible deterministic allocations,
and the utility to an agent is its expected utility under the randomized allocation. Let Δ(A) be the
space of all feasible randomized allocations. Crucially, note that Δ(A) is a convex set, i.e., given
randomized allocations A,A′ ∈ Δ(A) and 0 ≤ λ ≤ 1, we can construct another randomized allo-
cationA′′ = λ · A + (1 − λ) · A′ ∈ Δ(A) that executesAwith probability λ andA′ with probability
1 − λ. Hereinafter, an allocation is possibly randomized, unless explicitly specified otherwise.
As mentioned in Section 1, our setting deals with fair allocation of indivisible goods, and

generalizes the classic setting of random assignment under dichotomous preferences studied by
Bogomolnaia and Moulin [7]. In particular, their setting can be recovered by setting all the de-
mands and capacities to 1 (i.e., di = 1 and cf = 1 for all i ∈ N , f ∈ M), with an equal number of
agents and facilities (m = n).

Desiderata. The fair division literature offers a slew of desirable properties. We are especially
interested in four classic desiderata that have proved to be widely applicable (with applications
ranging from cake cutting [30] to the division of computational resources in clusters [18, 28]),
often satisfiable, and yet effective in leading to compelling mechanisms. We use these desiderata
to guide the search for a good mechanism in our setting. Let A denote an allocation returned by a
mechanism under consideration.

(1) Proportionality. This is a fairness requirement that states that every agent should receive
at least its proportional share of the available goods. Since the maximum utility any agent
can achieve is 1, a mechanism is called proportional if the utility to each agent is at least
1/n, i.e., if ui (Ai ) ≥ 1/n for all i ∈ N .

(2) Envy-Freeness. This is another fairness requirement which states that every agent should
prefer its own allocation over the allocation of any other agent. In other words, no agent
should envy any other agent. Formally, a mechanism is called envy-free ifui (Ai ) ≥ ui (Aj )
for all i, j ∈ N .

(3) Pareto Optimality. This is a qualitative notion of efficiency which requires that it be impos-
sible to make an agent better off without making some other agent worse off. Formally,

5Agents violating this requirement can never achieve positive utility, and can effectively be disregarded.
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an allocation A is Pareto dominated by an allocation A′ (or A′ is a Pareto improvement
overA) ifui (A

′
i ) ≥ ui (Ai ) for every agent i ∈ N andui (A

′
i ) > ui (Ai ) for some agent i ∈ N .

A mechanism is called Pareto optimal if the allocation it returns is not Pareto dominated
by any alternative allocation. In our context, Pareto optimality denotes ex-ante efficiency,
which is a strictly stronger notion than ex-post efficiency, as the latter notion only requires
an allocation to be a randomization over deterministic Pareto optimal allocations.

(4) Strategyproofness.This property is a strong game-theoretic requirement. In our setting, the
preferences of agent i (both di and Fi ) are its private information. We would like to moti-
vate each agent to report its preferences truthfully regardless of the preferences reported
by the other agents. A mechanism is called strategyproof if truth-telling is a dominant
strategy for every agent. Formally, let A denote the allocation returned when the prefer-
ences reported by the agents are (d, F), and let A′ denote the allocation returned when an
agent i ∈ N changes its preferences to (d ′i , F

′
i ) while the preferences of the other agents

remain unchanged. Then, we require that ui (Ai ) ≥ ui (A
′
i ), where ui is the utility function

induced by the original preferences (di , Fi ). A stronger notion called group strategyproof-
ness requires that if a subset of agents simultaneously report false preferences, at least one
of the agents in the subset must not be strictly better off.

Let us first consider an example illustrating the desiderata of our interest.

Example 1. First, let us consider a simple randomized mechanism that allocates all available
units at all facilities to each agent with probability 1/n. Clearly, the mechanism satisfies propor-
tionality because it gives each agent utility 1/n. The mechanism is also envy-free because each
agent has an identical allocation, and thus no reason to envy any other agent. Since the mech-
anism operates independently of the reported preferences of the agents, the mechanism is obvi-
ously (group) strategyproof. However, the mechanism is not Pareto optimal. The reason is that the
mechanism allocates all available units to an agent (with probability 1/n) even if the agent does
not require all the units. In this case, it may be possible to simultaneously satisfy another agent,
thus obtaining a Pareto improvement.
Next, consider a different mechanism that always returns a deterministic allocation maximizing

the number of units allocated. While this mechanism is very intuitive, we can show that it violates
all the desiderata except Pareto optimality. Suppose there is a single facility with four available
units, and two agents—namely, agents 1 and 2—that demand three and two units, respectively.
Maximizing the number of units allocated would require allocating three units to agent 1 and no
units to agent 2. This already violates both proportionality and envy-freeness with respect to agent
2. Further, agent 2 would have a strict incentive to report a false demand of four units, which would
lead to agent 2 receiving all four units from the facility. Thus, strategyproofness is also violated.

3 THE LEXIMIN MECHANISM

Let us consider the leximin mechanism proposed by Bogomolnaia and Moulin [7] (for the spe-
cial case of random assignment under dichotomous preferences) in our more general setting. In-
formally, the leximin mechanism first maximizes the minimum utility that any agent achieves.
Then, subject to this constraint, it maximizes the second lowest utility, and so on. Formally, let
(u1,u2, . . . ,un ) denote the vector of utilities sorted in non-descending order. The leximin mecha-
nism returns the allocation that maximizes this vector in the lexicographic order; we say that this
allocation is leximin-optimal. The mechanism is presented as Algorithm 1. Note that Algorithm 1
is highly intractable in practice; we describe a practical implementation of the leximin mechanism
in Section 5.

ACM Transactions on Economics and Computation, Vol. 6, No. 3–4, Article 11. Publication date: October 2018.
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ALGORITHM 1: The Leximin Mechanism

Data: Demands {(di , Fi )}i ∈N , Capacities {cf }f ∈M
Result: The Leximin-Optimal Allocation A

For k ∈ {1, . . . ,n}, let uk denote the kth lowest utility under an allocation;

for k = 1 to n do

ūk ←Max uk subject to u j = ū j for all j < k ;

end

return an allocation where uk = ūk for all k ∈ {1, . . . ,n};

In a sense, the leximin mechanism is an extension of the egalitarian equivalence principle put
forward by Pazner and Schmeidler [29], in which one attempts to equalize all agent utilities (and
maximize this utility value). This is what the leximin mechanism attempts in its first step of maxi-
mizing the minimum utility. However, sometimes the solution obtained is not Pareto optimal. The
subsequent steps amend this solution to make it Pareto optimal, and eliminate any waste of re-
sources. Without loss of generality, assume that the leximin mechanism chooses a non-wasteful
allocation, i.e., under every deterministic assignment in its support agent i either receives di units
from a facility in Fi or does not receive any units. Let us illustrate how the leximin mechanism
works through an example.

Example 2. Suppose there are two facilities a and b with capacities ca = 1 and cb = 2, respec-
tively, and four agents with demands d1 = 1, d2 = 1, d3 = 1, and d4 = 2. Suppose agent 1 only ac-
cepts facility a (F1 = {a}), agent 2 accepts both facilities (F2 = {a,b}), and agents 3 and 4 only accept
facility b (F3 = F4 = {b}). This is shown in Figure 1(a), where the agents are shown on the left with
their demands, the facilities are shown on the right with their capacities, and each agent is con-
nected to each of its acceptable facilities through a dashed line.
It is clear that the minimum utility cannot be greater than 1/2 because agents 3 and 4 must

be assigned to facility b separately. The allocation shown in Figure 1(b) gives utility 1/2 to all
agents. However, this is not sufficient for the allocation to be the leximin allocation. For instance,
the allocation shown in Figure 1(c) increases the utility to agent 2 while preserving the utilities
to the other agents, and is therefore better in a lexicographic comparison of the sorted utility
vector. While this new allocation is Pareto optimal, it is still not the leximin allocation. The leximin
allocation is shown in Figure 1(d)—it gives utility 1/2 to agents 3 and 4, and utility 3/4 to agents 1
and 2. This achieves the same lowest and second lowest utilities as the previous two allocations,
but a greater third lowest utility than both previous allocations.

3.1 Properties of the Leximin Mechanism

Bogomolnaia and Moulin [7] show that the leximin mechanism satisfies all four desiderata pro-
posed above in their classic setting with one-to-one matchings, and unit demands and capacities.
We now show that these properties continue to hold in our setting with many-to-one matchings,
and arbitrary demands and capacities. In fact, in Section 3.2 we argue that they hold in an even
more general setting.

Theorem 3. The leximin mechanism satisfies proportionality, envy-freeness, Pareto optimality,
and group strategyproofness.

Proof. We first formally establish an intuitive property of leximin allocations. �

Lemma 4. LetA denote the allocation returned by the leximin mechanism. Then for utility function
u induced by any dichotomous preferences, we have ui (Ai ) ≥ u (Ai ).

ACM Transactions on Economics and Computation, Vol. 6, No. 3–4, Article 11. Publication date: October 2018.



11:8 D. Kurokawa et al.

Fig. 1. Illustration of Example 2.

Proof. First, let A be deterministic. If Ai � 0, then due to the non-wastefulness of the leximin
allocation, we must have ui (Ai ) = 1 ≥ u (Ai ) for any utility function u. On the other hand, Ai = 0
implies ui (Ai ) = u (Ai ) = 0 for all utility functions u. Hence, the lemma holds for all deterministic
allocations. For randomized allocations, taking expectation on both sides yields that the lemma
still holds. (Proof of Lemma 4) �

Proportionality. Consider the mechanism that allocates all available units to each agent with
probability 1/n, which gives each agent utility 1/n.6 Since the leximin mechanism maximizes the
minimum utility that any agent receives, it must also give each agent at least 1/n utility. Hence,
the leximin mechanism is proportional.

Envy-Freeness. Suppose for contradiction that under an allocation A returned by the leximin
mechanism, agent i envies agent j. That is, ui (Aj ) > ui (Ai ). Now, Lemma 4 implies uj (Aj ) ≥
ui (Aj ) > ui (Ai ) ≥ 0. Let 0 < ϵ < (uj (Aj ) − ui (Ai ))/uj (Aj ).

Construct another allocation A′ such that A′
k
= Ak for all k ∈ N \ {i, j}, A′i = Aj , and A′j = 0.

Since agent i envied agent j, we have di ≤ dj , implying that A′ is feasible. Note that agent i now
has higher utility because ui (A

′
i ) = ui (Aj ) > ui (Ai ).

Construct an allocation A′′ that realizes Awith probability 1 − ϵ and A′ with probability ϵ . Due
to our construction of A′′, we have that for every agent k ∈ N \ {i, j}, uk (A′′) = uk (A′) = uk (A).

6This is because we assumed that the demand of every agent can be satisfied given all available units.

ACM Transactions on Economics and Computation, Vol. 6, No. 3–4, Article 11. Publication date: October 2018.



Leximin Allocations in the Real World 11:9

Further, for agent i we have ui (A
′′
i ) > ui (Ai ). Also, for agent j we have

uj (A
′′
j ) = (1 − ϵ )uj (Aj ) > ui (Ai ).

Hence, switching fromA toA′′ preserves the utility achieved by every agent except agents i and
j, and both agents i and j receive utility strictly greater than ui (Ai ) = min(ui (Ai ),uj (Aj )). That is,
allocation A′′ is strictly better than allocation A in the leximin ordering, which contradicts the
leximin-optimality of A.

Pareto Optimality. This follows trivially from the definition of leximin-optimality. Note that in-
creasing the utility of an agent i without decreasing the utility of any other agent would improve
the allocation in the leximin ordering. Since the allocation returned by the leximin mechanism is
already leximin-optimal, it does not admit any Pareto improvements. Hence, the leximin mecha-
nism is Pareto optimal.

Group Strategyproofness. This is the most non-trivial property to establish among the four
desired properties. Under the true reports (dk , Fk )k ∈N , let A denote the allocation returned by the
leximin mechanism. Suppose a subset of agents S ⊆ N , whom we call manipulators, report false
preferences (d ′i , F

′
i )i ∈S ; let (u

′
i )i ∈S denote the utility functions induced by the false preferences of

the manipulators. LetA′ denote the allocation returned by the leximin mechanism when agents in
S misreport. Suppose for contradiction that every agent in S is strictly better off (under their true
utility functions) by misreporting, i.e., ui (A

′
i ) > ui (Ai ) for every i ∈ S . Now, Lemma 4 implies that

u ′i (A
′
i ) ≥ ui (A

′
i ); thus, we have u

′
i (A
′
i ) > ui (Ai ) for every i ∈ S .

Before we derive a contradiction, we first observe that the leximin-optimality of an allocation
implies Pareto optimality of any prefix of its sorted utility vector. Let prefA (i ) = {j ∈ N | uj (Aj ) ≤
ui (Ai )} denote the prefix of agent i in allocation A.

Lemma 5 (Prefix Optimality). For an allocation X returned by the leximin mechanism and an
agent i ∈ N , there does not exist an allocation X ′ such that some agent in prefX (i ) is strictly better off
under X ′ and no agent in prefX (i ) is worse off.

Proof. Assume without loss of generality that ui (Xi ) < maxj ∈N uj (X j ), otherwise the state-
ment coincides with Pareto optimality. Suppose for contradiction that an allocation X ′ as in the
statement of the lemma exists. Choose ϵ such that

0 < ϵ <
1 − ui (Xi )

min{uj (X j ) | uj (X j ) > ui (Xi )}
.

Consider the allocation X ′′ = (1 − ϵ ) · X + ϵ · X ′. Due to our choice of ϵ , we can see that for every
agent j � prefX (i ), we have uj (X

′′
j ) ≥ (1 − ϵ )uj (X j ) > ui (Xi ). Further, we have uj (X

′′
j ) ≥ uj (X j )

for every agent j ∈ prefX (i ) and uj (X ′′j ) > uj (X j ) for some j ∈ prefX (i ).
We now show that X ′′ is strictly better than X in the leximin ordering. Choose agent j∗ ∈

arдminj ∈prefX (i ):uj (X ′′j )>uj (X j )uj (X j ). Break ties by choosing an agent with the smallest value

of uj (X
′′
j ), and if there are still ties, break them arbitrarily. Let t = |{k ∈ prefX (i ) |uk (Xk ) <

uj∗ (X j∗ )}| + |{k ∈ prefX (i ) |uk (X ′′k ) = uk (Xk ) = uj (X j )}|. Then, one can check that allocations X
andX ′′ match in the t lowest utilities, and allocationX ′′ has a strictly greater (t + 1)st lowest util-
ity. Thus,X ′′ is strictly better thanX in the leximin ordering, which contradicts leximin-optimality
of X . (Proof of Lemma 5) �

Fix a manipulator i ∈ S that minimizesui (Ai ) among all i ∈ S (break ties arbitrarily). Let us look
at the set of all agents that are strictly better off underA′ compared toA, and among these agents,
choose an agent j that minimizes uj (Aj ) (again, break ties arbitrarily). Now, agent i is also strictly
better off under A′. Hence, by the definition of agent j, we have uj (Aj ) ≤ ui (Ai ). Since agent j is

ACM Transactions on Economics and Computation, Vol. 6, No. 3–4, Article 11. Publication date: October 2018.
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strictly better off underA′, by prefix optimality ofA (Lemma 5) we know there must exist an agent
in prefA (j ) that is strictly worse off underA′. Among all agents in prefA (j ) that are worse off under
A′, choose an agent k that minimizes uk (A

′
k
) (again, break ties arbitrarily).

Now, we derive our contradiction by showing that prefix optimality of A′ is violated. More
precisely, we know that agent k is strictly better off under A compared to A′. We show that no
agent in prefA′ (k ) is worse off under A compared to A′.
First, note that for any manipulator l ∈ S , we have ul ′ (A

′
l
) ≥ ul (A

′
l
) > ul (Al ) ≥ ui (Ai ) ≥

uj (Aj ) ≥ uk (Ak ) > uk (A
′
k
), where the third, fourth, and fifth transitions hold due to our choice

of agents i , j, and k , respectively. Thus, no manipulator belongs to prefA′ (k ). In other words, for
every agent l ∈ prefA′ (k ) we can denote its utility function (which is common between A and A′)
by ul . Take an agent l ∈ prefA′ (k ). If ul (Al ) < ul (A

′
l
), then we have ul (Al ) < ul (A

′
l
) ≤ uk (A

′
k
) <

uk (Ak ) ≤ uj (Aj ). Thus, agent l satisfies ul (Al ) < uj (Aj ), and is still better off under A′ compared
to A, which contradicts our choice of agent j. Therefore, ul (Al ) ≥ ul (A

′
l
) for every l ∈ prefA′ (k ),

and uk (Ak ) > uk (A
′
k
), contradicting prefix optimality of A′. (Proof of Theorem 3) �

While group strategyproofness is a strong game-theoretic requirement, an even stronger re-
quirement has been studied in the literature. Under this stronger requirement, a group of manip-
ulators should not be able to report false preferences that would lead to all manipulators being
weakly happier and at least one manipulator being strictly happier. Bogomolnaia and Moulin [7]
show that in the classical random assignment setting under dichotomous preferences, the leximin
mechanism is group strategyproof according to this stronger requirement.7 Unfortunately, the fol-
lowing example shows that this does not hold in our more general setting.

Example 6. Suppose there are nine agents with demands

(d1,d2,d3,d4,d5,d6,d7,d8,d9) = (2, 4, 4, 4, 2, 2, 2, 1, 1),

and three facilities with capacities (c1, c2, c3) = (4, 2, 1). Let the dichotomous preferences of the
agents be as follows: Fi = {1} for i ∈ {1, 2, 3, 4}, F5 = {1, 2}, F6 = F7 = {2}, F8 = {2, 3}, and F9 = {3}.

In this case, it can be checked that under the leximin allocation, the utilities of the agents are as
follows: ui = 1/4 for i ∈ {1, 2, 3, 4}, u5 = u6 = u7 = 5/12, and u8 = u9 = 1/2.
Suppose agent 1 manipulates, and increases its demand to d ′1 = 3 units. Then, it can be checked

that under the new leximin allocation, the utility of agents 1 through 4 remains 1/4, the utility of
agents 5 through 7 drops to 1/3, and the utility of agents 8 and 9 increases to 5/8. Thus, agent 1
and agent 9 form a successful group manipulation in which no agent is worse off, but agent 9 is
strictly better off.

Similarly, Bogomolnaia and Moulin [7] also show that a leximin-optimal allocation always
Lorenz-dominates any other allocation in their classic setting. Let us first define Lorenz dominance
among allocations.

Lorenz Dominance. For k ∈ {1, . . . ,n}, letuk andvk denote the kth lowest utility in allocationsA
and B, respectively. We say that allocation A (weakly) Lorenz-dominates allocation B if

∑k
i=1 u

i ≥∑k
i=1v

i for k ∈ {1, . . . ,n}.
We now show that in our setting theremay not exist an allocation that weakly Lorenz-dominates

every other allocation.

Example 7. Suppose there is a single facility with three available units, and there are four
agents—namely, agents 1 through 4—such that agent 1 demands all three units from the facility,

7While the strategyproofness result of Bogomolnaia andMoulin [7] more generally applies to strategic manipulations from

both sides of the market, this is captured by our generalized results in Section 3.2.
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while the remaining agents demand a single unit each. Suppose there exists an allocation A that
weakly Lorenz-dominates every other feasible allocation. Then, in particular, it must achieve the
maximum possible lowest utility. Hence, allocationAmust assign agent 1 to the facility with prob-
ability 0.5, and assign the remaining agents to the facility simultaneously with the remaining prob-
ability 0.5. Thus, the sum of the first three lowest utilities underA is 1.5. However, for the allocation
that assigns agents 2 through 4 to the facility with probability 1, the sum of the three lowest utili-
ties is 2, violating our assumption thatAweakly Lorenz-dominates every other feasible allocation.
Thus, in this case there does not exist any allocation that Lorenz-dominates every other allocation.

In general, the leximin allocation may not be unique, but all leximin allocations are equivalent
in a sense formalized in the next result, which is reminiscent of a number of similar results in the
literature, e.g., uniqueness of the optimal utility vector when a concave social welfare function (for
instance, the Nash social welfare) is maximized over a convex space [2], uniqueness of the nucleo-
lus in cooperative game theory [14], and the “rural hospital theorem” in two-sided matching [33].

Theorem 8. The utility of an agent is identical under all leximin allocations.

Proof. Suppose for contradiction that there exist leximin-optimal allocations A and B such
that the utilities of some agents do not match in the two allocations. Choose an agent i ∈
argmini ∈N :ui (Ai )�ui (Bi )ui (Ai ), and break ties by choosing an agent with the smallestui (Bi ) (further
ties can be broken arbitrarily). First, prefix optimality of A (Lemma 5) implies that agent i must
be worse off under B, i.e., ui (Bi ) < ui (Ai ). This is because otherwise there would exist an agent
j ∈ prefA (i ) that is strictly worse off under B. Agent j would satisfy uj (Bj ) < uj (Aj ) ≤ ui (Ai ) <
ui (Bi ), and thus contradict our choice of agent i . Hence, we have ui (Bi ) < ui (Ai ).

Now, consider the prefix of agent i in B, i.e., prefB (i ). For every agent j ∈ prefB (i ), either agent
j has identical utility under A and B (i.e., uj (Aj ) = uj (Bj )), or its utility changes in which case we
must have uj (Aj ) ≥ ui (Ai ) > ui (Bi ) ≥ uj (Bj ), where the first transition holds due to our choice
of agent i . Hence, no agent in prefB (i ) is worse off under A compared to B, and agent i is strictly
better off under A compared to B. This violates prefix-optimality of B, which is a contradiction.
Hence, the utility of each agent must be identical under all leximin-optimal allocations. �

Crucially, this also implies that all leximin-optimal allocations satisfy an equal number of agents
in expectation, and allocate an equal number of units in expectation.

3.2 A General Framework for Leximin

Theorem 3 established that the leximin mechanism satisfies four compelling desiderata in our
classroom allocation setting.We observe that the proof of Theorem 3 only uses four characteristics
of the classroom allocation setting (which are listed below). That is, the leximin mechanism (Algo-
rithm 1) satisfies proportionality, envy-freeness, Pareto optimality, and group strategyproofness
in all domains of fair division and mechanism design without money—with divisible or indivisible
(or both types of) resources, and with deterministic or randomized allocations—that satisfy these
four requirements.
We briefly describe a general framework in which our result holds. Let N denote the set of

agents. There is a set of resources X , which may contain divisible resources, indivisible resources,
or both. An allocation A assigns a disjoint subset of resources Ai to each agent i .8 Denote the set
of all feasible allocations by A. Note that the use of randomized allocations may or may not be
permitted in the domain; it does not affect our result. There is a set P of possible preferences
that the agents may have over possible allocations. Fix a mapping from each preference P ∈ P to

8Obviously, only divisible resources can be split among multiple agents.
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a utility function uP consistent with P , and let U = {uP |P ∈ P} denote the corresponding set of
possible utility functions. Then, our four requirements can be formalized as follows.

(1) Convexity. The space of feasible allocations must be convex. That is, given two allocations
A,A′ ∈ A, and 0 ≤ λ ≤ 1, it should be possible to construct another feasible allocation
A′′ ∈ A such that ui (A

′′
i ) = λ · ui (Ai ) + (1 − λ)ui (A′i ) for all agents ti ∈ N . This typically

holds if randomized allocations are allowed, or if resources are divisible.
(2) Equality. The maximum utility achievable by each agent must be identical. Thus, for two

agents i, j ∈ N , we require maxA∈A ui (Ai ) = maxA∈A uj (Aj ). This property is required for
proportionality, and is usually taken care of when translating the ordinal preferences of
agents into cardinal utility functions.

(3) Shifting Allocations. Given a feasible allocation A ∈ A and agents i, j ∈ N , it should be
possible to construct another feasible allocationA′ ∈ A where we take the resources allo-
cated to agent j, and allocate them to agent i . That is, we must have uk (A

′
k
) = uk (Ak ) for

all agents k ∈ N \ {i, j}, and ui (A′i ) ≥ ui (Aj ). This property is required for envy-freeness.
(4) Optimal Utilization. Under a non-wasteful allocation A ∈ A, an agent must derive the

maximum possible utility from the allocation it receives. That is, we require ui (Ai ) ≥
u (Ai ) for all possible utility functions u ∈ U . Lemma 4 proves that this is satisfied in
the classroom allocation setting. This assumption is perhaps the most stringent, and is
required for both envy-freeness and group strategyproofness.

Many papers study the leximin mechanism and establish (at least a subset of) the properties
listed in Theorem 3 in a variety of domains, including resource allocation [5, 7, 18, 23, 28], cake
cutting [13], and kidney exchange [34]. It can be checked that these domains satisfy our four
requirements, and hence, Theorem 3 applied to the foregoing framework generalizes results from all
of these papers.
In addition, any general dichotomous preference setting—where each agent “accepts” a subset

of feasible allocations for which it has utility 1, and “rejects” the rest for which it has utility 0—
is also captured under our general framework; and when agents have ordinal preferences over
allocations, we only need to establish one translation to consistent cardinal utilities that satisfies
the four requirements above.
Below, we briefly describe one special case of the general framework: fair resource allocation

under Leontief preferences [18, 28]. Suppose there are m divisible resources, and each agent i
demands them in fixed proportions given by a (normalized) demand vector d = (di,1, . . . ,di,m )
where maxr ∈{1, ...,m } di,r = 1. Thus, given an allocation Ai = (Ai,1, . . . ,Ai,m ) (where Ai,r ∈ [0, 1]
denotes the fraction of resource r allocated to agent i), the utility to agent i is given by ui (Ai ) =
minr ∈{1, ...,m } Ai,r /di,r . To see that our four requirements are met, note that the space of feasible
allocations is convex due to divisibility of resources, every agent can achieve a maximum util-
ity of 1, and shifting allocations is permitted. Finally, a non-wasteful allocation always allocates
resources in the demanded proportion. Thus, the utility to agent i is simply Ai,r /di,r (which is
identical for all r ). Under any other normalized demand vector d ′ = (d ′1, . . . ,d

′
m ) with d ′r ∗ = 1, the

utility achieved would be at mostAi,r ∗ ≤ Ai,r ∗/di,r ∗ . Hence, the requirement of optimal utilization
also holds.
Ghodsi et al. [18] prove that the leximin mechanism satisfies proportionality, envy-freeness,

Pareto optimality, and strategyproofness in the foregoing setting, and Parkes et al. [28] establish
group strategyproofness. These results now directly follow from Theorem 3. Further, Parkes et al.
[28] study the variant where agents only derive utility for integral multiples of their required
resource bundle, and show that no deterministic mechanism satisfies all four desiderata. Indeed, in
our framework the convexity requirement is violated for deterministic allocations, but it is satisfied
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for randomized allocations. Hence, the randomized leximin mechanism would still satisfy all four
desiderata.

4 QUANTITATIVE EFFICIENCY OF THE LEXIMIN ALLOCATION

Theorem 3 establishes the leximin mechanism as a compelling solution, which simultaneously
guarantees fairness, efficiency, and truthfulness. The fairness (proportionality and envy-freeness)
and truthfulness guarantees are strong. But the notion of Pareto optimality is a relatively weak,
qualitative notion of efficiency.
In our setting, there are two natural quantitativemetrics of efficiency: the (expected) number of

agents whose demands are met, and the (expected) number of total units allocated. Optimizing the
former metric is clearly desirable as it represents the social welfare achieved by the mechanism.
The latter metric is important when the units being allocated are valuable and scarce (this is clearly
the case when the units in question are classrooms). Furthermore, in the classroom allocation
setting, the number of units allocated is proportional to the number of students served.
Indeed, in our setting it is not unnatural to consider directly optimizing either metric. In par-

ticular, such an optimization would always lead to a Pareto optimal allocation. However, it is easy
to observe that directly optimizing either metric fails to achieve one or more of our four desired
properties. Recall Example 1, which already showed that maximizing the number of allocated units
violates proportionality, envy-freeness, and strategyproofness; the next example deals with the
other metric.

Example 9 (Maximizing the number of satisfied agents). Suppose there is a single facility with
two available units, and there are four agents, namely, agents 1 through 4. Agents 1 through 3 each
demand a single unit from the facility, while agent 4 demands both units. In order to maximize the
number of satisfied agents we must allocate a single unit to two of the agents in {1, 2, 3}, while
leaving agent 4 unallocated. It is easy to see that both proportionality (with respect to agent 4) and
envy-freeness (with respect to the unallocated agent in {1, 2, 3}) are violated.
In the above example, proportionality is clearly violated, but it seems that the violation of envy-

freeness is the result of tie-breaking. Indeed, as previouslymentioned, the utilitarianmechanism [8,
15] that uniformly randomizes over all deterministic allocations maximizing the number of satis-
fied agents achieves envy-freeness along with strategyproofness. We note that strategyproofness
would also hold if ties were broken according to a lexicographic order over the agents (i.e., if ties
are broken in favor of allocations satisfying the first agent in the ordering, remaining ties are bro-
ken in favor of allocations satisfying the second agent in the ordering, and so on). Here, we provide
a short proof of these results for curious readers.

Observation 10. The mechanism that returns an allocation maximizing the number of satisfied
agents and breaks ties according to a lexicographic preference over agents is strategyproof and Pareto
optimal. Breaking ties uniformly at random preserves these properties, and achieves envy-freeness.

Proof. Both the deterministic and the randomized mechanisms are clearly Pareto optimal. We
now show strategyproofness of both mechanisms, and envy-freeness of the randomized mecha-
nism. Let A denote the allocation returned by the deterministic mechanism.

Strategyproofness. Suppose agent i ∈ N is not satisfied under A. Suppose agent i manipulates,
which results in allocationA′ satisfying agent i . Let k and k ′ denote the number of agents satisfied
inA andA′, respectively. Since agent i cannot decrease its demanded number of units, any subset of
agents satisfiable after the manipulation is also satisfiable before the manipulation. Hence, k ≥ k ′.
However, allocation A does not assign agent i to any facility, and therefore must be feasible after
the manipulation. Thus, k ′ ≥ k , implying k = k ′. Finally, note that the subset of agents satisfied
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by A′ was feasible before manipulation, but was not chosen because the subset of agents satisfied
under A was better in the lexicographic preference. Since A is a feasible allocation after manipu-
lation, it would still be preferred to A′ under the same lexicographic preference, thus establishing
a contradiction.
Suppose the mechanism returns an allocation A that uniformly randomizes over all allocations

maximizing the number of satisfied agents. Let A′ denote the corresponding (uniformly random-
izing) allocation when agent i manipulates. If agent i is satisfied with probability 1 under A, then
it has no incentive to manipulate. Otherwise, there exists an allocation in the support of A that
does not satisfy agent i . Observing that this allocation is feasible after manipulation, and that ev-
ery subset of agents satisfiable after manipulation is also satisfiable before manipulation, we again
get k = k ′. Moreover, since agent i cannot decrease its demand, the number of allocations in the
support of A′ in which agent i is satisfied is at most the number of such allocations in A. Since
bothA andA′ uniformly randomize over allocations in their support, it is clear that agent i cannot
increase its utility by manipulating.

Envy-Freeness. Consider agents i, j ∈ N . Suppose for contradiction that agent i envies agent j.
Let I denote the set of deterministic allocations in the support of A in which agent i is assigned
to a facility, while agent j is unassigned. Let J denote the set of deterministic allocations in the
support of A in which agent j is assigned to a facility that is acceptable to agent i , while agent i is
unassigned. Let pI and p J denote the probabilities by which A executes an assignment from I and
J , respectively. Then, we must have p J > pI . However, since agent i envies agent j, we must have
dj ≥ di . Thus, taking an allocation from J , and replacing agent j with agent i must form a feasible
allocation. Thus, |I | ≥ |J |. Due to uniform randomization over all allocations in the support, we
get pI ≥ p J , which is a contradiction. (Proof of Observation 10) �

While the utilitarian mechanism seems intriguing, recall that in Example 9 the demand of agent
4 was met with zero probability, suggesting that the mechanism is biased against agents with
larger demands. Bogomolnaia et al. call this effect the “tyranny of the majority.” While such a
bias may be acceptable in some settings, in other settings—classroom allocation, in particular—
it is problematic. The bias is formally captured by noting that the utilitarian mechanism violates
proportionality.
The discussion above leads us to a natural question: How well does the leximin mechanism per-

form with respect to the two quantitative notions of efficiency, namely, the number of satisfied agents
and the number of allocated units?We are interested in the worst case over problem instances, but
since the leximin mechanism is randomized, we can consider the performance under the worst
deterministic allocation in the support of the randomized leximin allocation, and the performance
in expectation. Unsurprisingly, the worst allocation in the support can be simultaneously bad in
terms of both metrics; in the following example, both metrics achieve arbitrarily low fractions of
their respective optimums.

Example 11 (Efficiency of allocations in the support of the leximin allocation). Suppose there are
k + 4 agents and two facilities. The capacities of the two facilities are c1 = k and c2 = k

2. The
preferences of the agents are as follows.

(di , Fi ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1, {1}) if i ∈ {1, . . . ,k },
(k, {1}) if i = k + 1 or k + 2,
(1, {2}) if i = k + 3,
(k2, {2}) if i = k + 4.

Clearly, a maximum of k + 1 agents can be satisfied, and a maximum of k + k2 units can be
allocated. It is easy to check that under the leximin allocation, agents 1 through k + 2 should be
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assigned to facility 1 with probability 1/3 each, while agents k + 3 and k + 4 should be assigned to
facility 2 with probability 1/2 each. However, this implies that the support of the leximin allocation
must include a deterministic allocation in which agent k + 3 is assigned to facility 2 while one of
agents k + 1 and k + 2 is assigned to facility 1 (and the remaining agents are unassigned). In this
allocation, the number of agents satisfied is a mere 2/(k + 1) fraction of the optimum, and the
number of units allocated is also a mere (k + 1)/(k + k2) = 1/k fraction of the optimum. Thus,
both approximation ratios converge to 0 as k goes to infinity.

Let us therefore consider the worst-case (over instances) performance of the leximin mechanism
in expectation (over the randomness of the mechanism). We can show that approximating (in
expectation) the maximum number of satisfied agents is directly at odds with proportionality—
recall that this is exactly the property that the utilitarian mechanism [8, 15] fails to achieve.

Example 12 (Proportionality and maximizing the number of satisfied agents). Suppose there is
a single facility with k units available, and there are k + k2 agents, k of which require 1 unit
each while the other k2 agents require all k units each. Any proportional mechanism must al-
locate the k units to each of the k2 agents demanding them with probability at least 1/(k + k2).
Hence, such a mechanism satisfies a single agent with probability at least k2/(k + k2), and at most
k agents with the remaining probability. Therefore, the expected number of satisfied agents is at
most k2/(k + k2) + k · k/(k + k2) ≤ 2. However, a maximum of k agents could be satisfied simul-
taneously. Hence, any proportional mechanism (including the leximin mechanism) achieves an
approximation ratio of at most 2/k for the number of satisfied agents. This ratio goes to 0 as k
goes to infinity.

In contrast, we make the following conjecture for the expected number of units allocated by the
leximin mechanism.

Conjecture 13. The expected number of units allocated by the leximin mechanism 2-
approximates the maximum number of units that can be allocated simultaneously by any non-
wasteful allocation (in the worst case over instances).

The conjecture is based on millions of randomly generated instances. In all of these instances,
the leximinmechanism allocated, in expectation, at least half of the optimal number of units.While
the conjecture is still open, we are able to prove a slightly weaker 4-approximation result.

Theorem 14. The expected number of units allocated by the leximin mechanism 4-approximates
the maximum number of units that can be allocated simultaneously by any non-wasteful allocation
(in the worst case over instances).

Proof. Let us first prove a 2-approximation in the case of a single facility to gain some intuition.
Let c denote the capacity of the facility, andD denote the maximum number of units allocated by a
non-wasteful allocation. If all the deterministic assignments in the support of the leximin allocation
allocate at least D/2 units, then the result follows trivially. Suppose a deterministic assignment
allocates t < D/2 ≤ c/2 units to agents in S ⊆ N , and is realized with probability p. Hence, it is
clear that N \ S � ∅. Due to Pareto optimality of the leximin allocation, an allocation that does
not assign any agent in N \ S to the facility must assign all agents in S to the facility. That is,
there is a unique such allocation, which is realized with probability p. Further, due to the nature of
the leximin allocation, every agent in N \ S must also be assigned to the facility with probability
at least p, implying that p ≤ 1/2. Thus, with probability p ≤ 1/2 the mechanism allocates t units,
and with the remaining probability 1 − p the mechanism assigns at least one agent in N \ S to
the facility, thus allocating more than c − t units (this is because every agent in N \ S must have
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demand greater than c − t due to Pareto optimality of the leximin allocation). Hence, the expected
number of units allocated is at least t · 1/2 + (c − t ) · 1/2 = c/2 ≥ D/2.
However, generalizing this proof to achieve a “per facility” constant approximation is difficult.

Instead, our proof below works in three steps.

(1) We fix an arbitrary (deterministic) allocation A∗ that maximizes the number of units allo-
cated.

(2) Next, after adding certain “virtual allocated units” to each facility (derived based on A∗),
the expected number of units allocated by the leximin mechanism 2-approximates the
number of units allocated under A∗ on each facility individually.

(3) Finally, we show that the expected number of virtual units added overall is no more than
the expected number of units allocated by the leximin mechanism, thus establishing the
4-approximation result.

LetA∗ denote an arbitrary deterministic allocation that maximizes the number of units allocated.
For a facility f ∈ M , letZ ( f ) = {i ∈ N |A∗i = f } denote the set of agents assigned to facility f under

A∗. Let L denote the leximin allocation, which executes deterministic allocation Lk with probability
pk for k ∈ {1, . . . ,T }. We are now ready for our main lemma. For a facility f ∈ M , the number of
“virtual units” we add is the expected number of units allocated by the leximin mechanism to the
agents inZ ( f ) (at any facility).We show that the expected number of units allocated by the leximin
mechanism at facility f and the number of virtual units for facility f together 2-approximate the
number of units allocated by A∗ at facility f , for each f ∈ M . �

Lemma 15. For a facility f ∈ M we have

T∑
k=1

pk
���
�

∑
i ∈N :Lki =f

di +
∑

i ∈Z (f ):Lki �0

di
	


�
≥ 1

2

∑
i ∈Z (f )

di .

Proof. Let us consider two cases.

Case 1: For every i ∈ Z ( f ), di ≤ cf /2. In this case we can show that∑
i ∈N :Lki =f

di +
∑

i ∈Z (f ):Lki �0

di ≥
1

2

∑
i ∈Z (f )

di (1)

for each k ∈ {1, . . . ,T }. If Lki � 0 for every i ∈ Z ( f ), then the second term in the left-hand side

(LHS) of Equation (1) is at least
∑

i ∈Z (f ) di . Otherwise, let L
k (γ ) = 0 for some γ ∈ Z ( f ). By the

Pareto optimality of Lk , we know that the demand of agent γ must be greater than the number of
unallocated units at facility f in Lk , i.e.,

dγ > cf −
∑

i ∈N :Lki =f

di .

Using dγ < cf /2, we get that the first term in the LHS of Equation (1) is greater than the right-hand
side (RHS). Hence, in either case Equation (1) holds.

Case 2: There exists an agent γ ∈ Z ( f ) such that dγ > cf /2. Let us define two sets.

(1) I = {k ∈ {1, . . . ,T } | Lkγ � 0}.
(2) J = {k ∈ {1, . . . ,T } | Lkγ = 0 and

∑
i ∈N :Lki =f

di < cf /2}.

Furthermore, let pI =
∑

k ∈I pk and p J =
∑

k ∈J pk . We claim that pI ≥ p J . Note that pI is precisely
the probability that agent γ is satisfied under the leximin allocation.
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Suppose for contradiction that pI < p J . Take some � ∈ J , and letW = {i ∈ N | L�i = f }. From
the definition of J , we know that each agent i ∈W must satisfy di < cf /2. Further, for each k ∈ J

facility f hasmore than cf /2 units unallocated in L
k . Hence, by the Pareto optimality of the leximin

allocation, every agent inW must be assigned to some facility in Lk for every k ∈ J . Importantly,
this implies that every agent inW has probability at least p J > pI of being assigned to a facility
under the leximin allocation.
Now, fix a small ϵ > 0, and consider a new randomized allocation L̃ that executes deter-

ministic allocations L1, . . . ,Lk−1,Lk ,Lk+1, . . . ,LT , and LT+1 with probabilities p1, . . . ,pk−1, (1 −
ϵ )pk ,pk+1, . . . ,pT , and ϵpk , respectively, where

LT+1i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Lki if Lki � f

0 if Lki = f and i � γ

1 otherwise.

Note that f must be an acceptable facility to agent γ because γ ∈ Z ( f ). Hence, allocation LT+1i

respects the preferences of the agents. It is easy to check that the capacity constraint at each
facility (including facility f ) is also respected. Essentially, we replace all the agents assigned at
facility f in Lk by a single agent γ . For a sufficiently small ϵ > 0, we can see that

(1) agent γ has a strictly higher probability of being assigned to a facility under L̃ than under
L (under L, it is assigned to a facility with probability exactly pI );

(2) an agent i � γ that is assigned to a facility with probability p ≤ pI (thus, from the above

argument Lki � f ) has the same probability of being assigned to a facility under L̃ as under
L;

(3) all the remaining agents were assigned to a facility with probability strictly more than pI
under L, and their probabilities remain strictly greater than pI under L̃.

However, this contradicts the fact that L is a leximin-optimal allocation. This is essentially a con-
sequence of the prefix optimality of L (Lemma 5). Hence, we have pI ≥ p J , as claimed.
With this claim in hand, we can show the required inequality. Let us consider the sum in the

LHS.

T∑
k=1

pk
���
�

∑
i ∈N :Lki =f

di +
∑

i ∈Z (f ):Lki �0

di
	


�
.

We break the summation over k ∈ I , k ∈ J , and k ∈ {1, . . . ,T } \ (I ∪ J ). For each k ∈ I , we have
Lkγ � 0. Hence, the term inside the brackets is at least dγ . For each k ∈ J , we have Lkγ = 0. Hence,
the term inside the brackets, which is no less than the number of units allocated at facility f in
Lk , must be at least cf − dγ . Finally, from definitions of I and J , it follows that the term inside the
brackets is at least cf /2 for every k ∈ {1, . . . ,T } \ (I ∪ J ). Hence, we have that the LHS is at least∑

k ∈I
pk · dγ +

∑
k ∈J

pk · (cf − dγ ) +
∑

k ∈{1, ...,T }\(I∪J )
pk ·

cf

2

= pI · dγ + p J · (cf − dγ ) + (1 − pI − p J ) ·
cf

2

= (pI − p J ) · dγ + (1 − pI + p J ) ·
cf

2

≥ (pI − p J ) ·
cf

2
+ (1 − pI + p J ) ·

cf

2
=
cf

2
≥ 1

2

∑
i ∈Z (f )

di ,
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where the third transition holds because pI ≥ p J and dγ ≥ cf /2. Thus, we have proved that the
lemma holds in both the cases we considered. (Proof of Lemma 15) �

Lemma 15 holds for every facility individually. Summing over all facilities, we get

∑
f ∈M

T∑
k=1

pk
���
�

∑
i ∈N :Lki =f

di +
∑

i ∈Z (f ):Lki �0

di
	


�
≥ 1

2

∑
f ∈M

∑
i ∈Z (f )

di . (2)

In Equation (2), we have

LHS =
T∑
k=1

pk ·
���
�

∑
f ∈M

∑
i ∈N :Lki =f

di +
∑
f ∈M

∑
i ∈Z (f ):Lki �0

di
	


�

=

T∑
k=1

pk ·
���
�

∑
i ∈N :Lki �0

di +
∑

i ∈N :A∗i�0,L
k
i �0

di
	


�

≤ 2 ·
T∑
k=1

pk
���
�

∑
i ∈N :Lki �0

di
	


�
,

RHS =
1

2

∑
f ∈M

∑
i ∈Z (f )

di =
1

2

∑
i ∈N :A∗i�0

di .

Note that LHS is at most twice the expected number of units allocated by the leximin mechanism,
and RHS is half the number of units allocated byA∗. Hence, the expected number of units allocated
by the leximin mechanism 4-approximates the maximum number of units allocated by a non-
wasteful allocation. �

While we strongly believe that the approximation ratio of Theorem 14 can be improved from
4 to 2, it can easily be seen that a proportional or envy-free mechanism (including the leximin
mechanism) cannot achieve an approximation ratio better than 2. Consider the case of a single
facility with 2k units, and k + 1 agents, one of which requires all 2k units while the rest require k +
1 units each. Clearly any proportional or envy-free mechanismmust assign each agent demanding
k + 1 units alone to the facility with probability at least 1/(k + 1). Hence, the expected number of
allocated units cannot be more than (k + 1) · k/(k + 1) + 2k · 1/(k + 1) ≤ k + 2, while a maximum
of 2k units can be allocated simultaneously. This lower bound on the approximation ratio tends to
2 as k tends to infinity.

5 COMPLEXITY AND IMPLEMENTATION

Recall that our classroom allocation setting is a generalization of the classic setting of random as-
signment under dichotomous preferences studied by Bogomolnaia and Moulin [7] (which can be
viewed in our model as restricting agents to have unit demands and facilities to have unit capaci-
ties). In the classic setting, leximin allocations can be computed in polynomial time by leveraging
the Birkhoff von-Neumann theorem [4, 36].
In contrast, an immediate reduction from Partition shows that computing the leximin alloca-

tion isNP-hard in our generalized setting. Indeed, consider an instance of Partition: given a set
S of n integers that sum to 2T for T ∈ N, one needs to decide if there exists a subset S ′ ⊆ S whose
elements sum toT . Construct an instance of our problem in which a single facility hasT available
units and there are n agents whose demands correspond to the elements of S . Then, the leximin
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allocation would assign each agent to the facility with probability at least 1/2 if and only if there
exists a partition of S .
The standard approach to computing the leximin allocation (see, e.g., [25]) is to successively

solve linear programs (LPs) in order to maximize the lowest utility, subject to that maximize the
second lowest utility, and so on. While previous work focused on establishing polynomial running
time of this approach in various domains, in our domain this task is NP-complete. Hence, in the
remainder of the section, we focus on designing optimized heuristics for computing the leximin
allocation in the classroom allocation setting. We use a variable pi to denote the probability that
agent i is satisfied, for every i ∈ N . In a naïve implementation, we can include a variable xA for
every possible deterministic assignmentA ∈ A that represents the probability of executingA, and
writepi =

∑
A∈A:Ai�0 xA. However, the number of feasible deterministic allocations can be roughly

(m + 1)n , which makes the LPs extremely large even for moderately large values ofm and n.
Crucially, note that we only care about whether a given agent is satisfied in a deterministic

allocation, and not about the facility to which the agent is assigned. In other words, two determin-
istic allocations that satisfy identical subsets of agents are, in some sense, equivalent. This is due
to the dichotomous nature of the preferences of agents over facilities. This observation leads us
to our first algorithm, presented as Algorithm LeximinPrimal, which works as follows. First, we
compute the collection of “feasible subsets” of agents, i.e., subsets of agents that can be satisfied si-
multaneously. Let S = {S ⊆ N | ∃A ∈ A s.t. ∀i ∈ S,Ai � 0}. Checking feasibility of a given subset
of agents S can be encoded as an integer linear program (ILP), presented as FeasibilityILP in the
algorithm, which checks if agents in S can be assigned to one of their acceptable facilities while
respecting the capacity constraints. Note that a feasible solution to FeasibilityILP also provides
an assignment AS that satisfies S .
Finally, we form an LP, which we call PrimalLP, in which variable xS denotes the probability

by which S ⊆ N is satisfied, and express the individual agent utilities as pi =
∑

S ⊆N :i ∈S xS for i ∈
N . The algorithm maintains a set of agents R whose utilities in the leximin allocation it has not
yet found, and stores the utility of each agent i ∈ N \ R as p∗i . In each iteration, the algorithm
maximizes the (next) minimum utility of agents in R while keeping the utilities of agents in N \ R
intact, stores the utilities of agents that have the next minimum utility, and removes them from R.

The algorithm clearly terminates because any optimal solution to PrimalLP must set pi = M for
at least one i ∈ R. Hence, |R | decreases by at least 1 in every iteration. Further, ifM is the optimal
objective value of PrimalLP, then an observation from the convex optimization literature states
that there must exist at least one j ∈ R that has utilityM in all optimal solutions to PrimalLP, and
in particular, in the actual leximin allocation too.9 Our use of a strictly complementary solution
to PrimalLP ensures that we have pj = M only if it holds in all optimal solutions.10 Thus, Al-
gorithm LeximinPrimal always makes “safe” choices, and correctly returns a leximin allocation.
Finally, note that the values of p∗i from one iteration are used to compute p∗i in the next iteration.
While this may lead to an exponential blowup in the length of their binary representation, it does
not affect the running time of our algorithm due to a result by Tardos [35].11 Interestingly, note that
the choices made by the algorithm do not affect agent utilities in the returned leximin allocation
due to Theorem 8.

9If for every j ∈ R there exists a solution to PrimalLP with pj > M , a positive convex combination of these solutions

would be a feasible solution with a strictly greater objective value, which is a contradiction.
10Strictly complementary solutions can be found by using any interior point method based on the central trajectory [16],

by using a trick due to Freund, Roundy, and Todd [17] which requires solving a single LP using any off-the-shelf solver, or

by solving one LP for each i ∈ R to check if pi can be made greater than M in some optimal solution to PrimalLP.
11This result shows that the running time of an interior point method is independent of the bit length of values on the

right-hand side of an LP, which is where the p∗i are used in PrimalLP.
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ALGORITHM 2: LeximinPrimal

Data: Demands {(di , Fi )}i ∈N , Capacities {c j }j ∈M
Result: The Leximin Allocation A
Solve FeasibilityILP for each S ⊆ N , and let S ← the set of maximal feasible subsets of N ;

For each S ∈ S, AS ← the assignment returned by FeasibilityILP on S ;

R = N ;

p∗i = 0,∀i ∈ N ;

do

(M, {pi }i ∈R , {xS }S ∈S ) ← Strictly complementary solution to PrimalLP in the box below;

p∗i = M , ∀i ∈ R : pi = M ;

R = R \ {i ∈ N |pi = M };
if R = ∅ then

return the randomized allocation where AS is executed with probability xS for each S ∈ S;
end

while R � ∅;

PrimalLP :
Maximize M
subject to
pi ≥ M,∀i ∈ R
pi = p

∗
i ,∀i ∈ N \ R

pi =
∑
S ∈S,i ∈S xS ,∀i ∈ N∑

S ∈S xS = 1
xS ≥ 0,∀S ∈ S

FeasibilityILP :∑
f ∈Fi yi,f ≥ 1,∀i ∈ S∑
i ∈S :f ∈Fi di · yi,f ≤ cf ,∀f ∈ M

yi,f ∈ {0, 1},∀i ∈ S, f ∈ Fi

We employ two further optimizations to reduce the running time of LeximinPrimal: (i) solv-
ing FeasibilityILP on different subsets of agents in the decreasing order of their sizes, and only
solving it for S ⊆ N if none of its strict supersets are already found to be feasible, and (ii) only
using maximal feasible subsets in S because Pareto optimality prevents the leximin allocation
from using any non-maximal subset.
Next, we present another algorithm that, instead of solving PrimalLP, solves its dual. This is

presented as Algorithm LeximinDual. Note that PrimalLP has polynomially many constraints
and exponentially many variables. Correspondingly, its dual (DualLP) has polynomially many
variables and exponentially many constraints (in particular, one constraint for each S ∈ S). We
can identify the tight primal constraints (pi = M for i ∈ R) by simply checking if the corresponding
dual variable is strictly positive (αi > 0) due to the strict complementary slackness conditions. We
solve DualLP using the Ellipsoid algorithm [21], which makes polynomially many calls to an
“oracle” for finding a violated constraint (if one exists) given any values of the variables. Crucially,
we observe that finding S ∈ S that corresponds to the most violated constraint can be encoded as

an ILP, presented along with the algorithm. We use Ŝ to denote the polynomial-size collection of
subsets of agents on which the oracle is called by the Ellipsoid algorithm. There are three special
advantages of the oracle:

(1) Since the oracle includes feasibility constraints, we can avoid the initial (computationally
expensive) stage of LeximinPrimal solving FeasibilityILP for 2n subsets of agents, and

instead solve only polynomially many ILPs for subsets in Ŝ.
(2) Since LeximinDual makes only polynomially many calls to the oracle, the overall space

complexity is polynomial. In particular, the returned leximin allocation randomizes over
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ALGORITHM 3: LeximinDual

Data: Demands {(di , Fi )}i ∈N , Capacities {c j }j ∈M
Result: The Leximin Allocation A
R = N ;

p∗i = 0,∀i ∈ N ;

do

(M, {αi }i ∈R ) ← Strictly complementary solution to DualLP in the box below;

p∗i = M , ∀i ∈ R : αi > 0;

R = R \ {i ∈ N |pi = M };
while R � ∅;
Ŝ ← {S ⊆ N | oracle of DualLP was called on S in the last iteration of the loop};
For each S ∈ Ŝ, AS ← the assignment returned by the oracle when it was called on S ;

{xS }S ∈Ŝ ← Solution to FinalLP in the box below;

return the randomized allocation where AS is executed with probability xS for each S ∈ Ŝ;

DualLP :

Min.M = δ −
∑

i ∈N \R
p∗i · βi

subject to∑
i ∈R αi = 1
−αi − γi = 0,∀i ∈ R
−βi − γi = 0,∀i ∈ N \ R
δ +
∑
i ∈S γi ≥ 0,∀S ∈ S

αi ≥ 0,∀i ∈ R

Oracle for DualLP :

Max.
∑
i ∈N

γi · ��
�

∑
j ∈Fi

yi, j
	

�

subject to the constraints of
FeasibilityILP

FinalLP :

Find a feasible solution to
pi = p

∗
i ,∀i ∈ N

pi =
∑
S ∈Ŝ,i ∈S xS ,∀i ∈ N∑

S ∈Ŝ xS = 1

xS ≥ 0,∀S ∈ Ŝ

polynomially many subsets of agents (i.e., it is sparse), making it more feasible to store and
implement the allocation in practice.

(3) In special cases such as the case of unit demands and capacities (i.e., the classic random
assignment setting studied by Bogomolnaia and Moulin [7]), the oracle can be encoded
as a polynomial-size LP by leveraging the Birkhoff von-Neumann theorem [4, 36], which
would automatically make the overall running time of LeximinDual polynomial.

In the next section, we show that LeximinDual is actually drastically superior to LeximinPri-
mal in terms of running time.

6 EXPERIMENTS

Our goal in this section is to empirically compare algorithms LeximinPrimal and LeximinDual,
as well as evaluate the performance of the leximin allocation in terms of the number of satisfied
agents and the number of allocated units.
In our experiments, we vary the number of agents n from 5 to 300.12 Note that the largest

school district in the U.S. (by the number of charter schools) is the LAUSD which has 241 charter
schools.13 We observe that in practice the number of facilities varies from about 5n (for LAUSD)
to about 20n (for PUSD). Thus, we selectm uniformly at random from the interval [5n, 20n]. Next,

12We use n = 5, 10, 15 for LeximinPrimal as it fails to run beyond that, and evaluate LeximinDual further on n =

50, 100, 150, 200, 250, 300.
13Refer to http://goo.gl/Bu0pz9 and http://goo.gl/ILJupc.
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Fig. 2. Running time of LeximinPrimal and

LeximinDual.

Fig. 3. Performance of the leximin alloca-

tion as a fraction of the optimum.

we fit Poisson distributions to the real-world demands and capacities data from PUSD, and use
them to generate demands and capacities in our experiments. For the dichotomous preferences
of agents over facilities, we observe that in the PUSD data certain facilities were inherently more
desirable than others, and were accordingly accepted by many charter schools. We thus generate a
“quality parameter” for each facility in [0, 1] from the beta distribution with both parameters equal
to 5, and have each agent accept the facilities (which have sufficient capacity to meet its demand)
with probabilities proportional to their qualities. For each value of n, the values in all our graphs
are averaged over 500 simulations. We use MATLAB to obtain strictly complementary solutions
to linear programs, and CPLEX to solve integer linear programs. Our experiments are performed
on an Intel PC with dual core, 3.10GHz processors, and 8GB RAM.
Figure 2 compares the running time of algorithms LeximinPrimal and LeximinDual. Note that

the running time of LeximinPrimal increases extremely quickly asn grows, making it infeasible to
run the algorithm beyond n = 15. In contrast, LeximinDual solves instances with n = 300 (recall
that this is larger than any real-world instance) in just a little over 3 minutes. This is a direct result
of the fact that LeximinDual ends up solving less than 1% of the ILPs solved by LeximinPrimal,
and solving ILPs is the bottleneck in both algorithms. Another interesting fact is that the number
of times the loop in LeximinDual (or in LeximinPrimal) runs is equal to the number of distinct
utility values in the leximin solution, because all agents with identical utilities are removed in a
single iteration. The number of iterations required is less than three on average in our simulations.
We also remark that even if the Proposition 39 process scaled to the state level, California has
approximately 1130 charter schools overall,13 and LeximinDual can also solve such huge instances
in less than 2 hours (this result is averaged over 10 simulations).
Next, in Figure 3 we show the ratios of the expected number of agents satisfied and the ex-

pected number of units allocated by the leximin mechanism to the maximum possible values of
the respective metrics. Remarkably, both ratios stay above a whopping 0.98 on average, which
is significantly better than the upper bounds on the worst-case (over possible instances) perfor-
mance of the leximin mechanism (almost 0 for the expected number of agents satisfied and 1/2
for the expected number of units allocated). The error bars show confidence intervals for the per-
formance of the deterministic allocations in the support of the leximin allocation. Specifically, we
remove the best (the worst, respectively) deterministic allocations with an aggregate probability
of at most 0.1 from the support, and then measure the best (the worst, respectively) performance
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of any deterministic allocation in the support. A final remark is that the size of the support of the
leximin allocation is less than 8 on average in our simulations. A randomization over at most eight
deterministic allocations can easily be stored and implemented in practice, which further supports
the practicability of the leximin mechanism.

7 EPILOGUE AND DISCUSSION OF PRACTICAL ASPECTS

In January 2015, PUSD asked charter schools to formally report dichotomous preferences, in ad-
dition to the free-text preferences submitted through the usual request form. The plan was to
evaluate our approach by comparing its output on the collected explicit dichotomous preferences
against human-generated allocations based on the free-text preferences. Despite the promising
outlook, sadly, in April 2015 the collaboration was terminated by PUSD, for reasons unknown to
us. Nonetheless, we were informed that this initiative helped PUSD build a good rapport with local
charter schools.
Meanwhile, Mr. Mopatis put us in touch with representatives of the LAUSD), the largest school

district in California with 274 charter schools and over 900 public schools, which is perfect for
highlighting the advantages of our automated approach over human-generated allocations. We
are planning to reach out to additional school districts, and, while the process of deploying our
algorithm is slower and more complicated than we initially expected, we are hopeful that our
approach will be evaluated in the future.
On a practical level, the simplicity of the leximin mechanism, and the intuitiveness of the prop-

erties of proportionality, envy-freeness, Pareto optimality, and strategyproofness, have made the
approach more likely to be adopted. On the other hand, the use of randomization, though abso-
lutely necessary in order to guarantee fairness in allocating indivisible goods such as classrooms,
has been a somewhat harder sell. Ironically, this seems to be the result of presenting themechanism
as a “lottery,” which makes it easier to comprehend on the one hand, but on the other hand raises
negative connotations and legal objections—even though many charter schools use a (straightfor-
ward) lottery system to admit students. In terms of lessons learned, it actually seems better to use
more technical terms in this context.
In conclusion, redesigning the way California’s school districts allocate classrooms to charter

schools is a major project with the potential for societal impact. This article presents a detailed
technical approach, but deployment of this approach is still in its infancy; we hope to continue
working with school districts for years to come.
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