@ PLOS |ONE

Check for
updates

G OPEN ACCESS

Citation: Haft-Javaherian M, Fang L, Muse V,
Schaffer CB, Nishimura N, Sabuncu MR (2019)
Deep convolutional neural networks for
segmenting 3D in vivo multiphoton images of
vasculature in Alzheimer disease mouse models.
PLoS ONE 14(3): €0213539. https://doi.org/
10.1371/journal.pone.0213539

Editor: Ulas Bagci, University of Central Florida
(UCF), UNITED STATES

Received: October 18, 2018
Accepted: February 22, 2019
Published: March 13, 2019

Copyright: © 2019 Haft-Javaherian et al. This is an
open access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: We have made all
data used for the analyses presented in our paper
publicly available at: https:/ndl.handle.net/1813/
59221.

Funding: This work was supported by the
European Research Council grant 615102 (NN),
the National Institutes of Health grant AG049952
(CS), the National Institutes of Health grants
RO1LMO012719 and RO1AG053949 (MS), the
National Science Foundation Cornell NeuroNex Hub

RESEARCH ARTICLE

Deep convolutional neural networks for
segmenting 3D in vivo multiphoton images of
vasculature in Alzheimer disease mouse
models

Mohammad Haft-Javaherian®", Linjing Fang’, Victorine Muse®', Chris B. Schaffer',
Nozomi Nishimura', Mert R. Sabuncu@2*

1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, lthaca, NY, United
States of America, 2 School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, United
States of America

* msabuncu@cornell.edu

Abstract

The health and function of tissue rely on its vasculature network to provide reliable blood
perfusion. Volumetric imaging approaches, such as multiphoton microscopy, are able to
generate detailed 3D images of blood vessels that could contribute to our understanding of
the role of vascular structure in normal physiology and in disease mechanisms. The seg-
mentation of vessels, a core image analysis problem, is a bottleneck that has prevented the
systematic comparison of 3D vascular architecture across experimental populations. We
explored the use of convolutional neural networks to segment 3D vessels within volumetric
in vivo images acquired by multiphoton microscopy. We evaluated different network archi-
tectures and machine learning techniques in the context of this segmentation problem. We
show that our optimized convolutional neural network architecture with a customized loss
function, which we call DeepVess, yielded a segmentation accuracy that was better than
state-of-the-art methods, while also being orders of magnitude faster than the manual anno-
tation. To explore the effects of aging and Alzheimer’s disease on capillaries, we applied
DeepVess to 3D images of cortical blood vessels in young and old mouse models of Alzhei-
mer’s disease and wild type littermates. We found little difference in the distribution of capil-
lary diameter or tortuosity between these groups, but did note a decrease in the number of
longer capillary segments (>75um) in aged animals as compared to young, in both wild type
and Alzheimer’s disease mouse models.

Introduction

The performance of organs and tissues depend critically on the delivery of nutrients and
removal of metabolic products by the vasculature. Blood flow deficits due to disease related
factors or aging often leads to functional impairment [1]. In particular, the brain has essentially
no energy reserve and relies on the vasculature to provide uninterrupted blood perfusion [2].
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Multiple image modalities can be used to study vascular structure and dynamics, each offer-
ing tradeoffs between the smallest vessels that can be resolved and the volume of tissue that
can be imaged. Recent work with several modalities, including photoacoustic microscopy [3],
optical coherence tomography [4], and multiphoton microscopy (MPM) [5], enable individual
capillaries to be resolved in 3D over volumes approaching 1 mm? in living animals. The analy-
sis of such images is one of the most critical and time-consuming tasks of this research, espe-
cially when it has to be done manually.

For example, in our own work we investigated the mechanisms leading to reduced brain
blood flow in mouse models of Alzheimer’s disease (AD), which required extracting topology
from capillary networks each with ~ 1, 000 vessels from dozens of animals. The manual trac-
ing of these networks required ~40x the time required to acquire the images, greatly slowing
research progress [6]. The labor involved in such tasks limits our ability to investigate the vital
link between capillary function and many different diseases. Many studies have shown ana-
tomical and physiological differences in microvasculature associated both with age and AD,
such as changes in composition of large vessel walls’ smooth muscles [7], increased collagen
VI in microvascular basement membranes and their thickening in AD [8], and age-associated
reduction of microvascular plasticity and the ability of the vessels to respond appropriately to
changes in metabolic demand [9].

In this paper, we consider the segmentation of vessels, a core image analysis problem that
has received considerable attention [10, 11]. As in other segmentation and computer vision
problems, in recent years deep neural networks (DNNs) have offered state-of-the-art perfor-
mance [12]. DNN approaches often rely on formulating the problem as supervised classifica-
tion (or regression), where a neural network model is trained on some (manually) labeled
data. For a survey on deep learning in medical image analysis, see a recent review by Litjens
etal. [12].

Here, we explore the use of a convolutional neural network (CNN) to segment 3D vessels
within volumetric in vivo MPM images. In vivo MPM imaging of blood vessels has the advan-
tage that it captures the size and shape of vessels without introducing artifacts from postmor-
tem tissue processing. However, blood flow generates features which must be accommodated
in the vessel segmentation. We conduct a thorough study of different network architectures
and machine learning techniques in the context of this segmentation problem. We apply the
final model, which we call DeepVess, on image stacks of cortical blood vessels in mouse models
of AD and wild type (WT) littermates. Our experimental results show that Deep Vess yields
segmentation accuracy that is better than current state-of-the-art, while being orders of magni-
tude faster than the manual annotation (20-30 hours manual work vs. 10 minutes computation
time). The segmentation method developed in this work provides robust and efficient analysis
which enabled us to quantify and compare capillary diameters and other vascular parameters
from in vivo cortex images across multiple animals, with varying age as well as across WT mice
and AD models.

Related work

Blood vessel segmentation is one of the most common and time-consuming tasks in biomedi-
cal image analysis. This problem can either be approached in 2D or 3D, depending on the
specifics of the application and analytic technique. The most established blood vessel segmen-
tation methods are developed for 2D retinography [13] and 3D CT/MRI [11].

Among segmentation methods, region-based methods are well-known for their simplicity
and low computational cost [14]. For example, Yi et al. [15] developed a 3D region growing
vessel segmentation method based on local cube tracking. In related work, Mille et al. [16]
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used a 3D parametric deformable model based on the explicit representation of a vessel tree to
generate centerlines. In recent years, these traditional segmentation methods have become less
popular and are considered to be limited in comparison to deep learning methods, because
they require handcrafted filters, features, or logical rules and often yield lower accuracy.

Today, in problems that are closely related to ours, various deep learning techniques domi-
nate state-of-the-art. For instance, in a recent Kaggle challenge for diabetic retinopathy detec-
tion within color fundus images, deep learning was used by most of the 661 participant teams,
including the top four teams. Interestingly, those top four methods surpassed the average
human accuracy. Subsequently, Gulshan et al. [17] adopted the Google Inception V3 network
[18] for this task and reached the accuracy of seven ophthalmologists combined. For retinal
blood vessel segmentation, Wu et al. [19] used a CNN-based approach to extract the entire
connected vessel tree. Fu et al. [20] proposed to add a conditional random fields (CRF) to
post-process the CNN segmentation output. They further improved their method by replacing
the CRF with a recurrent neural network (RNN), which allows them to train the complete net-
work in an end-to-end fashion [21]. Further, Maninis et al. [22] addressed retinal vessel and
optic disc segmentation problems using one CNN network and could surpass the human
expert.

There are 3D capillary image datasets in mice [14] and human [23] that were segmented
using traditional segmentation methods and have illustrated the scientific value of such infor-
mation, but few such datasets are available.

To the best of our knowledge, there are only two studies that used deep learning for our
problem: vascular image analysis of multi-photon microscopy (MPM) images. The first one is
by Teikari et al. [24] who proposed a hybrid 2D-3D CNN architecture to produce state-of-the-
art vessel segmentation results in 3D microscopy images. The main limitation of their method
was the use of 2D convolutions and 2D conditional random fields (CRF)s, which restrict the
full exploitation of the information along the third dimension. The second study was con-
ducted by Bates et al. [25], where the authors applied a convolutional long short-term memory
RNN to extract 3D vascular centerlines of endothelial cells. Their approach was based on the
U-net architecture [26], which is a well-known fully convolutional network [27] widely used
for biomedical image segmentation. Bates and colleagues achieved state-of-the-art results in
terms of centerline extraction; nevertheless, they reported that certain vessels in the images
were combined in the automatic segmentation. Finally, we consider the 3D U-Net [28], which
is the volumetric version of the U-net architecture [26] and is regarded by many as state-of-
the-art for microscopy image segmentation problems.

Data and methods

The proposed vasculature segmentation method for 3D in vivo MPM images, Deep Vess, con-
sists of (i) pre-processing to remove in vivo physiological motion artifacts due to respiration
and heartbeat, (ii) applying a 3D CNN for binary segmentation of the vessel tree, and (iii)
post-processing to remove artifacts such as network discontinuities and holes.

Data

Animals. All animal procedures were approved by the Cornell University Institutional
Animal Care and Use Committee and were performed under the guidance of the Cornell
Center for Animal Resources and Education. We used double transgenic mice (B6.Cg-Tg
(APPswe, PSEN1dE9) 85Dbo/], referred to as APP/PS1 mice) that express two human proteins
associated with early onset AD, a chimeric mouse/ human amyloid precursor protein (Mo/
HuAPP695swe) and a mutant human presenilinl (PS1-dE9), which is a standard model of AD

PLOS ONE | https://doi.org/10.1371/journal.pone.0213539 March 13,2019 3/21


https://doi.org/10.1371/journal.pone.0213539

@ PLOS | O N E CNN-based segmentation of in vivo multiphoton images of vasculature in mouse models

and typically develops amyloid-beta plaque deposition around 6 months of age [29]. Littermate
WT mice (C57BL/6) served as controls. Animals were of both sexes and ranged in age from 18
to 31 weeks for young mice and from 50 to 64 weeks for the old mice (6 WT and 6 AD at each
age, for a total of 24 mice).

In vivo imaging of cortical vasculature. We use a locally-designed multiphoton micro-
scope [30] for in vivo imaging of the brain vasculature. Glass-covered craniotomies were
prepared over parietal cortex, as described previously [6, 31, 32]. For cranial window implanta-
tion and imaging, mice were anesthetized with 3% isoflurane and then maintained on 1.5%
isoflurane in 100% oxygen. Mice were injected with 0.05 mg/100g of mouse weight glycopyrro-
late (Baxter Inc.) or 0.005 mg/100g atropine (intramuscular 54925-063-10, Med-Pharmex
Inc.). At time of surgery as well as 1 and 2 days after mice received 0.025 mg/100g dexametha-
sone (subcutaneous 07-808-8194, Phoenix Pharm Inc.), and 0.5 mg/100g ketoprofen (intra-
muscular, Zoetis Inc.). Bupivacaine (0.1 ml, 0.125%, Hospira Inc.) was subcutaneously
injected at the incision site. Animals were injected with 1 ml/100g mouse 5% (w/v) glucose in
normal saline subcutaneously every hour during imaging and surgery. Body temperature was
maintained at 37 C with a feedback-controlled heating blanket (40-90-8D DC, FHC). Mice
were euthanized with pentobarbital overdose after their last imaging session.

We waited at least three weeks after the surgery before imaging to give time for the mild
surgically-induced inflammation to subside. Windows typically remained clear for as long
as 20 weeks. This technique allows us to map the architecture of the vasculature throughout
the top 500 um of the cortex. Briefly, the blood plasma of an anesthetized mouse was labeled
with an intravenous injection of Texas Red labeled dextran (70 KDa, Life Technologies). The
two-photon excited fluorescence intensity was recorded while the position of the focus of a
femtosecond laser pulse train was scanned throughout the brain, providing a three-dimen-
sional image of the vasculature [30]. Imaging was done using 800-nm or 830-nm, 75-fs pulses
from a Ti:Sapphire laser oscillator (MIRA HP, pumped by a Verdi-V18, or Vision S, Coher-
ent). Lasers were scanned by galvonometric scanners and focused into the sample using a 1.0
NA, 20X water-immersion objective lens (Carl Zeiss, Inc.). Image stacks were acquired with
645/45 nm (center wavelength/bandwidth) bandpass filters. The ScanImage software pack-
age [33] was used to control the whole system. Image stacks were taken with a range of mag-
nifications resulting in lateral voxel sizes from 0.45 to 1.71 um/pixel, but always 1 ym in the
axial direction.

Expert annotation. We implemented a protocol to facilitate the manual 3D segmentation
task using Image], an open-source image processing software package [34] (supplementary
material). Two people, one expert and one less experienced, each manually segmented a
motion artifact corrected (see below), 256 x 256 x 200 voxels (292 x 292 x 200 ym3 ) image
from an AD mouse, independently, which took about 20 and 30 hours, respectively. The sec-
ond annotator was trained by the expert and then had several months of practice prior to per-
forming this task. These data were used to estimate inter-human segmentation variation. We
treated the expert labels as the “gold standard” segmentation and used the second annotator’s
labels to compare variability in manual segmentation. All other comparisons were made with
respect to the gold standard segmentation as the ground truth. This dataset was divided into
independent (i.e., non-overlapping) training, validation, and testing sub-parts (50%-25%-
25%), all spanning the entire depth of the stack. The training and validation datasets were used
in the optimization of CNN architectures, while the test dataset was kept unused until the end
of our architecture design optimization process and used for the final unbiased evaluation. We
repeated this process 4 times, by varying the test data and thus effectively conducting 4-fold
cross-validation. We note that architecture optimization was only done in the first fold. Addi-
tionally, six independent 3D images (different mice and different voxel size) acquired by Cruz
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Hernéndez et al. [6] were labeled by an expert to examine the generalization of DeepVess. The
detailed properties of these images are in S3 Table. With this paper, we also have made all
images and expert annotations publicly available at: https://doi.org/10.7298/X4F]2F1D.

Preprocessing

Motion artifacts caused by physiological movements are one of the major challenges for 3D
segmentation of in vivo MPM images. Furthermore, global linear transformation models can-
not compensate for the local nonuniform motion artifacts, for example, due to a breath occur-
ring part way though the raster scanning for an MPM image. In this study, we adopted the
non-rigid non-parametric diffeomorphic demons image registration tool implemented based
on the work of Thirion [35] and Vercauteren et al. [36]. Our approach is to register each slice
to the previous slice, starting from the first slice as the fixed reference. The diffeomorphic
demons algorithm aims to match the intensity values between the reference image and
deformed image, where cost is computed as the mean squared error. The smoothness prior on
the deformation field is implemented via an efficient Gaussian smoothing of gradient fields,
and invertibility is ensured via concatenation of small deformations. This kernel is effectively
encouraging the deformation field to be smooth, thus regularizing the ill-posed non-linear reg-
istration problem. Based on our experiments, a Gaussian kernel with the standard deviation of
1.3 was chosen for the regularization of the registration algorithm. Next, in our pre-processing
steps, the 1-99% range of the image intensities in the input image patch were linearly mapped
between 0 and 1, and the extreme 1% of voxels were clipped at 0 and 1. This step, we found,
helps with generalizing the model to work well with images taken from other MPM platforms
by adapting normalization parameters to the acquisition systems and image statistics utilizing
most of the intensity rang. To facilitate comparison between different datasets, image volumes
were resampled to have 1 um? voxel for comparisons.

Convolutional neural network architectures

Our aim in this work is to design a system that takes an input stack of images (in 3D) and pro-
duces a segmentation of vessels as a binary volume of the same size. For this task, as we elabo-
rate below, we explored different CNN architectures using validation performance as our
guiding metric. Our baseline CNN architecture starts with a 3D input image patch (tile),
which has 33 x 33 x 5 voxels (in x, y, and z directions). The first convolution layer usesa 7 x 7
x 5 voxel kernel with 32 features to capture 3D structural information within the neighbor-
hood of the targeted voxel. The output of this layer, 32 nodes of 27 x 27 x 1 voxel images, enter
a max pooling layer with a 2 x 2 kernel and 2 x 2 strides. Another convolution layer with 5 x 5
x 1 kernel and 64 features, followed by a similar max pooling layer are then applied before the
application of the fully connected dense layer with 1024 hidden nodes and dropout [37] with a
probability value of 50%. The output is a two-node layer, which represents the probability that
the pixel at the center of the input patch belongs to tissue vs. vessel. The CNN takes an input
3D patch and produces a segmentation label for the central voxel. All the convolution layers
have a bias term and rectified linear unit (ReLU) as the element-wise nonlinear activation
function. Starting from this baseline CNN architecture, we optimized the network architecture
hyperparameters with a greedy algorithm.

Different kernel sizes for the 3D convolution layers were explored in our experiments. Note
that each choice in the architecture parameters (including the kernel size) corresponded to a
different input patch size. As the validation results summarized in S1 Table indicate, the best
performing baseline architecture had an input patch size of 33 x 33 x 7. Based on this result we
chose an input patch size of 33 x 33 x 7 as the optimal field of view (FOV) for segmentation.
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Fig 1. The optimal 3D CNN architecture. The field of view (FOV), i.e. the input patch size, is 33 x 33 x 7 voxels and the output is the segmentation of
the 5 x 5 x 1 patch (region of interest, ROI) at the center of the patch. The convolution kernels are 3 x 3 x 3 voxels for all the layers and ReLU is used as
the element-wise nonlinear activation function. The first three convolution layers have 32 channels and are followed by pooling. The second three
convolution layers have 64 channels. The output of convolution layers is 5 x 5 x 1 voxels with 64 channels, which is fed to a fully connected neural
network with a 1024-node hidden layer. The final result has 5 x 5 x 1 voxels with two channels representing the probability of the foreground and
background label associations.

https://doi.org/10.1371/journal.pone.0213539.g001

We then explored the effect of the number of convolutional and max pooling layers. As sum-
marized in S2 Table, the best architecture had three 3D convolution layers witha 3 x 3 x 3
voxel kernel, a max pooling layer, followed by two convolution layers with a 3 x 3 voxel kernel,
and a max pooling layer. The output of the last max pooling layer is reshaped to a fully-con-
nected layer followed by a 1024-node fully-connected layer and the last fully-connected layer,
which is reshaped to the output patch size. Note that there is no difference in spatial resolution
(i.e., voxel dimensions) between the input and output patches.

Finally, we investigated the performance for different output patch sizes, ranging from 1
voxel to 5 x 5 x 5 voxels and found that performance was improved further when the output is
the segmentation of the central 5 x 5 x 1 patch and not just a single voxel. A larger output area
has the advantage of accounting for the structural relationship between adjacent voxels in their
segmentation. The optimal CNN architecture scheme is shown in Fig 1.

Performance metrics

There are different performance metrics to compare agreement between an automated seg-
mentation method and a “ground truth” (GT) human annotation. In the context of binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0213539 March 13,2019 6/21


https://doi.org/10.1371/journal.pone.0213539.g001
https://doi.org/10.1371/journal.pone.0213539

©'PLOS|ONE

CNN-based segmentation of in vivo multiphoton images of vasculature in mouse models

segmentation, the foreground (F) will be the positive class, and the negative class will corre-
spond to the background (B). Therefore, true positive (TP) can be measured as the total num-
ber of voxels where both the automatic and human segmentation labels are foreground. True
Negative (TN), False Positive (FP) and False Negative (FN) can be defined in a similar fashion.

Based on these, we can compute sensitivity and specificity. For example, sensitivity is the
percentage of GT foreground voxels that are labeled by the automatic segmentation (ASeg)
correctly. Mathematically, we have:

TP

sensitivity = P(y = F|GT = F) = TP+ EN (1)
TN

specificity = P(y = B|GT = B) = TN £ FP (2)

The Dice coefficient (DC), Jaccard index (JI), and modified Hausdorff distance (MHD) are
another set of commonly used segmentation performance metrics. JI is defined as the ratio
between the number of voxels labeled as foreground by both GT and ASeg, to the total number
of voxels that are called foreground by either GT and ASeg. DC is very similar to JI, except it
values TP twice as much as FP and FN. JI and DC are useful metrics when the number of the
foreground voxels is much less than background and the detection accuracy of the foreground
voxels is more important compared to background voxel detection, which is the case for 3D
imaging of vasculature.

TP
[=P(y=FNGT=F | y=FUGT =F) = —— 3
JI=Py=FNG ly=FUG ) = TP T FPT EN (3)

_2x ]I 2x TP
" 14JI 2xTP+FP+EN

DC (4)
On the other hand, MHD [38] quantifies accuracy in terms of distances between bound-
aries, which might be appropriate when considering tubular structures. For each boundary
point in image A(a € A), the closest Euclidean distance (d(a, b) = ||a — b||,) to any boundary
point inside image B(b € B) is first calculated, d(a, B) = min,; ||la — b||,). This is then aver-

aged over all boundary pointsin A : I->" _, d(a, B) [39]. MHD is then defined as:

acA
1 1
MHD = max|—> d(a,B), — Y d(b,A) (5)
Na acA Nb beB
d(a7B) = minbelﬁ Ha - sz (6)

Note that in the segmentation setting, A and B can represent the foreground boundaries in
the automatic and GT segmentations, respectively. Finally, we can compute the MHD on cen-
terlines instead of boundaries, a metric we call MHD-CL.

Training and implementation details

In training our segmentation algorithms, we used a customized cross-entropy loss function
designed for our highly unbalanced datasets (where foreground voxels comprise only a small
fraction of the volume), measured over all voxels but TN (i € {TP, FP, FN}), defined as:

Loss= Y —[y log(p)+(1—y)log(1—p,)] (7)

ie{TP,FP,FN}
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y;is the GT label and p; is the model’s output as the probability of the target voxel i belonging
to the foreground. Note that in Eq (7), true negative voxels have no contribution, effectively
reducing the influence of the dominant background. We trained our model using Adam
stochastic optimization [40] with a learning rate of 10~* for 100 epochs during architecture
exploration and a learning rate of 10~° for 30,000 epochs during the fine tuning of model
parameters for the proposed architecture with mini-batch size of 1000 samples (based on
GPU memory constraints and results of our experiments with smaller mini-batch size, which
did not improve the optimization results). The fine tuning took one month on one NVIDIA
TITAN X GPU. We implemented our models in Python using Tensorflow™ [41].

Post-processing

CNN segmentation results contain some segmentation artifact such as holes inside the vessels,
rough boundaries, or isolated small objects. In order to remove these artifacts, the holes within
the vessels were filled. This was followed by application of a 3D mean filter witha 3 x 3 x 3
voxel kernel and the removal of small foreground objects, e.g. smaller than 100 voxels. This
result was used to compare to the gold standard.

Analysis of vasculature centerlines

To characterize the cortical vasculature of the experimental animals, we identified capillary
segments by calculating centerlines from the segmented image data. Our centerline extraction
method includes dilation and thinning operations, in addition to some centerline artifact
removal steps. The binary segmentation image was first thinned using the algorithm developed
by Lee et al. [42]. The result was then dilated using a spherical kernel with a radius of 5-voxels
to improve the vessel connectivity, which was followed by mean filtering with a 3 x 3 x 3

voxel kernel and removing holes from each cross section. Next, a thinning step was applied
again to obtain the new centerline result. The original segmented image was dilated using a
spherical kernel with a radius of 1-voxel to act as the mask for the centerlines with the goal of
improving the centerline connectivity. The following rules were applied to the resulting center-
lines repeatedly until no further changes could be done. A vessel is a segment between two
bifurcations.

1. Remove any vessels with one end not connected to the network (i.e., dead end) and with
length smaller than 11 voxels.

2. Remove single voxels connected to a junction.
3. Remove single voxels with no connections.
4. Remove vessel loops with length of one or two voxels.

Finally, the centerline network representation (i.e. nodes, edges, and their properties)
was extracted. (The centerline extraction was applied on both manual and automated
segmentations.)

Results

We conducted a systematic evaluation of several network architecture parameters in order to
optimize segmentation accuracy of images of mouse cortex vasculature from MPM. Features
of in vivo MPM images include motion artifacts due to respiration and heart beat. Because ves-
sels are visualized by an injection of dye that labels the blood plasma, unlabeled red blood cells
appear as dark spots and streaks moving through the vessel lumen (arrows in Fig 2). Images
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Fig 2. In vivo MPM images of a capillary. Because MPM images are acquire by raster scanning, images at different depths (z) are acquired with a time
lag (t). Unlabeled red blood cells moving through the lumen cause dark spots and streaks and result in variable patterns within a single vessel.

https://doi.org/10.1371/journal.pone.0213539.9002

are acquired by raster scanning through the tissue and each vessel is captures in several images.
The imaging speed has a significant influence on these features and in in vivo experiments,
imaging is often relatively slow, such that these features become prominent [43]. We empha-
size that our exploration was based on performance on the validation dataset and the final
results presented reflect the model accuracy on an independent test dataset. The detailed per-
formance results for some of the tested architectures are reported in S1 and S2 Tables. The
optimal architecture, Deep Vess, was trained on the training data until the model accuracy
stopped improving and no overfitting was observed (30,000 epochs). S1 Fig shows the JI
learning curve over 30,000 epochs, for training, validation, and test datasets. The constant gap
between JI of the training and validation datasets, which represent generalization error, con-
firms that we are not strongly overfitting.

Furthermore, we implemented two state-of-the-art methods [24, 28], and an improved ver-
sion of the method of Teikari et al. [24], where we changed the 2D convolutional kernels into
3D kernels and inserted a fully connected neural network layer at the end, based on the sugges-
tion in the discussion of their paper. Table 1 summarizes the comparison between the perfor-
mance of our optimal architecture based on the 4-fold cross-validation results, with and
without the post-processing step, comparing to two state-of-the-art methods and a second
human annotator to provide a measure of the inter-human variability. These results, as well as
S1 Fig demonstrate that Deep Vess outperforms the state-of-the-art methods [24, 28] in terms
of sensitivity, Dice index, Jaccard index, and boundary modified Hausdorff distance; and
approaches human performance in terms of Dice and Jaccard. The proposed method does not
outperform the benchmarks in specificity, indicating a slightly higher rate of false positive vox-
els. Yet we note that the relatively lower specificity is still very high (97%).

Table 1. The comparison of our proposed CNN architecture (Deep Vess), manual annotation by a trained person, and two state-of-the-art methods [24, 28] to the
gold standard of the expert human annotation based on the 4-fold cross-validation results. Deep Vess surpassed both human annotator and two state-of-the-art meth-
ods in terms of sensitivity as well as Dice index, Jaccard index, and boundary modified Hausdorff distance, which are the three metrics that are widely used in

segmentation.

Second human annotator
Original Teikari et al. [24]
Cigek et al. [28]

Improved [24] in this study
DeepVess

DeepVess with post-processing

https://doi.org/10.1371/journal.pone.0213539.t001

Sensitivity Specificity Dice Jaccard MHD
81.07% 98.70% 82.35% 70.40% 1.50
62.44% 98.65% 69.69% 55.06% 3.20
70.01% 98.21% 72.69% 59.41% 3.55
69.55% 98.39% 74.03% 59.96% 3.16
89.91% 97.00% 81.62% 69.13% 2.26
89.95% 97.00% 81.63% 69.15% 2.25
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Fig 3. Slice-wise Dice index of DeepVess vs. manual annotation by a trained person and the state-of-the-art
methods [24, 28] compared to the gold standard of the expert human annotation. The central red mark is the
median, and the top and bottom of the box is the third and first quartiles, respectively. The whiskers indicates the
range of data. Deep Vess has higher median value in comparison to the Teikari et al. [24], Cigek et al. [28], and the
human annotator (Wilcoxon signed-rank test, p = 2.98e — 23, p = 2.59¢ — 32, and p = 2.8e — 28, respectively).

https://doi.org/10.1371/journal.pone.0213539.9003

In MPM, the variation in the signal to noise as a function of imaging depth leads to changes
in image quality between image slices. The performance of a segmentation method should
therefore be assessed by analyzing slices separately. Fig 3 illustrates the boxplot of slice-wise
Dice index values from the x-y planes within the 3D MPM image dataset. Deep Vess had a
higher Dice index values in comparison to the Teikari et al. and the trained annotator’s results.
However, there was more variation compared to the other two results, which implies the possi-
bility and need for further improvements.

The generalization of the model was studied by testing an independent dataset annotated
by our expert consisting of 6 separate 3D MPM images acquired from 1 AD and 5 WT mice
(S3 Table) and the results are summarizes in S4 Table. Deep Vess outperforms both the state-
of-the-art methods [24, 28] on the second dataset in terms of sensitivity, Dice index, Jaccard
index, and boundary MHD. Similar to the test dataset results, specificity was slightly lower.
These results illustrate the generalization of our model on new MPM images with different
image quality and captured from different mouse models and with different voxels sizes. Fig
4A illustrates the image intensity and three models overlaid on the image for a cross-section
extracted from a 3D image from the independent dataset (S4 Table #1). Fig 4B-4E are magni-
fied version of three cases within Fig 4A. The main sources of failure in the vessel segmenta-
tions of 3D in vivo MPM images are low SNR at deeper cross-sections (Fig 4C) and unlabeled,
moving red blood cells in the vessel lumen, which cause dark spots and streaks (Fig 4B and
4D). The patchy segmentations due to unlabeled red blood cells result in unconnected and
isolated vasculature centerlines and network. The Deep Vess architecture has fully connected
layers and thus might be exploiting some spatially varying properties of the signal (as in the
variation of contrast as a function of depth) that a fully convolutional architecture such as
U-Net might not be able to exploit. Elsewhere, in the absence of such difficulties, all three mod-
els segment the vessels largely accurately.
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A Intensity DeepVess Cicek et al. Teikari et al.

Fig 4. Comparison of DeepVess and the state-of-the-art methods [24, 28] in a 3D image cross-section obtained from an
independent dataset (54 Table #1) not used during the training. (A) An image frame with intensity in gray and overlay of
segmentation from each method. (B-E) magnified view of four cases within A. The three models overlaid on the complete 3D image is
made available online in Supplemental Materials. Scale bar is 50um.

https://doi.org/10.1371/journal.pone.0213539.9004
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We next examined the quality of the vessel centerlines derived from the different segmenta-
tions. Using the centerline modified Hausdorff distance (CL MHD) as a centerline extraction
accuracy metric, DeepVess (CL MHD [Deep Vess] = 3.03) is substantially better than the state-
of-the-art methods (CL MHD [Teikari et al.] = 3.72, CL MHD [Cigek et al.] = 6.13). But there
is still room for improvement in terms of automatic centerline extraction as neither automatic
methods yielded scores as good as the trained human annotator (CL MHD [human annotator]
=2.73). In order to test the accuracy of geometrical measurements, the vessel diameter, a sensi-
tive metric, was selected. We measured the diameter of 100 vessels manually by averaging ten
2D measurements per vessel to compare with the Deep Vess’s results (S2 Fig). We observed that
there is no significant difference between manually measured diameters and Deep Vess’s results
(paired t-test, n = 100, p = 0.34).

Discussion

The segmentation of 3D vasculature images is a laborious task that slows down the progress of
biomedical research and constrains the use of imaging in clinical practice. There has been sig-
nificant research into tackling this problem via image analysis methods that reduce or elimi-
nate human involvement. In this work, we presented a CNN approach, which surpasses the
state-of-the-art vessel segmentation methods [24, 28] as well as a trained human annotator.
The proposed algorithm, Deep Vess, segments 3D in vivo vascular MPM images with more
than ten million voxels in ten minutes on a single NVIDIA TITAN X GPU, a task that takes 30
hours for a trained human annotator to complete manually.

In order to characterize the performance of Deep Vess, we compared the automated segmen-
tation to an expert manual segmentation (Fig 5). Here, we visualized three slices with different
qualities of segmentation results. The 3D rendering of the mouse brain vasculature shown in
Fig 5 indicates the location of these top, middle, and bottom slices representing typical high,

Expert DeepVess

Fig 5. 3D rendering of (A) the expert’s manual and (B) DeepVess segmentation results. The top, middle, and bottom black plains correspond to the
high, medium, and low quality examples, respectively, which are analyzed further in the Discussion (Fig 6). Each volume is 256 x 256 x 200 voxels

(292 x 292 x 200 unt’).

https://doi.org/10.1371/journal.pone.0213539.g005
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medium, and low segmentation quality, respectively. Top layers are very similar, and differ-
ences are visible at the bottom layers, which have low SNR.

We used 50% dropout during test-time [44] and computed Shannon’s entropy for the seg-
mentation prediction at each voxel to quantify the uncertainty in the automated segmentation.
Higher entropy represents higher segmentation uncertainty at a particular voxel. The entropy
results together with the comparison between Deep Vess and the expert segmentations for
those three planes are illustrated in Fig 6. The left column contains the intensity gray-scale

A Intensity Segmentation Entropy

Higher Quality

oy

Average Quality

Lower Quality

Fig 6. Comparison of DeepVess and the gold standard human expert segmentation results in image planes as shown in Fig 5. Imaging is generally
higher quality at planes closer to the sample surface. (Left column) Image intensity shown with gray scale after motion artifact removal. The dark spots
within the vessels are red blood cells that do not take up the injected dye. (Middle column) Comparison between Deep Vess (red) and the expert (green)
segmentation results overlaid on images. Yellow shows agreement between the two segmentations. (Right column) Shannon entropy, which is a metric
of DeepVess segmentation uncertainty computed with 50% dropout at test-time [44]. The boundaries of vessels with high entropy values, shown in
warmer colors, demonstrate the uncertainty of Deep Vess results at those locations. Scale bar is 50pm.

https://doi.org/10.1371/journal.pone.0213539.9006
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images of these examples. The segmentation results of the DeepVess and the expert are super-
imposed on the original gray-scale image with red (DeepVess) and green (the expert), as
shown in the middle column. Yellow represents agreement between DeepVess and the expert.
The right column shows the entropy of each example estimated via test time dropout. We
observe that, in general, Deep Vess has higher uncertainty at the boundaries of vessels. The
disagreement with ground truth is also mostly concentrated at the boundaries. Images from
deeper within the brain tissue that often have lower image contrast and higher noise levels due
to the nature of MPM, suffer from more segmentation errors. These images can often be chal-
lenging even for expert humans. Arrows in Fig 6C highlight examples of these difficulties. The
error example 1 illustrates the case where the expert ignored bright pixels around the vessel
lumen based on their knowledge of the underlying physiology and experience with MPM
images of brain that postulate a rounded lumen instead of a jittery and rough lumen, despite

a very strong signal. The error example 2 illustrates a low intensity vessel junction that was
judged to be an artifact by humans based on experience or information from other image
planes. The error example 3 illustrates the case where a small vessel does not exhibit a strong
signal and it is not connected to another major vessel.

DeepVess implements pre- and post-processing tools to deal with in vivo MPM images that
suffer from different motion artifacts.Deep Vess is freely available at https://github.com/mbhaft/
DeepVess and can be used immediately by researchers who use MPM for vasculature imaging.
Also, our model can be fine-tuned further by adjusting the intensity normalization step to uti-
lize a different part of the intensity range and training samples for other 3D vasiform structures
or other imaging modalities. Similar to many machine learning solutions, Deep Vess’s perfor-
mance depends on specific image features and the performance will degrade in cases where
the tissues are labeled differently (e.g. vessel walls are labeled instead of blood serum) or the
images intensities are concentrated in a small portion of the intensity range.

Although in vivo measurements present unique challenges to image segmentation, such as
the red blood cell motion, in our case, we have shown that Deep Vess successfully handles these
challenges. Postmortem techniques all change the vessel diameters in the tissue processing.
Hence, we believe that in vivo imaging is the best strategy to quantify vessel diameters. While
features such as topology and length might not be affected by postmortem processing, in vivo
imaging with MPM is important for capillary diameter measurements. Two-photon micros-
copy has been used to validate histology in many studies ([5, 14, 45-48]) and comparisons
with other labeling techniques are quite common.

While Deep Vess offers very high accuracy in the problem we consider, there is room for fur-
ther improvement and validation, in particular in the application to other vasiform structures
and modalities. For example, other types of (e.g., non-convolutional) architectures such as
long short-term memory (LSTM) can be examined for this problem. Likewise, a combined
approach that treats segmentation and centerline extraction methods together, such as the
method proposed by Bates et al. [25] in a single complete end-to-end learning framework
might achieve higher centerline accuracy levels.

Application to Alzheimer’s mouse models
Capillary alteration caused by aging and Alzheimer’s disease

In vivo imaging with multiphoton microscopy of capillary beds is free of distortions in vessel
structure caused by postmortem tissue processing that can result in artifacts such as altered
diameters [5]. However, the images often suffer from poor signal to noise and motion artifacts.
An additional challenge is that unlabeled, moving red blood cells in the vessel lumen cause
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Fig 7. Comparison of capillaries between young and old mice with WT and AD genotype (6 mice in each group). The relative probability and
cumulative distribution function (CDF) of the (A) diameters, (B) length, and (C) tortuosity based on all capillaries aggregated within each of the four
groups. We compared these metrics between the groups using Kruskal-Wallis test followed by Bonferroni multiple comparison correction [54]
(Table 2).

https://doi.org/10.1371/journal.pone.0213539.g007

dark spots and streaks that move over time. Disease models are often especially challenging
because inflammation and tissue damage can further degrade imaging conditions.

Strong correlations between vascular health, brain blood flow and AD suggest that mapping
the microvascular network is critical to the understanding of cognitive health in aging [49]. To
explore this question, we imaged the cortical vascular networks in young and old mouse mod-
els of AD (young AD and old AD) and their young and old WT littermates (young WT and
old WT). Imaged volumes ranged from 230 x 230 to 600 x 600 ym” in x-y and 130 to 459 yum
in the z direction. We imaged 6 animals per group, with at least 3000 capillary segments ana-
lyzed for each group.

The resulting 3D stacks of images were preprocessed, segmented with DeepVess, and post-
processed as discussed in the previous sections. Centerlines were extracted and individual ves-
sel segments were identified. To analyze capillaries while excluding arterioles and venules,
only vessel segments less than 10 ym in diameter were included [6, 50, 51]. For the vascular
parameters of segment length, diameter, and tortuosity considered here, previous work has
shown that AD mouse models have increased tortuosity in cortical penetrating arterioles as
compared to WT mice [52, 53]. Our analysis of capillaries excluded these vessels. Three met-
rics were selected to characterize the vascular network. For each capillary segment, we calcu-
lated the diameter averaged along the length (Fig 7A), the length (Fig 7B), and the tortuosity,
defined as the length divided by the Euclidean distance between the two ends (Fig 7C). The
distributions of capillary diameter, length, and tortuosity varied little between young and old
mice or between WT and AD genotype (Table 2). There were subtle shifts (~0.25 ym) in the
diameter distribution between groups, but no clear differences across old/young or WT/AD
and the differences in means were small compared to the standard deviation (6-27% of SD).
However, we observed a decrease in the number of longer length (>75um) capillaries in older
animals as compared to young in both WT and AD mice shown by a rightward shift in the
cumulative distribution function curve (Fig 7B and Table 2).
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Table 2. Comparison between metrics distributions between different groups using Kruskal-Wallis test followed by Bonferroni multiple comparison correction. Ay
is the difference between the mean values of the two tested groups.

Diameter (um) Length (um) Tortuosity
Ay P-value Au P-value Au P-value
AD-Old vs. AD-Young 0.206 2.61E-7 7.908 7.5E-22 0.016 0.798
AD-Old vs. WT-Old 0.475 2.93E-27 2.787 0.055 0.019 0.645
AD-Old vs. WT-Young 0.095 1.20E-5 16.16 6.9E-67 0.018 0.321
AD-Young vs. WT-Old 0.269 6.39E-9 10.69 1.14E-27 0.035 0.027
AD-Young vs. WT-Young 0.110 0.012 8.252 9.12E-17 1.50E-3 1.000
WT-Old vs. WT-Young 0.379 1.1E-14 18.95 2.1E-63 0.037 0.036

https://doi.org/10.1371/journal.pone.0213539.1002

Aging and Alzheimer’s disease have little effect on capillary characteristics

Using a large database of vessel segments measured in three dimensions, we surprisingly
found only very small differences between groups that were dwarfed by the variance in capil-
lary diameter or tortuosity between young and old animals or between WT and AD mouse
models. The automation provided by DeepVess enabled the evaluation across a very large num-
ber of vessels in a large group size. The strong agreement between the measurements based on
DeepVess and the manual measurements by Cruz Hernéndez et al. [6], confirms that the pro-
posed pipeline yields unbiased and accurate metrics to analyze capillary segments. There was a
decrease in the number of long capillary segments in the aged animals compared to young in
both the WT and AD groups. Note that the reported metrics only represent the parietal region
of cortex and that regional variability can affect our results. These finding may not generalize
across all ages and mouse models of AD and could be different in other regions of the brain.
Sonntag et al. [1] argue that changes in vasculature due to aging might be non-linear and
multi-phasic. For instance, two studies showed that the capillary density increases during
adulthood and then declines in more advanced age [55, 56]. Several previous studies have
characterized the average diameters of cortical capillaries in mice, as summarized in Table 3,
show high variability in results, suggesting that methodological variations make comparison
between studies difficult. Other studies that compared AD models and WT also found negligi-
ble or no difference in capillary diameters. Heinzer et al. compared a different mouse model
(APP23) using MRA and found no difference between WT and AD mice [57]. The same
group also compared the effects of “VEGF overexpression” model and WT using SRuCT and
also found little difference [58].

There are a wide range of imaging approaches used in these various studies and data
from both live animal and postmortem analysis is included. It is possible that some of these
differences emerge when tissues are processed rather than measured in vivo as was done
here. Studies based on sectioned tissue sample the 3D vascular architecture differently so
it is difficult to make direct comparisons between datasets. Measures of capillaries depend
on the definition of capillaries. Here it was based on a threshold diameter of 10ym, which
could explain some of the variability in the literature. Not surprisingly given the differences
in approach and sample preparation, there is significant disagreement between reported
average diameters. Some differences may, however, reflect differences in vasculature across
strains and ages of animals.

Therefore, the proposed fully automated objective segmentation of 3D in vivo images of the
vasculature can be used to reduce the variability due to sample preparation and imaging/analy-
sis approach, allowing such strain and age differences to be elucidated clearly.
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Table 3. Comparison of measured mouse capillary diameters from different studies.

Study Background | Trans gene Phenotype | Age (week) Imaging Modality VesselDiameter
This study C57/BL6 - WT 18-31 in vivo 2PEF 5.81 + 1.62 ym
This study C57/BL6 - WT 50-64 in vivo 2PEF 6.19 + 1.76 ym
This study C57/BL6 APP/PS1 AD 18-31 in vivo 2PEF 5.92 + 1.76 um
This study C57/BL6 APP/PS1 AD 50-64 in vivo 2PEF 5.71+ 1.77 um
Boero et al. [59] BALB/C - WT 11 postmortem optical imaging 2.48 —2.70 ym
Drew et al. [60] C57/BL6 - WT - in vivo 2PEF 29£0.5um
Blinder et al. [5] C57/BL6 - WT - in vivo optical img., postmortem 2PEF | 2 — 5.3 um
Hall et al. [61] C57/BL6J NG2-DsRed WT - in vivo 2PEF 44+0.1um
Gutierrez-Jim énez et al. [51] | C57/BL6 NTac WT 13-15 in vivo 2PEF 4.1 -45um
Cudmore et al. [62] C57/BL6 Tie2-CreemTmG WT 13-21,64,97 | in vivo 2PEF 5.03 + 1.18 um
Meyer et al. [63] C57/BL6 APP23 & - AD &WT | 12-108 postmortem histology 4-6um

Tsai et al. [14] Swiss - WT - in vivo 2PEF 3.97 —4.11 ym
Tsai et al. [14] C57/BL6 - WT - in vivo 2PEF 3.97 —4.11 ym
Heinzer et al. [57] C57/BL6 APP23 WT 52 MRA 14 £5um
Heinzer et al. [57] C57/BL6 APP23 AD 52 MRA 14 +5um
Heinzer et al. [64] C57/BL6 APP23 AD 44 SRuCT 8.9 um
Heinzer et al. [58] C57/BL6 - WT 16 SRuCT 5.6 £27.9 um
Heinzer et al. [58] C57/BL6 C3H/He:NSE-VEGF 45, | other 16 SRuCT 5.5+29.3 um
Serduc et al. [65] Swiss nude - WT 5 in vivo 2PEF 4—-6um
Vérant et al. [50] Swiss nude - WT 5 in vivo 2PEF 82+ 1.4 um

https://doi.org/10.1371/journal.pone.0213539.t003

Conclusions

Here, we presented DeepVess, a 3D CNN segmentation method together with essential pre-
and post-processing steps, to fully automate the vascular segmentation of 3D in vivo MPM
images of murine brain vasculature. Deep Vess promises to expedite biomedical research on the
differences in angioarchitecture and the impact of such differences by removing the laborious,
time consuming, and subjective manual segmentation task from the analysis pipelines in addi-
tion to elimination of subjective image analysis results. We hope the availability of our open
source code and reported results will facilitate and motivate the adoption of this method by
researchers and practitioners.

Supporting information

S1 Text. Manual 3D segmentation protocol using Image].
(PDF)

S1 Fig. Jaccard as a measure of the model accuracy. The Deep Vess results surpass the trained
human annotator result at all three train, validation, and test datasets. The human annotator
and Deep Vess results are shown in dashed and solid lines respectively. The constant difference
between DeepVess and the human annotator’s results confirm the avoidance of overfitting.
(TIF)

S2 Fig. The vessel diameters measured manually in comparison to the DeepVess’s results.
There is no significant difference between two measurements (paired t-test, n = 100, p = 0.34).
(TIFF)

S1 Table. The results of investigating different field of view sizes.
(PDF)
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mice included in the second independent dataset.
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S$4 Table. The results of Deep Vess and the state-of-the-art methods on the second indepen-
dent dataset from subjects not used for the model training (S3 Table). Deep Vess surpass
both of them in terms of sensitivity, Dice index, Jaccard index, and boundary modified Haus-
dorff distance (MHD).
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