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Abstract 37 

Novel observation techniques (e.g., “smart” tracers) for characterizing coupled 38 
hydrological and biogeochemical processes are improving understanding of stream network 39 
transport and transformation dynamics. In turn, these observations are thought to enable 40 
increasingly sophisticated representations within transient storage models (TSM). However, 41 
TSM parameter estimation is prone to issues with insensitivity and equifinality, which grow as 42 
parameters are added to model formulations.  Currently, it is unclear whether (or not) 43 
observations from different tracers may lead to greater process inference and reduced parameter 44 
uncertainty in the context of TSM. Herein, we aim to unravel the role of in-stream processes 45 
alongside metabolically active (MATS) and inactive storage zones (MITS) using variable TSM 46 
formulations. Models with one (1SZ) and two storage zones (2SZ) and with and without 47 
reactivity were applied to simulate conservative and “smart” tracer observations obtained 48 
experimentally for two reaches with differing morphologies. As we show, “smart” tracers are 49 
unsurprisingly superior to conservative tracers when it comes to partitioning MITS and MATS. 50 
However, when transient storage is lumped within a 1SZ formulation, little improvement in 51 
parameter uncertainty is gained by using a “smart” tracer, suggesting the addition of observations 52 
should scale with model complexity. Importantly, our work identifies several inconsistencies and 53 
open questions related to reconciling timescales of tracer observation with conceptual processes 54 
(“parameters”) estimated within TSM.  Approaching TSM with multiple models and tracer 55 
observations may be key to gaining improved insight into transient storage simulation as well as 56 
advancing feedback loops between models and observations within hydrologic science. 57 

 58 

Plain Language Summary 59 

Solute experiments and transport models, called commonly “tracer experiments,” are used to 60 
understand the relative importance of different stream processes, especially those that influence 61 
water, solutes, and nutrients as they move through a stream network. Within these tracer 62 
experiments, there are processes that exchange mass beyond the main stream channel to other 63 
parts of the river valley bottom environment. Sometimes there are single or multiple types of 64 
tracers used and modeled to try to understand this exchange. There are also multiple models with 65 
different equations and structures to simulate these tracers.  This study shows that what you can 66 
learn about these stream processes depends on experiment choices and which model you use. 67 
Hence, refining future multiple tracer experiments and models is needed to determine how we 68 
best obtain consistent measurements of key stream processes. 69 

 70 

1 Introduction 71 

The last decade has seen an explosion of novel techniques for collecting data used to 72 
characterize dynamic hydrologic systems. Tools and techniques that fall under this umbrella 73 
include the burgeoning field of hydrogeophysics (e.g., Ward et al., 2010; St Clair et al., 2015), 74 
the use of unmanned aerial vehicles (e.g., Vivoni et al. 2014; Brenner et al. 2017), high space-75 
time resolution sensing systems (e.g. Blaen et al., 2016; Khamis et al., 2016) and the growing use 76 
of “smart” and conservative tracers in the environment (e.g., Haggerty et al., 2008; González-77 
Pinzón et al., 2012; Runkel 2015; Knapp et al., 2017; Blaen et al., 2017). Observational data 78 
obtained from these techniques has been used to reveal new process dynamics and to refine 79 
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current understanding of hydrological systems. These techniques have also advanced process-80 
based mathematical representations within computational models as well as new approaches to 81 
assess whether model frameworks ensure model realism (e.g., Seibert and McDonnell, 2002; Li 82 
et al., 2015; Clark et al., 2017). Furthermore, research communities have developed approaches 83 
for testing multiple model frameworks that explore different mathematical representations of 84 
hydrological processes (e.g., Clark et al., 2015a, 2015b) as well as approaches for comparing the 85 
performance of different models applied to a variety of systems (e.g., Butts et al., 2004; Best et 86 
al., 2015). Our goal herein is to build on recent progress made by these communities to explore 87 
the relationship between empirical observations, model performance, and model complexity to 88 
inform the value of new information for addressing historic limitations. We use the example of 89 
stream solute transport, transient storage, and solute transformation as a study topic. 90 

In the field of groundwater-surface water interactions, hyporheic exchange remains one 91 
of the most difficult processes to quantify (Orghidan, 1959; Triska et al., 1989; Gooseff, 2010; 92 
Boano et al., 2014). The hyporheic zone, although defined in a variety of contexts (Krause et al., 93 
2011), is often described as a region both beneath and surrounding the stream channel containing 94 
sediments, microbes, and benthic organisms where water and nutrient exchange with the main 95 
stream channel occurs (Orghidan, 1959; Gooseff, 2010; Ward, 2016). Identifying this zone and 96 
characterizing the relative rates and spatial extent of hyporheic exchange with the nearby stream 97 
channel has been and continues to be an area of ongoing research (e.g., Triska et al. 1989; Storey 98 
et al., 2003; Boano et al., 2014; Caruso et al., 2016; Knapp et al. 2017; Schmadel et al. 2017). 99 
While quantifying the role of the hyporheic zone in relation to solute transformations and 100 
ecosystem processes has remained elusive, the use of multiple tracers, specifically the emerging 101 
“smart” tracer (i.e., resazurin; Raz) technique has shown promise for characterizing stream 102 
reactivity and functioning by enabling researchers to quantify the portion of the transient storage 103 
that is metabolically-active (Karakashev et al., 2003; Haggerty et al., 2009; Argerich et al., 2011; 104 
Knapp et al., 2018). Resazurin decays when in the presence of respiring cells typically found in 105 
the hyporheic zone (e.g., González-Pinzón et al., 2012), producing a new chemical, resorufin 106 
(Rru). Following this transformation, as water is exchanged across the streambed interface, Rru 107 
is exchanged back to the main channel and can be detected downstream. Thus, releasing Raz into 108 
a stream reach produces two time-series of concentration, referred to as breakthrough curves 109 
(BTC), that may be sensitive to different types of either metabolically active (MATS) or inactive 110 
storage (MITS). Beyond hyporheic exchange, decay of Raz to Rru is being widely used to 111 
characterize MATS, stream reactivity, and ecosystem respiration in many different transient 112 
storage zones (Knapp et al., 2018), including biofilms (Haggerty et al., 2014), the benthic zone 113 
(Knapp et al., 2017), vegetation beds (Kurz et al., 2017), and around woody debris (Blaen et al., 114 
2018).  In contrast to MATS, MITS may correspond to portions of a stream reach with a high 115 
volume of water and conversely low contact with sediment (e.g., in-stream dead zones). 116 

While MATS and MITS are recognized as having two very different effects on stream 117 
nutrient exchange, there are few examples of TSM applications to reactive solutes (e.g., Gooseff 118 
et al., 2005; Knapp and Cirpka, 2017). Commonly, quantifying reach-scale transient storage has 119 
drawn upon parameter estimation with TSM representing the lumped effects of transient storage 120 
via MATS and MITS alongside advective in-channel processes such as advection and dispersion 121 
(Bencala and Walters, 1983; Valett et al., 1996). When combined with field observations of 122 
tracers in the form of a BTC, estimates of model parameters representing the temporal (i.e., rate 123 
of exchange) and spatial scales (i.e., size) of reach-averaged transient storage zone exchange can 124 
be obtained via inverse modeling (Runkel, 1998). This is done by employing one of many 125 
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methods (e.g., Runkel, 1998; Wagener et al., 2001; Kelleher et al., 2013; Knapp and Cirpka, 126 
2017) to search the parameter space for a parameter set that produces the simulation with lowest 127 
model error, assessed between a simulated and observed BTC for a given stream reach (Runkel, 128 
1998; Ward et al., 2017). There are several recognized limitations to the timescales of transient 129 
storage zone exchange that may be assessed using TSM (e.g., Harvey et al., 1996) as well as 130 
accounting for spatial heterogeneity that exists at sub-reach scales (Harvey et al., 1996; Knapp et 131 
al., 2017). Despite these limitations, TSM remains a popular approach that can provide an 132 
assessment of the relative roles of different in- and near-stream processes. 133 

The most commonly applied TSM (known as the One-Dimensional Transport with 134 
Inflow and Storage model, or "OTIS"; Runkel, 1998) uses four parameters to simulate transport 135 
of a conservative tracer (five for a non-conservative tracer, e.g., Raz transforming to Rru) with a 136 
single transient storage zone, and is available as open-source software from the United States 137 
Geological Survey. However, this single-storage zone representation is inconsistent with current 138 
understanding of transient storage (Briggs et al., 2009), as there are multiple dominant domains 139 
of transient storage that may alter the flow of water and nutrients in different ways. As a result, 140 
several other structural forms of the solute transport equations have been proposed (e.g., Lees et 141 
al., 2000; Bencala and Walters, 1983; Runkel, 1998; Lees et al., 2000; Marion et al., 2008; 142 
Briggs et al., 2009; Liao and Cirpka, 2011; Ward et al., 2015). One recent iteration of this model 143 
separates the effects of transient storage into two zones described by parameters in terms of size 144 
and exchange rate with the main channel (Briggs et al. 2009). Generally, we desire models with 145 
process representations that most closely match our understanding of streams (e.g., Briggs et al., 146 
2009). This desire often results in the addition of model parameters, with the tradeoff of 147 
introducing additional uncertainty and equifinality due to parameter interactions (Beven 1993; 148 
Butts et al. 2004; Beven 2006). This must also be balanced against the addition of observations 149 
to vet simulations and constrain realistic parameter estimates. For instance, as shown by Briggs 150 
et al. (2009), the addition of model parameters to segment transient storage was accompanied by 151 
additional BTC observations from in-channel dead zones.  Though numerous TSM studies exist, 152 
there is a broad need to better understand the tradeoffs between parameter uncertainty and 153 
choices that determine the number of estimated model parameters (i.e., model complexity, 154 
motivated by more realistic representation of dominant processes) alongside the addition of field 155 
observations for estimating parameter values (i.e., “smart” tracers). 156 

An added challenge to quantifying stream-reach transient storage is the growing body of 157 
evidence that has shown that TSMs are susceptible to parameter equifinality (e.g., Choi et al., 158 
2000; Kelleher et al., 2013), such that parameter determinations may be uncertain and therefore 159 
uninformative for assessing the role of transient storage in physical and ecological river 160 
processes (Wagner and Harvey, 1997; Wagener et al., 2002; Ward et al., 2017). Existing studies 161 
suffering from equifinality issues have typically assessed parameter estimates and uncertainty 162 
through inverse modeling of a single conservative tracer. When used, as shown in a small but 163 
growing number of studies, “smart” tracers provided different estimates for dispersion and 164 
transient storage parameter values (Lemke et al., 2013). Adding observations to constrain models 165 
is often viewed as an approach for reducing parameter uncertainty (e.g. Nearing and Gupta, 166 
2015; Nearing et al., 2016). In practice, this requires that the observations in question contain 167 
non-redundant information. If new or more observations lead to the same parameter estimates, or 168 
similar levels of parameter uncertainty, the added information is not useful in reducing parameter 169 
uncertainty. As parameter estimates are often used to characterize systems, collecting datasets 170 
that can reduce this uncertainty is a common goal. Consequently, there is a need to explore how 171 
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equifinality and process inference may vary with multiple tracer observations, across different 172 
types of stream reach morphologies and across model formulations of varying complexity. 173 

Within the context of TSM, we explore whether conservative and non-conservative 174 
“smart” tracers may better constrain different TSM parameters, providing alternative but 175 
potentially complimentary information. Furthermore, we offer a unique comparison of 176 
constraints on parameter uncertainty arising from estimation of parameters by fitting to different 177 
tracer BTCs across model frameworks of varying complexity (e.g., conservative and non-178 
conservative tracers, single versus multiple storage zone models). We aim to address the 179 
following two fundamental questions in the context of TSM parameter estimation: (1) when are 180 
multiple tracers useful?, and (2) when is increasing model complexity beneficial? Drawing from 181 
several growing efforts in the land-surface and watershed modeling communities, we take a 182 
model intercomparison-based approach (e.g., Best et al., 2015; Clark et al., 2015a, b; Clark et al., 183 
2017), treating these TSM model formulations as different testable hypotheses, comparing the 184 
performance and parameter uncertainty associated with each unique model formulation. We test 185 
this approach using data from conservative (uranine; Ura) and reactive (Raz, Rru) solute tracer 186 
experiments performed in two lowland stream reaches with distinct morphological settings 187 
located in the Hammer Stream, in West Sussex, UK. To evaluate the addition of observations 188 
alongside changes to model complexity, we test four different formulations of the TSM, ranging 189 
in complexity from four to seven parameters. While we expect that inverse models constrained 190 
by Raz and Rru will reduce uncertainty and yield similar parameter estimates for active and 191 
inactive storage zone parameters, we speculate that uncertainty in main channel parameters may 192 
grow in the more complex model framework associated with two storage zones.   193 

2 Study Area 194 

Field experiments were conducted in the Hammer Stream (West Sussex, UK; 510’ N 195 
047’ W; Figure S1). The 2,640 ha catchment drains mixed land use and is primarily underlain 196 
by sandstone and mudstone. We identified two study reaches located upstream and downstream 197 
of Hammer Lake. Upstream of the lake the streambed material is sandy (hereafter the sand 198 
reach), whereas the reach downstream of the lake is armored gravel (hereafter the gravel reach) 199 
as result of the sand and other fine sediment having been trapped in Hammer Lake. Both reaches 200 
include large woody debris in the stream channel (Blaen et al., 2018; Shelley et al., 2017). For 201 
the sand reach, we established a study reach along 760 m of channel (mean width 5.3 m, mean 202 
depth 0.42 m). For the gravel reach, we established a study reach of 683 m immediately 203 
downstream of Hammer Lake (mean width 6.35 m, mean depth 0.28 m). In each reach, a 204 
combination of Ura and Raz was injected as an instantaneous pulse about 150-m upstream of the 205 
start of the study reach to ensure complete mixing, even at the start of the study reach. All 206 
injections occurred in late afternoon/evening to minimize the effect of tracer mass 207 
photodegredation.  In-situ field fluorometers (GGUN-FL30, Albillia Sàrl, Switzerland) were 208 
used to monitor the fluorescence signals of all three tracers at 10-s time intervals at each end of 209 
the study reach. Discharge was 73.2 L s-1 at the upstream end of the sand reach and 86.5 L s-1 at 210 
the upstream end of the gravel reach, and calculated using dilution gaging with Uranine at the 211 
upstream end of the study site. Additional details regarding the sand reach and injection are 212 
provided by Blaen et al. 2018; the gravel reach injection replicated the same experimental 213 
methods.  214 
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3 Transient Storage Modeling 215 

3.1 Model Formulation 216 

We derive models representing transport and transformation of solute tracers following 217 
closely after the TSM (Thackston and Schnelle 1970; Bencala and Walters 1983) and integrate 218 
several subsequent extensions such as multiple storage zones (e.g., Briggs et al. 2009; Kerr et al., 219 
2013), reactivity (e.g., Haggerty et al. 2009; Lemke et al. 2013), and transport of multiple 220 
interacting solutes (Keefe et al., 2004; Ward et al., 2015). While many TSM formulations have 221 
partitioned transient storage using location (e.g., surface and sub-surface transient storage; 222 
Briggs et al. 2009; Kerr et al. 2013), MATS and MITS formulations separate transient storage 223 
based on the apparent presence or absence of metabolic activity (Argerich et al. 2011).  224 

In this TSM formulation, we simulate concentration in the main channel, the MITS 225 
domain, and the MATS domain via three equations with flexibility to vary up to seven different 226 
parameters. Concentrations in the stream domain are described according to: 227 

 228 

𝜕𝐶

𝜕𝑡
= −

𝑄

𝐴

𝜕𝐶

𝜕𝑥
+ 𝐷

𝜕2𝐶

𝜕𝑥2
+

𝑞𝐿,𝑖𝑛𝐶𝐿

𝐴
−

𝑞𝐿,𝑜𝑢𝑡𝐶

𝐴
+ 𝛼𝑀𝐴𝑇𝑆(𝐶𝑀𝐴𝑇𝑆 − 𝐶) + 𝛼𝑀𝐼𝑇𝑆(𝐶𝑀𝐼𝑇𝑆 − 𝐶) (1a) 229 

 230 

where C is solute concentration (g m-3), t is time (s), Q is discharge (m3 s-1), A is cross-sectional 231 
area of the stream (m2), D is the longitudinal dispersion coefficient (m2 s-1), qL,in is the lateral 232 
inflow per meter of stream (m2 s-1), CL is the concentration of the solute in the lateral inflow (g 233 
m-3), qL,out is the lateral outflow per meter of stream (m2 s-1), and α describes the exchange rate 234 
between the stream and transient storage zones (s-1). Inflows and outflows to the system 235 
simulated as occurring in the stream instead of the hyporheic zone, consistent with TSM 236 
conceptualization (Bencala and Walters, 1983). For the purposes of this experiment, both qL,in 237 
and qL,out were set to zero on the basis of minimal changes in discharge and the absence of known 238 
surface outflows along the study reach and to minimize the number of free parameters. 239 
Furthermore, surface inflows do not contain the tracers Raz, Rru or Ura (i.e. CL is also zero).  240 

Within the MATS domain (denoted by subscript MATS), the mass balances for Raz, Rru, 241 
and Ura (denoted by subscripts) are calculated as: 242 

𝜕𝐶𝑀𝐴𝑇𝑆,𝑅𝑎𝑧

𝜕𝑡
= 𝛼𝑀𝐴𝑇𝑆

𝐴

𝐴𝑀𝐴𝑇𝑆
(𝐶𝑅𝑎𝑧 − 𝐶𝑀𝐴𝑇𝑆,𝑅𝑎𝑧) − 𝑘𝐶𝑀𝐴𝑇𝑆,𝑅𝑎𝑧   (1b) 243 

𝜕𝐶𝑀𝐴𝑇𝑆,𝑅𝑟𝑢

𝜕𝑡
= 𝛼𝑀𝐴𝑇𝑆

𝐴

𝐴𝑀𝐴𝑇𝑆
(𝐶𝑅𝑟𝑢 − 𝐶𝑀𝐴𝑇𝑆,𝑅𝑟𝑢) + 𝑘𝐶𝑀𝐴𝑇𝑆,𝑅𝑎𝑧   (1c) 244 

𝜕𝐶𝑀𝐴𝑇𝑆,𝑈𝑟𝑎

𝜕𝑡
= 𝛼𝑀𝐴𝑇𝑆

𝐴

𝐴𝑀𝐴𝑇𝑆
(𝐶𝑈𝑟𝑎 − 𝐶𝑀𝐴𝑇𝑆,𝑈𝑟𝑎)     (1d) 245 

where k (s-1) is a reactive rate constant that describes the transformation of the parent (Raz in our 246 
study) to product (Rru in our study), and CUra, CRaz, and CRru are the in-stream concentrations of 247 
Uranine, Resazurin, and Resorufin based on solving equation 1a for each solute. Similarly, in the 248 
MITS domain (denoted by subscript MITS) the concentrations of Raz, Rru, and Ura are 249 
calculated as: 250 

𝜕𝐶𝑀𝐼𝑇𝑆

𝜕𝑡
= 𝛼𝑀𝐼𝑇𝑆

𝐴

𝐴𝑀𝐼𝑇𝑆
(𝐶𝑅𝑎𝑧 − 𝐶𝑀𝐼𝑇𝑆,𝑅𝑎𝑧)      (1e) 251 
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𝜕𝐶𝑀𝐼𝑇𝑆

𝜕𝑡
= 𝛼𝑀𝐼𝑇𝑆

𝐴

𝐴𝑀𝐼𝑇𝑆
(𝐶𝑅𝑟𝑢 − 𝐶𝑀𝐼𝑇𝑆,𝑅𝑟𝑢)      (1f) 252 

𝜕𝐶𝑀𝐼𝑇𝑆,𝑈𝑟𝑎

𝜕𝑡
= 𝛼𝑀𝐼𝑇𝑆

𝐴

𝐴𝑀𝐼𝑇𝑆
(𝐶𝑈𝑟𝑎 − 𝐶𝑀𝐼𝑇𝑆,𝑈𝑟𝑎)      (1g) 253 

Simulations are performed through forward modeling based on the stream (1a), MATS 254 
(1b-1d), and MITS (1e-1g) equations for Ura, Raz, and Rru. Critical to this study is that all three 255 
equations are solved using the same physical transport parameters (A, D, AMATS, AMITS, 𝛼𝑀𝐼𝑇𝑆, 256 
𝛼𝑀𝐴𝑇𝑆), allowing for simulation of dynamic parent-to-product transformations. This solution 257 
allows the simultaneous transport and interaction of both conservative and interacting reactive 258 
solutes (after Ward et al. 2015). Model equations for all solutes were solved simultaneously 259 
using a Crank-Nicolson solution scheme, common for TSM applications (e.g., Runkel 1998; 260 
Ward et al., 2015). Models were implemented using measured discharge at the upstream end of 261 
each study reach, with observed breakthrough curves used as upstream boundary conditions. 262 
Spatial and temporal steps for the simulations were fixed at 5-m and 10-s, respectively. 263 
Important and commonly used assumptions of the model include laterally and vertically well-264 
mixed domains, exponential residence time distributions within transient storage zones, temporal 265 
constancy for transient storage zone model parameters, perfect conversion of Raz to Rru, no 266 
retardation (sorption), and no additional transformation pathways for any solutes. 267 

As derived, the model is flexible in that it can represent both one storage zone (1SZ) and 268 
two storage zone (2SZ) realizations of the TSM (Figure 1a). Within this framework, we test the 269 
following model-tracer combinations (Figure 1b): 270 

(1) A one storage zone model fit to a conservative tracer (Ura), where transient 271 
storage combines MATS and MITS (four parameters; A, D, As, αS) 272 

(2) A two storage zone model fit to a conservative tracer (Ura), where MITS and 273 
MATS do not distinguish active storage, but instead represent two different 274 
storage zones (six parameters; A, D, AMATS, αMATS, AMITS, αMITS) 275 

(3) A one storage zone model fit to “smart” tracer (Raz) and biproduct (Rru), where 276 
transient storage refers to MATS, and MITS is effectively incorporated into the 277 
dispersion term (D) (five parameters; A, D, AMATS, αMATS, k) 278 

(4) A two storage zone model fit to “smart” tracer (Raz) and biproduct (Rru) (seven 279 
parameters; A, D, AMATS, αMATS, AMITS, αMITS, k). 280 

While comparison (2) is included in this study to assist with interpretation, this combination of a 281 
two-storage zone model fit with a conservative tracer is not expected to yield useful storage zone 282 
parameter estimates. Each tracer was independently tested as a source of parameter information 283 
for each tracer-model combination listed above.  Importantly, MATS and MITS, as visualized in 284 
Figure 1a, are integrations of transient storage along the channel that may either be reactive or 285 
inactive, respectively. MATS and MITS, in our formulation, do not represent physical zones 286 
such as the hyporheic zone, as many of these physical locations may include zones of both active 287 
and inactive storage.  For 1SZ models, the exchange coefficient 𝛼MITS is set to zero, which 288 
eliminates any exchange between the stream and MITS. For Ura, this represents a 1SZ model 289 
identical in formulation and implementation to the broadly used USGS OTIS model (Runkel 290 
1998). For Raz and Rru, the MATS storage retains the ability to simulate transformations in the 291 
storage zone and assumes that all transient storage is metabolically active (i.e., with 𝛼MITS =0, 292 
AMITS cannot affect concentrations in the model). We do assume Ura to be a conservative tracer 293 
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(see Supporting Information), though it may decay in direct sunlight.  Notably, Rhodamine WT 294 
is also non-conservative (Runkel, 2015), highlighting that there is no single perfect conservative 295 
tracer. 296 

Conceptually, the combinations of observations and model formulations listed in Figure 297 
1b also represent four different scenarios for gaining insights regarding parameter importance.  298 
Though we assess parameter sensitivity and uncertainty per tracer and per model, we do not 299 
expect all parameter estimates to be sensitive to all tracers, and seek to test these potential 300 
relationships.  In this same vein, certain tracers are likely to be more or less informative for 301 
different parameters.  We expect that Ura, as a conservative tracer, will yield the most physically 302 
representative parameter distributions for A and D. Similarly, we do not expect that Ura is 303 
capable of separating the influence of MATS and MITS, and are uncertain as to whether A and D 304 
are sensitive to Raz or Rru, given these tracers are nonconservative. 305 

Importantly, parameters estimated via different tracers represent different processes.  306 
Within the 1SZ formulation, storage zone parameters estimated via Ura assume the transient 307 
storage zone combines both MATS and MITS, while storage zone parameters estimated via Raz 308 
estimate transient storage zone size for MATS, assuming MITS is incorporated into the 309 
dispersion term.  Thus, we may not necessarily expect distributions of D or storage zone 310 
parameters to be similar when fitting to Ura versus Raz with the 1D model. 311 

3.2 Computational Experiments 312 

We performed several computational experiments with inputs (parameters) to and outputs 313 
(errors and simulations) from models of varying complexity.  Simulations and parameter sets 314 
were constrained to match different observations, including conservative (Ura) and non-315 
conservative (Raz, Rru) BTCs. Model formulations used in these experiments are outlined in 316 
Figure 1b. To interrogate parameter uncertainty and equifinality, we used a Latin Hypercube 317 
approach to sample the model parameter space (N = 27,000 runs; e.g., Pianosi et al., 2015). All 318 
parameters and associated ranges are listed in Table 1.  319 

 Within the 2SZ model formulation, we sampled total area (ATOT), representing the 320 
combined area of the advective channel and the area of MITS.  For this formulation, 321 

𝐴 = 𝐴𝑇𝑂𝑇 ∙ (1 − 𝐹𝑀𝐼𝑇𝑆)       2a 322 

𝐴𝑀𝐼𝑇𝑆 = 𝐴𝑇𝑂𝑇 ∙ 𝐹𝑀𝐼𝑇𝑆        2b 323 

where FMITS describes the fraction of the stream channel that is metabolically inactive. To enable 324 
comparisons across model formulations, all results are presented in terms of A and AMITS.  This 325 
does result in slightly wider bounds for A for the 2SZ model and narrower bounds for A for the 326 
1SZ model, but otherwise is purely a function of model formulation. 327 

Model complexity, defined by the number of parameters, ranged from four to seven 328 
parameters. We tested a 1SZ model (Fig. 1b, 1) and 2SZ model (Fig. 1b, 2) constrained by 329 
observations from only Ura. We also tested a 1SZ (Fig. 1b, 3) and a 2SZ (Fig. 1b, 4) with an 330 
added parameter representing reactive decay constrained by BTCs for Raz and for Rru. All 331 
computational experiments were performed using the same structural model equations 332 
(Equations 1a, 1b, 1c, and 1d). For model formulations 1 and 3, we use a model formulation that 333 
has a single transient storage zone (i.e., αMITS = 0). To model this, we sampled the first five 334 
parameters, setting values for the fraction of stream area as MITS and the MITS exchange rate to 335 
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small non-zero values (10-10). For model formulations 2 and 4, we sampled all seven parameters 336 
across feasible ranges. 337 

3.3 Model Performance 338 

For each of the 27,000 runs, we calculated model fits in terms of a normalized Root Mean 339 
Squared Error (nRMSE) for each BTC (Ura, Raz, Rru) independently, according to: 340 

 𝑛RMSE= 1

𝐶𝑝
(
∑ (𝑂𝑡−𝑆𝑡)

2𝑛
𝑡=1

𝑛
)
0.5

      (2) 341 

where Ot and St correspond to observations and simulations at a given time step, n is the total 342 
number of observations, and Cp is peak concentration for each tracer (employed to normalize 343 
RMSE values across tracers; g m-3). RMSE (and close variants) remains one of the key objective 344 
functions used to assess BTC errors (Runkel, 1998; Ward et al., 2017). We also calculated a log-345 
transformed Root Mean Squared Error (LRMSE; similar to a weighted RMSE), where the 346 
observed and simulated time-series were log-transformed prior to applying equation (2) above. 347 
Past work has shown log-transformed error metrics can be particularly useful for obtaining 348 
reliable TSM parameter estimates (e.g., Wörman and Wachniew, 2007; Ward et al., 2017).  349 

  Our analysis relies on the use of behavioral thresholds to segment populations of error 350 
and parameter estimates (e.g., Hornberger and Spear, 1980, 1981; Spear and Hornberger, 1980).  351 
We employ a behavioral threshold to identify a subset of simulations and parameter sets that 352 
closely match BTCs by achieving low errors.  Instead of selecting a single best simulation and 353 
parameter set, the use of behavioral thresholds allows us to identify a distribution of these values.  354 
Behavioral thresholds may be implemented by identifying parameter sets and simulations below 355 
a certain error value, or by identifying those with errors below some percentage criterion (i.e., 356 
top 10% of errors).  We use the latter (thresholds of 10% and 1%) to compare error, simulations, 357 
and parameter estimates across different tracers and models. 358 

3.4 Parameter Sensitivity and Uncertainty 359 

For an ideal TSM inverse modeling exercise there is a unique ‘best’ estimate for each 360 
parameter, such that behavioral parameter values occupy a defined and narrow area of the 361 
parameter space (Wagener et al., 2001; Kelleher et al., 2013). However, parameters are often 362 
insensitive or uncertain. This may be represented as wide distributions of behavioral parameter 363 
values spanning the entire parameter range, or by no difference between parameter distributions 364 
between the best and worst simulations. The former may also occur when a parameter is largely 365 
unimportant, or due to interactions with other parameters. To understand the influence of model 366 
complexity and different tracer observations on parameter estimates, we assessed parameter 367 
sensitivity, parameter uncertainty, and parameter interactions for all model-tracer combinations. 368 
While some studies have estimated parameters by first fitting parameters associated with 369 
conservative transport, and then fitting nonconservative parameters (e.g., Gooseff et al., 2005), 370 
we treat all BTCs as independent sources of information for assessing parameter sensitivity and 371 
uncertainty.  Our goal is to avoid making assumptions about which BTCs may contain 372 
information regarding certain parameters, and instead to use the analysis presented here to more 373 
thoroughly assess how parameter estimates are impacted by fitting to different BTCs. 374 

Approaches to obtain parameter estimates include use of optimization algorithms (e.g., 375 
Runkel, 1998; Briggs et al., 2009; Kerr et al., 2013), Markov Chain Monte Carlo approaches 376 
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(e.g., Lemke et al., 2013; Knapp and Cirpka, 2017), and Monte Carlo approaches coupled with 377 
behavioral thresholds (e.g., Wagener et al., 2001; Kelleher et al., 2013), as well as a broad 378 
literature on approaches to parameter sensitivity (see Pianosi et al., 2016). In this study, we 379 
employed approaches based on Monte Carlo methods to enable a tiered assessment that draws on 380 
both the very best and worst simulations and corresponding parameter estimates. To provide a 381 
global assessment of parameter sensitivity, we generated regional sensitivity analysis (RSA) 382 
plots for each parameter based on errors associated with nRMSE calculated from simulations and 383 
observations of Ura, Raz, and Rru (Fig. 2a). RSA is a useful technique for mapping portions of 384 
the parameter space corresponding to either best or worst errors (e.g., Freer et al., 1996; Pianosi 385 
et al., 2016) and has been commonly applied to assess TSM parameter sensitivity (e.g., Wagener 386 
et al., 2002; Wlostowski et al., 2013). To apply RSA, we identified the top (best) 10% of errors 387 
and the bottom (worst) 10% of errors for Ura, Raz and Rru across all simulations. Parameter 388 
values corresponding to these best and worst 10% of simulations were transformed into marginal 389 
empirical cumulative distribution functions (CDF; Freer et al., 1996; Wagener et al., 2001; 390 
Pianosi et al., 2016). Sensitive parameters satisfied two criteria: parameter CDFs corresponding 391 
to the top 10% of all error values (1) deviated from the 1:1 line (representing a purely uniform 392 
distribution), assessed by visual inspection, and (2) deviated from parameter CDFs 393 
corresponding to the worst 10% of all errors (Fig. 2a, b).   394 

We assessed parameter uncertainty and model performance comparing the top 1% of all 395 
simulations per error metric. To test whether the parameter values corresponding to the lowest 396 
model errors converged, we applied a visualization based on the widely used dotty plot (e.g., 397 
Wagener and Kollat, 2007). Dotty plots visualize model error plotted against model parameter 398 
values for all simulations meeting a given behavioral threshold (Fig. 2c, d). To summarize the 399 
distribution of optimal parameter values (those corresponding to the lowest error) across each 400 
dotty plot, we identified the single best parameter value (with lowest error) within a moving 401 
window (1/20th the width of parameter range) incremented across each parameter range (1/40th 402 
the width of the parameter range). This distribution of optimal errors was then normalized to a 403 
cumulative value of one (Fig. 2c, d). We report all dotty plots in Supporting Information (Figs. 404 
S1-S4). Optimal parameter values and 90% confidence intervals are also reported. Finally, we 405 
also investigated parameter interactions via scatter plots of parameter values to assess the 406 
dependency between parameters and how this changes for subsets of the very best simulations. 407 
Together, these assessments yield transferable approaches for assessing parameter sensitivity and 408 
uncertainty within environmental models, and for comparing these outcomes across 1SZ and 409 
2SZ models and error metrics.  410 

4 Results 411 

4.1 Model errors and simulations 412 

Tracer observations obtained from the two reaches are shown in Figure 3. While peak 413 
concentrations for Ura and Raz are coincident, peak concentrations for Rru occur at a later time, 414 
representing a temporal lag as Raz is converted to Rru in the presence of aerobic respiration.  All 415 
tracers are capably simulated by one and two-storage zone models (Figure 4).  As we show, a 416 
behavioral threshold of 1% yielded envelopes of simulations that bracketed observations for all 417 
tracers. Upper and lower bounds, representing the range of the 270 simulations with lowest error, 418 
were nearly identical for the 1SZ and 2SZ models. Information on mass recovery is included in 419 



Confidential manuscript submitted to Water Resources Research 

 11 

Supporting Information (Text S2) and demonstrated acceptable levels of mass recovery 420 
conforming to model assumptions. 421 

Model errors corresponding to the top 1% of all model simulations are visualized for 422 
nRMSE in Figure 5. Comparing distributions of error across tracers, nRMSERaz had the lowest 423 
overall error across both reaches, though medians and ranges of error between tracers were 424 
similar for all but nRMSERru.  Minimum and median errors for Rru were larger for the 2SZ as 425 
opposed to 1SZ model, and nRMSERru had larger errors than nRMSERaz and nRMSEUra. 426 
Comparing errors across models, we found that median errors for 2SZ models were slightly 427 
higher than median errors for 1SZ models for nearly all reach-tracer combinations.  Though the 428 
ranges of error were found to be wider for 2SZ as opposed to 1SZ models, 2SZ models still 429 
yielded the simulation with the single lowest error across all parameter sets for nRMSERaz for 430 
both reaches and nRMSEUra for the gravel reach (Figure 5a).  431 

4.2 Parameter sensitivities 432 

Interpretation of global parameter sensitivities assessed via RSA are shown in Figure 6. A 433 
select number of RSA plots are included for the 2SZ models, with all plots included in 434 
Supporting Information (see Figure S8). In general, D, A, and ∝MATS were globally sensitive 435 
across tracers. Distributions for D differed between tracers. For the gravel reach, lower errors for 436 
nRMSEUra corresponded to larger values for D, but smaller values of D for nRMSERaz and 437 
nRMSERru. AS (1SZ) and  AMATS (2SZ) were both sensitive, the latter to nRMSEUra and nRMSERaz 438 
and the former to nRMSERaz and nRMSERru.  Estimates for AMITS and ∝MITS were difficult to 439 
interpret, in part, because CDFs corresponding to both best and worst performing parameter 440 
values were similar, likely indicating that these parameters are influenced by interactions with 441 
other parameters. Finally, k was globally insensitive across all models and performance metrics. 442 

4.3 Parameter uncertainties 443 

Parameter estimates corresponding to the top 1% of nRMSE values for each tracer are 444 
summarized as distributions in Figure 7 (parameter values and confidence intervals are reported 445 
in Table S2). In general, flatter distributions indicate that all values across the parameter range 446 
produce equal model errors, while the presence of peaks indicates certain areas of the parameter 447 
space produce higher or lower errors, suggesting that there are optimal values that better simulate 448 
observations. Comparisons of distributions were informative for testing whether conservative 449 
versus “smart” tracer errors yielded differences in parameter uncertainty as well as whether 450 
regions of the parameter space corresponding to the best simulations and therefore minimum 451 
error were similar across tracers.  452 

Across models and reaches, parameter estimates were peaked for A and D, and narrower 453 
for the 1SZ (vs. 2SZ) errors. Within the 1SZ models, parameter estimates were uncertain for 454 
lumped transient storage size (AS) for all tracers (note that parameter values with lowest error 455 
were distributed across the entire parameter range, spanning two orders of magnitude). In 456 
contrast, PDFs for ∝S were peaky for nRMSEUra and nRMSERru (Fig. 7).  457 

Separating transient storage into two storage zones (two indiscernible zones for Ura; 458 
MATS and MITS for Raz, Rru) introduced different patterns of parameter uncertainty. PDFs for 459 
AMATS were wide for all reach-tracer combinations. Empirical PDFs of ∝MATS suggest better 460 
estimates for this parameter correspond to lower values when fitting to Ura and Raz, and better 461 
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estimates correspond to higher values when fitting to Rru.  MITS parameters (AMITS,∝MITS ) were 462 
best constrained by nRMSERru (Fig. 7).  463 

Employing a non-conservative tracer (e.g., Raz) introduced an additional parameter k to 464 
describe the rate of transformation from Raz to Rru within the 1SZ and 2SZ models. This implies 465 
that fitting to one or both of these “smart” tracers should reduce uncertainty in this value.  Global 466 
sensitivity analyses suggest that k is less sensitive than some storage zone parameters (e.g., 467 
Figure 6, Figure 7).  However, dotty plots of k for both reaches (Figure S7) do suggest that this 468 
parameter is both sensitive (i.e., errors vary across the parameter range) and unique (such that a 469 
single best value exists within the parameter range).  Within these dotty plots, values for k 470 
appeared insensitive to Raz, suggesting that Rru may contain more information for estimating 471 
this parameter. 472 

Our results also underscore the importance of considering alternative objective functions.  473 
While not the primary focus of this manuscript, we include an additional assessment of 474 
parameter uncertainty with respect to log-transformed nRMSE (LRMSE) for both reaches.  PDFs 475 
for the gravel reach were generally wide across parameters, suggesting that nRMSE was a more 476 
informative error metric in this reach (Figure S4). In contrast, empirical PDFs for the top 1% of 477 
errors by LRMSE were peaked for nearly all sand reach parameter values (Figure S6; Figure S7). 478 
These results demonstrate potential value added by considering alternative error formulations in 479 
assessments of parameter uncertainty.  480 

4.4 Joint Distributions 481 

Given past work suggesting that TSM parameters are influenced by interactions, we 482 
examined joint distributions of parameter values to explore how the interactive nature of TSM 483 
may impact parameter estimates and parameter uncertainty (Figs. 8, 9). While some parameters 484 
may be globally insensitive (Fig. 6) or exhibit flat parameter distributions (Fig. 7), visualizing 485 
joint distributions can reveal the presence of more complex relationships as well as the value of 486 
different tracers to discern these relationships. Figure 9 displays how parameter estimates and 487 
joint distributions varied with model complexity. Joint distributions of A and D were bimodal, 488 
and widened for the 2SZ model. Similar patterns were also observed between AS (1SZ) and 489 
AMATS (2SZ). In particular, these plots display that estimates for ∝S were best constrained by Ura 490 
and Rru for the 1SZ model, but Rru for the 2SZ model, shown by the shrinking 2D boundary of 491 
highest performing parameter combinations. While PDFs of parameter estimates for k did not 492 
reveal any strong patterns, joint distributions suggest lower errors are concentrated in a distinct 493 
portion of the parameter range for k (Raz, 1SZ; Rru, 2SZ). Last, we explored joint distributions 494 
between parameters only present in the 2SZ model, AMITS and ∝MITS (Fig. 9). In particular, these 495 
joint distributions display the importance of Rru for refining estimates of MITS parameters. We 496 
note that Figures 9 and 10 display results for the gravel reach, with visualizations for the sand 497 
reach included in Supporting Information (Fig. S8 and S9), as the patterns of these joint 498 
distributions were similar between the reaches.  499 

5 Discussion 500 

5.1 Model complexity and conceptualization, simulations, and errors 501 

Behavioral simulation bounds (Fig. 4; Fig. S2) and model errors (Fig. 5) indicate that, 502 
regardless of the tracer error or model framework used to constrain behavioral simulations, 503 
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observations of all tracers were simulated to a reasonable degree of accuracy. Average errors for 504 
behavioral simulations were similar between 1SZ and 2SZ models. However, it is important to 505 
note that accurate simulation from an inverse model do not necessarily indicate meaningful 506 
information was gained from parameter values. Parameters that are not identifiable may provide 507 
a good inverse model fit without characterizing system processes and should not be over-508 
interpreted (e.g., by comparing or interpreting values of insensitive or uncertain parameters). 509 
Thus, we echo calls for assessment of model parameter uncertainties, interactions, and 510 
identifiability as a requisite step prior to their interpretation (Wagener and Harvey, 1997; 511 
Wagener et al., 2002; Kelleher et al., 2013; Ward et al., 2017).  512 

For the stream reaches analyzed in this study, we found that employing a more complex 513 
model did not necessarily yield simulations that better approximated tracer observations.  Given 514 
the increased degrees of freedom in a 2SZ (as opposed to 1SZ) model, we expected 2SZ models 515 
to display smaller magnitude and range of errors than the 1SZ formulation errors calculated 516 
between measured and simulated BTCs.  Instead, 1SZ versus 2SZ model errors were similar (and 517 
even notably larger for Rru), though the simulation with the lowest error was almost always 518 
generated with a 2SZ model (Fig. 5). We do not believe that these similarities in error indicate 519 
that the model is a poor representation of reality, as simulations well approximated observations 520 
(Fig. 4).  Instead, we postulate that this shows that adding additional parameters introduces 521 
further uncertainty in addition to degrees of freedom, yielding similar model fits.  It is also 522 
possible that a more complex or alternative model formulation could lead to improvements in 523 
error, and potentially a better representation of reality.  Given the many iterations of TSM 524 
formulations (e.g., Gooseff et al., 2003; Gooseff et al., 2007; Kerr et al., 2013), we advise future 525 
work is needed to perform TSM model intercomparison with respect to both conservative and 526 
“smart” tracer BTCs.  527 

While we sought to compare parameter inference through uncertainty assessment across 528 
multiple models and tracers, this introduces some challenges in interpretation.  This is because 529 
transient storage parameters conceptually represent different processes when inverse modeling is 530 
performed with respect to different tracers.  Transient storage zones cannot be partitioned into 531 
MATS or MITS through inverse modeling to simulate Uranine.  Instead, transient storage zone 532 
parameters estimated via fitting a 2SZ model to Uranine assumed these parameters represent two 533 
independent storage zones with no association with MATS or MITS.  Therefore, parameter 534 
distributions for storage zone parameters represent fundamentally different processes when 535 
fitting to Ura versus Raz and Rru, and as such, are not expected to be comparable.  For this 536 
reason, we do not recommend estimating 2SZ MATS and MITS parameters by fitting to Ura, but 537 
include this comparison to emphasize that combining different model formulations and tracers 538 
can lead to fundamentally different conceptual representations of a system.  Likewise, in the 1SZ 539 
formulation, storage parameters are assumed to represent MATS processes when fitting to Raz, 540 
with MITS lumped with dispersion.  Therefore, we did not expect empirical PDFs for these 541 
parameter values to be similar.  Indeed, these differences likely explain why fitting to Ura versus 542 
Raz yields such different empirical PDFs for ∝S (Figure 7).  These differences also show that 543 
parameter estimates obtained by fitting a 1SZ model to Ura are not comparable to parameter 544 
estimates obtained by fitting a 1SZ model to Raz. 545 

5.2 How do conservative versus nonconservative tracers affect parameter uncertainty? 546 

In contrast to the expectation that conservative tracers may not always provide 547 
meaningful parameter estimates, our results show that conservative tracer BTCs do contain 548 
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useful information for estimating TSM parameter values.  In support of this, we found parameter 549 
uncertainty tended to be lower for parameters fit to conservative tracer BTCs (i.e., black 550 
distributions are narrower than blue or red distributions in Fig. 7). Encouragingly, we found that 551 
relatively narrow estimates for α could be achieved using a conservative tracer with either a 1SZ 552 
or a 2SZ model. This is in contrast to studies that have concluded α is typically highly uncertain 553 
(Wagener et al., 2002; Kelleher et al., 2013; Wlostowski et al., 2013). Thus, estimates of α with 554 
low uncertainty can be achieved, but this model result may be dependent upon the system and 555 
tracers.  Overall, using multiple tracers allowed us to estimate and evaluate BTC parameters to a 556 
higher degree than could be achieved by using a single tracer, with consistency in findings across 557 
both reaches. We therefore recommend TSM parameter estimates and subsequent process-based 558 
interpretation should be based on the combination of conservative and non-conservative tracers.   559 

The parameter we found most problematic to estimate was k, which describes the 560 
transformation of Raz to Rru and effectively determines mass balance.  As shown in Figures 8 561 
and 9, we found k to be highly interactive, which may explain apparent insensitivity and 562 
uncertainty for this parameter (Figures 6 and 7, Table S1).  Furthermore, dotty plots (Fig. S7) 563 
between k and objective functions (nRMSERru, LRMSERru) show that k is indeed sensitive, it is 564 
just less sensitive than other model parameters.  While only a few studies exist that employ 565 
formulations of MITS and MATS alongside “smart” tracer observations, some have concluded, 566 
similar to our study, that k may be highly uncertain (Yakerivich et al., 2017).  Others have found 567 
low uncertainty for k through joint fitting of multiple tracers (Lemke et al., 2013). As this value 568 
is of particular interest to biogeochemists, future research with paired conservative and 569 
nonconservative tracer experiments will be needed to identify conditions that may lead to more 570 
(or less) uncertain k estimates. 571 

In a similar vein, parameters AS (1SZ) and AMATS (2SZ) were also uncertain across study 572 
reaches (Fig. 7). Though we observed some organization between the structure of first order 573 
parameter interactions and model errors, our work suggests that these processes were difficult to 574 
estimate in this particular system.  While not performed here, other analyses of parameter 575 
sensitivity and uncertainty (e.g., Kelleher et al., 2013) have shown that sometimes nested 576 
sampling schemes (narrowing bounds on certain parameters before completing additional 577 
analysis) can improve estimates of parameter values and associated uncertainty.  This is because 578 
fitting to all BTCs is likely to be dominated by first finding best estimates for A and D.  Fixing 579 
these values to narrow ranges, thereby reducing degrees of freedom, enables the importance of 580 
other parameters less sensitive than A and D to be identified, and may be an approach for 581 
obtaining more reliable estimates of problematically uncertain parameters. 582 

Consistent with several recent studies using reactive tracer systems and TSM, we broadly 583 
found improved parameter constraints for some, but not all parameters associated with inclusion 584 
of reactive tracers (e.g., Lemke et al., 2013; Yakerivich et al., 2017) or additional experimental 585 
observations (e.g., Briggs et al., 2009; Neilson et al., 2010). Transient storage parameter 586 
uncertainties were minimized when a more complex model was used, most likely because this 587 
leads to greater degrees of freedom for fitting observations. For researchers who wish to separate 588 
the relative influences of transient storage between MITS and MATS, a 2SZ model simulating 589 
both conservative and “smart” tracer BTCs was capable of narrowing nearly all parameter 590 
estimates. We did find variations in parameter sensitivity and uncertainty across reaches. This is 591 
not surprising, given that the relative importance of different processes varies at the reach scale, 592 
and will determine parameter sensitivity and uncertainty within TSM applications. Though 593 
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“smart” tracers are unsurprisingly superior to conservative tracers when it comes to partitioning 594 
MITS and MATS, little improvement in parameter uncertainty was gained for 1SZ model 595 
formulations by using a “smart” tracer.  596 

5.3 Is information obtained from conservative and “smart” tracers complimentary or 597 
redundant? 598 

For 1SZ models of conservative and “smart” tracers, a similar number of sensitive 599 
parameters were identified, illustrating that both tracer types contain valuable and potentially 600 
complimentary information. Furthermore, parameter estimates obtained with respect to all tracers 601 
were similar, but differed in some cases. On one hand, some tracers are likely to be more 602 
sensitive to main channel (e.g., Ura) versus storage zone (e.g., Rru) parameters and 603 
corresponding processes.  This is a likely explanation for the difference in the empirical PDFs 604 
obtained for A and D fitting to Ura and Rru. As we would not expect fitting to Rru would contain 605 
information about main channel processes, this is unsurprising. A further explanation for the 606 
non-ideal estimation of A and D may be its sorption behavior in the subsurface (e.g., Lemke et 607 
al., 2014). Conversely, Raz and Ura may both provide similar information regarding A and D.  608 
Therefore, our work shows that even non-conservative tracers like Raz may still be useful for 609 
estimating parameters conceptualizing main channel processes.  610 

In contrast, we also found differences in parameter estimates for transient storage 611 
exchange rate, 𝛼𝑠, when fitting to different tracers. This outcome was also mirrored within the 612 
2SZ formulation for MATS exchange rates, and similar to findings from Lemke et al. (2013). 613 
These differences in estimates of transient storage parameters indicate that conservative and 614 
“smart” tracers may be sensitive to different timescales of transient storage.  It is not clear why 615 
Raz and Rru would lead to different empirical PDFs and therefore different parameter estimates, 616 
but merits future work to explore why this may arise.  As we only consider one objective 617 
function in this analysis, and we do not combine and propagate these parameter estimates back 618 
into the observation space, we can only speculate on how these findings may lead to improved 619 
calibration strategies. We do note that our findings challenge a common approach where some 620 
model parameters are constrained first using a conservative tracer, then fixed and others 621 
constrained in a second step using a reactive tracer (e.g., Keefe et al., 2004, Claessens et al., 622 
2010, Yakirevich et al., 2017). Lemke et al. (2013) also found differences in optimized 623 
parameters for transport when a conservative tracer was fitted alone or jointly with Raz. Thus, 624 
our results demonstrate that improved interpretation of BTCs may be aided by fitting 625 
conservative and nonconservative tracers separately and comparing parameter estimates, instead 626 
of using conservative tracers to constrain parameters associated with nonconservative behavior. 627 

 Within our exercise, the tracer that provided the least redundant information was Rru, 628 
which contained unique information regarding MITS processes (∝MITS, AMITS). While we 629 
anticipated differences between empirical PDFs fit to conservative versus non-conservative 630 
tracers, differences were especially pronounced between empirical PDFs for Raz versus Rru.  631 
This difference suggests that “smart” tracers may be more useful than conservative tracers for 632 
separating the hydrological and biogeochemical impacts of transient storage.   633 

While our study suggests that Raz and Ura provide in part redundant information, we 634 
caution that this may not be the case for all systems.  Making such a claim of redundancy based 635 
on a modeling exercise considering two stream reaches is unrealistic; more studies are needed to 636 
resolve questions of redundancy between tracers and parameter information content.  Future 637 
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work, especially experimental observations of transient storage processes (e.g., Knapp et al., 638 
2017), is needed to clarify and investigate timescales of MATS and MITS, and whether these 639 
tracers are truly redundant when it comes to estimating parameter values. This ultimately relies 640 
on improved reconciliation by the TSM community of what is captured by a tracer versus what is 641 
represented within a given TSM formulation.  At this stage, we do not have enough information 642 
to assess whether tracer observations may provide complementary or redundant information, as 643 
such an assessment should be based on numerous paired conservative and non-conservative 644 
tracer observations coupled with TSM. 645 

5.4 How does model complexity impact parameter estimates and uncertainty? 646 

Regardless of model complexity, the goals of tracer experiments are often to obtain 647 
reliable estimates with low uncertainty for parameters describing the influence of transient 648 
storage. Our results demonstrate that achieving this objective will ultimately be affected by the 649 
choice of tracer(s) (e.g., Abbot et al., 2016) and the choice of model framework, including the 650 
level of process representation.  Increasing model complexity through the addition of model 651 
parameters may allow more realistic representation of in- and near-stream processes, but also has 652 
important implications for parameter uncertainty. In our analysis, we found that parameters 653 
typically well-estimated by TSM, A and D, saw wider uncertainty bounds moving from a 1SZ to 654 
2SZ formulation (Fig. 6).  This is likely due to increased degrees of freedom and interactions 655 
with added parameters in the 2SZ formulation (Fig. 8). As with our analysis, other studies have 656 
found A and D to be the most sensitive parameters with narrow ranges of uncertainty across 657 
many TSM applications (Wagener et al., 2002; Kelleher et al., 2013; Ward et al., 2017). These 658 
studies have also found strong interactions between A and D, likely the cause of the bimodal 659 
behavior observed in Figure 8.  Our work adds to this existing body of literature by 660 
demonstrating how uncertainty in these well-estimated parameters changes alongside model 661 
complexity. When considering these uncertainty bounds in the context of uncertainty for other 662 
parameters, differences in these uncertainty bounds were still relatively small, leading us to 663 
conclude that only minor inference was lost with increased model complexity.  Regardless, this 664 
outcome is a good reminder that as parameters are added to a model framework, uncertainty for 665 
some parameter estimates is likely to grow, even with additional information in the form of 666 
added tracer observations.  667 

Our study offers cautious optimism regarding use of 2SZ models to infer process-based 668 
understanding of solute transport.  As we show, 2SZ models, while more complex than 1SZ 669 
counterparts, produced narrow estimates of transient storage parameters and showed promise for 670 
separating the effects of MITS and MATS. Though parameters were highly interactive within the 671 
2SZ model formulation (Figs. 8 and 9), we encouragingly found that we could obtain consistent 672 
and precise estimates of transient storage zone parameters (e.g., 𝛼𝑀𝐼𝑇𝑆, 𝛼𝑀𝐴𝑇𝑆) that are 673 
traditionally dominated by interactions and therefore have proved difficult to estimate in past 674 
studies (Wagner and Harvey, 1997; Wagener et al., 2002; Kelleher et al., 2013; Ward et al., 675 
2017). However, our results also demonstrate that with increased complexity comes increased 676 
uncertainty with respect to other model parameters. Studies utilizing 2SZ models, or any TSM 677 
for that matter, should ultimately evaluate the uncertainty associated with parameter estimates 678 
(echoing past recommendations; Wagener et al., 2002; Kelleher et al., 2013; Ward et al., 2017). 679 
This need for uncertainty evaluation is especially clear in our analysis, in that we demonstrate 680 
that while this uncertainty may be reduced for 2SZ as compared to 1SZ models for some 681 
scenarios and parameters, uncertainty can still increase for other scenarios and parameters. 682 
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6 Conclusions 683 

While researchers may wish to estimate size and exchange rates associated with transient 684 
storage in streams, and further to separate the effects of different transient storage zones, these 685 
goals rely on parameter estimation within a TSM framework. Within this context, we explored 686 
the tradeoffs between model complexity and utility of novel observations to estimate the effects 687 
of transient storage within stream reaches. Our results were consistent across two stream reaches 688 
with distinct morphologies; they suggest that model complexity and the necessity for new tracer 689 
observations are highly connected. For a 1D TSM, we found that parameter estimates were well-690 
constrained by conservative tracer BTCs, but that fitting TSM simulations to a nonconservative 691 
tracer (Raz) yielded minimal additional gains in parameter inference. Thus, if using only a 692 
conservative tracer, a simpler model may yield more informative parameter estimates.  In 693 
contrast, estimating parameters within a more complex 2SZ formulation from both conservative 694 
and “smart” tracer BTC error metrics produced complimentary insights, suggesting that (if the 695 
goal of a given study is to characterize both MITS and MATS) conservative and “smart” tracers 696 
should be used in tandem. Our findings suggest cautious optimism that nearly all parameters in 697 
2SZ TSM formulations may be capably estimated by jointly fitting simulations to both 698 
conservative and “smart” tracer observations.  Though our study represents a first step towards 699 
this goal, future work is needed to translate evaluations of parameter sensitivity and uncertainty 700 
into robust approaches to fitting multiple BTCs.   701 

 Though we show “smart” tracers have value for improving TSM approaches, we must 702 
ultimately reconcile how different process representations within TSM and tracer observations 703 
can be used to better quantify and understand specific stream transport processes. This is 704 
highlighted by the fact that experiments conducted with “smart” tracers, compared to 705 
conservative single tracer studies, require additional instrumentation, consumable costs, field 706 
time, and expertise. It remains to be seen whether “smart” tracers provide enough extra 707 
information to warrant their use within TSM, given our study solely demonstrates this outcome 708 
for two reaches with data collected at a single flow state. This detailed model assessment of 709 
multiple tracer types from two morphologically distinct stream reaches gives future stream 710 
investigators some insights, but, more importantly, quantitatively demonstrates that there are 711 
difficult tradeoffs each researcher will face (e.g., tradeoffs between tracer observations and 712 
model process representation efforts) when conducting stream tracer experiments. Furthermore, 713 
if unique information from tracers does not improve our current modeling tools, this may also 714 
suggest we need to interrogate and refine our perceptual models of these processes with the goal 715 
of improving numerical modeling tools.   716 

The caution we offer, and are even prone to in this work, is that so many TSM analyses 717 
are treated as case studies, and there are few TSM synthesis efforts that have examined model 718 
frameworks, approaches, and outcomes across multiple sites, flow states, and physical 719 
representations of transient storage, let alone streams with different types of MATS and MITS.  720 
We note that our conclusions are specific to stream setting and flow state, and that there are 721 
likely other settings where these findings may differ.  Continued discussion and evaluation of 722 
TSM formulations applied to conservative and nonconservative BTCs is therefore needed to 723 
refine the inference we can gain from tracer experiments across different environments, and to 724 
deliver a set of defensible recommendations regarding what can be achieved via TSM to the 725 
community of ecologists, hydrologists, and biogeochemists that apply these models. 726 
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Overall, our results validate that novel techniques for hydrologic data collection can help 727 
constrain parameter estimates within more complex and potentially more physically realistic 728 
models. This progress moves us toward improved process inference within hydrologic modeling 729 
of streams. More broadly, the approach we have taken of using gradients of both model 730 
complexity and observations is one that could be adapted and utilized for other hydrological 731 
model-based investigations. By continuing to interrogate the relationships between observations 732 
and model outcomes, we ultimately have great potential to improve our understanding of 733 
reactivity and transport within streams, especially when and where disconnects between modeled 734 
processes and observed processes occur.   735 
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 994 

Figure 1. Model framework displaying (a) model parameters and the hypothetical compartments 995 
within the stream reach they are associated with (MC = main channel) for both one storage zone 996 
(1SZ) and two storage zone (2SZ) models and (b) the multiple model formulations utilized 997 
within this study (and corresponding numbers of parameters). In particular, we compare across 998 
the number of transient storage (TS) zones (one vs. two), as well as parameter estimates with 999 
respect to both conservative (Ura) or nonconservative (Raz, Rru) tracer dynamics. By combining 1000 
these formulations and observations, we tested four different models ranging from four to seven 1001 
model parameters (P). Additional figure abbreviations include: metabolically inactive storage 1002 
(MITS), metabolically active storage (MATS), and parameters main-channel area (A), dispersive 1003 
coefficient (D), transient storage zone exchange (αS), transient storage zone size (As), conversion 1004 
of Raz to Rru (k), MATS cross-sectional area (AMATS), MATS exchange rate (αMATS), MITS 1005 
cross-sectional area (FMITS), and MITS exchange rate (αMITS). 1006 
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 1008 

Figure 2. Interpretation and approaches for (a, b) sensitivity analysis and (c, d) uncertainty 1009 
analysis. Regional sensitivity analysis is used to assess parameter sensitivity for parameter values 1010 
with the best (top 10%) and worst (lowest 10%) errors, compared to a uniform distribution (1:1) 1011 
line. Conceptual examples of cumulative distribution functions can be used to interpret whether 1012 
parameters are insensitive (Fig. 2a), due to either falling along the 1:1 line or CDFs 1013 
indistinguishable between parameter values corresponding to the best and worst error values, or 1014 
sensitive (Fig. 2b), where the CDF of parameter values corresponding to the best errors are 1015 
clearly distinguishable from the 1:1 line and the CDF corresponding to the worst errors.  To 1016 
compliment RSA, uncertainty is assessed by translating dotty plots to empirical probability 1017 
density functions (PDFs) of optimal model errors across feasible parameter ranges. Optimal 1018 
parameters (red) represent those with the lowest error for a narrow moving window along the 1019 
parameter space.  We display two hypothetical examples for a parameter with high uncertainty 1020 
(Fig. 2c) and low uncertainty (Fig. 2d).  Peaky distributions, found for a parameter with low 1021 
uncertainty, indicate that certain regions of the parameter space yield better performance, while a 1022 
flat distribution, corresponding to the parameter with greater uncertainty (Fig. 2d), suggests that 1023 
all parameter values yield similar model performance.  1024 
  1025 
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 1026 

Figure 3. Observed breakthrough curves (concentration through time) for a conservative tracer 1027 
(Ura) and nonconservative tracer Raz and biproduct Rru for (a) sand and (b) gravel reaches. 1028 
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 1030 

Figure 4. Upper and lower bounds for the 270 simulations corresponding to the minimum 1% of 1031 
RMSE values for the (a) gravel and (b) sand reaches. These bounds represent the envelope 1032 
encompassing the range of all simulations corresponding to the top 1% of values by nRMSE, per 1033 
tracer and per model.  Bounds are shown relative to observations. All simulations are included as 1034 
ensemble averages in Figure S2. 1035 
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 1038 

Figure 5. Distributions of model error shown for the top 1% of nRMSE values for all tracers and 1039 
for a combined tracer metric for the (a) sand and (b) gravel reaches. Results are shown for the 1040 
one (1SZ) and two storage zone models (2SZ). 1041 
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 1043 

Figure 6. Analysis of parameter sensitivities including (a) interpretation of sensitivities across 1044 
1SZ and 2SZ models, reaches, and tracers, and (b) select RSA plots for 2SZ gravel and sand 1045 
reaches for D, AMATS, ∝MATS, AMITS, and ∝MITS. Interpretation of (a) is based on Fig. 2a, with 1046 
sensitive parameters deviating from a uniform CDF and from the CDF corresponding to the 1047 
“worst 10%” of error values. A color shown in (a) indicates interpretation based on (b) that a 1048 
parameter is sensitive.  RSA plots compare empirical CDFs corresponding to the top 10% and 1049 
worst 10% of all model simulations per tracer error metric. 1050 
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 1052 

Figure 7. PDFs of the top 1% of RMSE values plotted across log-transformed parameter values 1053 
for the 1SZ and 2SZ models of the (a) sand and (b) gravel reaches.  Results were independently 1054 
generated for each of three tracers (Fig. 2). Dotted lines indicate parameters that we do not 1055 
expect to be physically related to or informed by a given tracer. 1056 
  1057 
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 1058 

Figure 8. Joint distributions of 1SZ and 2SZ model parameters for the gravel reach. Black lines 1059 
indicate the boundary of the top 0.2% of parameter sets (by nRMSE per tracer). Colors indicate 1060 
different percentiles of performance corresponding to the top 2% of all parameter sets. 1061 
  1062 
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 1063 

Figure 9. Joint distributions for the 2SZ gravel reach parameter sets. Black lines indicate the 1064 
boundary of the top 0.2% of parameter sets (by nRMSE per tracer). Colors indicate different 1065 
percentiles of performance corresponding to the top 2% of all parameter sets. 1066 
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Table 1. Parameter names, abbreviations, and ranges for sensitivity and uncertainty analysis 1069 
applied to variable TSM formulations (Figure 1). 1070 

Abbrev. Parameter Model Tracer Units Lower 
Bound Upper Bound 

D Dispersion coefficient 1SZ, 2SZ All m2 s-1 0.001 10 

A Advective channel cross-
sectional area 1SZ All m2 1 3 

ATOT Total area 2SZ All m2 1 3 

AS Transient storage cross-
sectional area 1SZ All m2 0.01 1 

αS Transient storage exchange rate 1SZ All s-1 10-6 10-2 

k Conversion, Raz to Rru 2SZ Raz, Rru s-1 10-5 10-1 

AMATS MATS cross-sectional area 2SZ All m2 0.01 1 

αMATS MATS exchange rate 2SZ All s-1 10-6 10-2 

FMITS Fraction of stream area as 
MITS 2SZ All - 0.01 0.5 

αMITS MITS exchange rate 2SZ All s-1 10-5 10-1 
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