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ABSTRACT

This paper proposes a flexible rerouting strategy for the public

transit to accommodate the spatio-temporal variation in the travel

demand. Transit routes are typically static in nature, i.e., the buses

serve well-defined routes; this results in people living in away

from the bus routes choose alternate transit modes such as private

automotive vehicles resulting in ever-increasing traffic congestion.

In the flex-transit mode, we reroute the buses to accommodate high

travel demand areas away from the static routes considering its

spatio-temporal variation. We perform clustering to identify several

flex stops; these are stops not on the static routes, but with high

travel demand around them. We divide the bus stops on the static

routes into critical and non-critical bus stops; critical bus stops refer

to transfer points, where people change bus routes to reach their

destinations. In the existing static scheduling process, some slack

time is provided at the end of each trip to account for any travel

delays. Thus, the additional travel time incurred due to taking

flexible routes is constrained to be less than the available slack

time. We use the percent increase in travel demand to analyze the

effectiveness of the rerouting process. The proposed methodology

is demonstrated using real-world travel data for Route 7 operated

by the Nashville Metropolitan Transit Authority (MTA).
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1 INTRODUCTION

The transit network in Nashville and other similarly sized cities are

challenged with lack of cross-town options as well as low frequency
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of public transit service. Transit routes are generally static in nature,

i.e., they operate along pre-determined routes and at a designed fre-

quency; this service is typically referred to as Fixed-Route Transit

(FRT) [14]. Such fixed-route systems work well when the people

using the transit services are closer to the transit routes; this is typ-

ically seen in densely-populated metropolitan cities [11]. Demand

Responsive Transit (DRT) [14] systems have become a popular

form of public transit in rural and low-demand areas; these transit

systems have flexible pick-up and drop-off locations depending on

the travel demand. In this paper, we are interested in a specific case

of medium-sized cities such as Nashville where addition of fixed

routes in the fixed-route transit is not economically possible and

demand responsive transit systems are inefficient as the demand

in Nashville is higher than the regions (rural areas) where DRT

systems are typically used.

The fixed-route strategy may not work in smaller cities where

the population are spread across a region. People living in locations

not served by the transit network resort to using other forms of

transportation such as personal vehicles or ride-sharing services.

The problem with private transport is that their efficiency to the

travel demand is low, i.e., they carry few people and this results in

traffic congestion due to increase in the number of private vehicles,

used to meet the travel demand [3].

To avoid such traffic congestion, available public transit needs to

be used efficiently, i.e., serve as many people as possible. Moreover,

the existing road networks may not be sustainable with the ever-

increasing travel demand through increased use of private vehicles,

as new roads cannot be built at the same rate of increase in travel

demand. Efficient and reliable use of public transit resources can

help streamline the traffic flow process. Furthermore, they are safer

compared to the use of automotive vehicles in terms of the number

of accidents per passenger mile [9] and also the use of public transit

services makes the people more healthy as it requires for them to

walk/bike to the nearest bus stop [5].

However, typically transit services, are routed through fixed pre-

determined travel stops and pre-determined schedule, while it is

known that the travel demand shows both spatial and temporal

variability, where the number of people using the transit services

appear with the time of day and the geographic locations. In our

previous work [16], we showed that a transit schedule that varies

with seasons is more efficient compared to a static schedule, how-

ever, as discussed in that paper even seasonal variations are not

optimal and we need a more flexible public transit system.

Flexible transportation systems (FTS) [12] can be considered as

a hybrid of FRT and DRT, and are increasingly becoming popular

in regions where DRT and FRT are inefficient. Several forms of FTS

exist varying from near-FRT to near-DRT systems such as Route De-

viation, Point Deviation, Demand Responsive Connector, Request

35



SCOPE’19, April 15, 2019, Montreal, QC, Canada Saideep Nannapaneni and Abhishek Dubey

Stops, Flexible Route Segments and Zone Routes [12]. Depending

on the region and the nature of travel demand, an appropriate FTS

is used. In this paper, we utilize the advantages of FTS, particu-

larly the Route Deviation service, to accommodate the spatial and

temporal variation of travel demand in medium-size cities such as

Nashville. Route Deviation refers to the FTS, where a bus deviates

from its fixed route, to accommodate any passenger or para-transit

requests to pick-up and drop-off at requested locations.

Challenges: Previous literature [10, 13, 14] have studied Route

Deviation-based FTS; however, the bus stops made in the deviated

routes are determined based on the passenger requests and the

local transit authority. Such human-involved decision-making re-

garding the route deviations and flex stops may not be feasible in

the presence of large number of passenger requests as the number

of possible route deviations increases rapidly. In this paper, we

propose an efficient and automated approach based on clustering

and discrete optimization to identify the flex stops and the best

route deviation to maximize the accessibility of the public transit.

Research Contributions: The overall contributions made in

this paper are: (1) Identification of flex bus stops through density-

based clustering, and (2) Computation of the best rerouting strategy

through a discrete optimization to serve as many people as possible

and thus reduce travel congestion, while still serving fixed route

stops identified as critical.

Paper Organization: Section 2 provides the necessary defini-

tions, discusses the issues that need to be addressed and illustrates

them using Route 7 operated by the Nashville Metropolitan Author-

ity (MTA). Section 3 provides the assumptions and discusses the

proposed solution methodology for rerouting public transit under

spatial and temporal variations of travel demand. Implementation

of the solution for Route 7 operated by Nashville MTA is detailed in

Section 4. Concluding remarks and future work follow in Section 5.

2 PRELIMINARIES

2.1 Definitions

Scheduled Route: A bus route between start and end points, with

pre-determined stops, as scheduled by a local transit authority.

Critical bus stops: Critical bus stops refer to the bus stops that

can not be ignored, i.e., buses have to halt at these bus stops. In this

paper, the following bus stops are treated as critical bus stops bus

stops: (1) Bus stops with historical high passenger demand, and (2)

Transfer points, i.e., bus junctions where people change buses to

reach their destinations.

Non-critical bus stops: As the name suggests, these bus stops

can be ignored by the buses when there is no potential boarding

or getting off activity at the bus stops. This activity will be derived

from mobile applications and on-call kiosks at the transit-stops [7].

Flex Route: Flex route refers to a deviated route from the origi-

nal scheduled route in order to be accessible to more people. Flex

route are beneficial as they help eliminate the traffic congestion

caused when the people on the flex route take cabs or ride sharing

services to reach nearby bus stops or their final destinations.

Flex Stops: Flex-stops are new dynamic stops on a flex route

where people can gather and board the bus. This is an on-demand

feature (but not real-time, see the assumptions below in Section

2.2) and works through deviations around the non-critical stops.

Trip: A trip is defined as a bus journey from the start point to

the end point of a scheduled route.

Trip segment: A trip segment is a portion of a trip, which con-

sists of fewer transit stops compared to the overall trip.

Trip Block: A trip block represents a sequence of trips between

the start and end bus stops by the same bus.

2.2 Assumptions

(1) The process of rerouting from the scheduled route does not

occur in real time. The rerouting is done ahead of time, such

as the previous night of any day. This is essential to inform the

public via phones and kiosks about the changed routes.

(2) We assume the availability of slack time at the end point of a

trip.

(3) The departure time at the start point does not change while

the arrival time at the end can change but any delay should be

less than available slack time. The start and end points are also

considered critical stops.

(4) Any extra costs (eg. fuel) that incur due to taking flex routes

are ignored.

(5) We show flexible rerouting of a single bus. In future, the pro-

posed methodology will be extended to simultaneous rerouting

of several buses.

(6) We assume the data regarding the spatial variation of the travel

demand is available. Determination of such spatial distribution

from historical data, mobile application data and census data is

not demonstrated in this paper.

(7) We consider only pick-up of passengers and not their drop-off.

3 PROPOSED REROUTING FRAMEWORK

The proposed methodology for flexible rerouting is performed in

three steps: (1) Discretization of real time, (2) Estimation of spatial

distribution of travel demand, (3) Identification of Flex Stops, and

(4) Rerouting to accommodate flex and critical stops. All the steps

are detailed below.

3.1 Discretization of real time

The temporal variation is considered by discretizing real time into

several time intervals. The length of time intervals is chosen de-

pending on the spatial and temporal variation of travel demand.

We propose two ways for the determination of the length of a time

interval: (1) Time interval, which equals the time taken for one trip,

and (2) Time interval, which represents the time taken to cover a

set of trips. For example, time taken to operate two or three trips.

In the first option, travel demand is estimated for each trip and

accordingly the rerouting is performed. In the second option, an

aggregated travel demand over all the trips is considered within the

time interval, and rerouting is performed for all the trips simulta-

neously. If the travel demand for a given trip is not consistent and

is associated with large variation, then the rerouting results may

not be accurate. An example for a variation in the travel demand is

when some of the trip’s travel demand is spilled over to the adjacent

trips. One reason could be when people are transferring buses; a

delay in the incoming bus can result in a person missing the bus and

thus reducing the travel demand. Thus, the second option can be
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comparatively robust under variations of travel demand across adja-

cent trips, when compared to the first option. This paper considers

the second option and equal time intervals of 1 hour.

3.2 Estimation of travel demand

As mentioned in Section 1, the spatial distribution of the travel

demand is available for further analysis. One of the possible ap-

proaches for the determination of the spatial distribution of the

travel demand is by using the historical Transit-HUB [15] applica-

tion data, and transaction data from the local transit authorities. The

Transit-HUB application is similar to the Google Maps application

but also provides real-time delay information for an accurate trip

planning. We can use the historical travel patterns; which shows

that the travel demand in a region is not a deterministic quantity

but stochastic in nature. Therefore, the travel demand within a

particular region can be represented through a probability distribu-

tion. Such probability distributions at several spatial regions may

be used to estimate uncertainty in the spatial distribution of the

travel demand.

3.3 Identification of Flex Stops

Given the spatial distribution of the travel demand, we identify the

spatial locations with high travel demand around them and flex

stops are introduced near them. In this paper, the flex stops are

identified by performing clustering over the spatial distribution of

travel demand. We use the DBSCAN, a density-based clustering

algorithm [4]. The DBSCAN algorithm requires two inputs: the

maximumdistance between the points (ϵ) and theminimumnumber

of points,minPoints, required to form a cluster. A brief introduction

to the DBSCAN algorithm is provided below.

Given a set of data points, we start by choosing an arbitrary data

point. We identify the number of data points that are within the ϵ
distance from the chosen point. If the number of data points (includ-

ing itself) is less than theminPoints, then that point is consider as an

outlier. If the number of points within the ϵ distance is greater than
the minPoints, all such points including the original point form an

initial cluster. The initial cluster is then recursively expanded in size

by checking if any points inside it have atleast minPoints around

them within the ϵ distance. If the cluster cannot be expanded any

further, the same process is repeated choosing another point, which

is not considered before. Several distance measures are available

to compute the distance between two data points, but the most

commonly used measure is the Euclidean distance [18]. The output

from the DBSCAN are the density-based clusters; the centers of the

clusters are calculated and treated as the flex stops. We perform

density-based clustering for a given spatial demand within a given

time interval.

3.4 Rerouting to serve flex stops

Figure 1 shows the scheduled route with critical and non-critical

bus stops along with possible flex routes. The flex stops indicated

in Figure 1 refer to the cluster centers obtained from the clustering

of spatial travel demand in Section 3.3. The notation for several

variables used in the problem formulation and their description are

provided in Table 1.

Figure 1: Conceptual scheduled route and possible flex route

options by substituting non-critical bus stops for flex stops

Table 1: Variable Notation and its description

Variable Description

Rik Scheduled route between consecutive critical stops Ci and Ck ,
k = i + 1.

T (Ci ) Departure time at a critical stop Ci .
T s (Ci ) Scheduled departure time at a critical stop Ci .

F
j

ik
Flex route segment for Rik . Superscript j represents index of flex
route

Pik Represent either a segment of scheduled route or a flex route

D(Pik ) Number of people served on the segment Pik
C(Pik ) Additional congestion caused when a segment Pik is not catered

t (Pik ) Actual time taken to travel a segment Pik
t s (Pik ) Time taken to travel a segment Pik according to the schedule

d (Pik ) Delay caused due to a route Pik compared against the schedule
route Rik , d (Pik ) = t (Pik ) − t s (Rik )

t (s) Slack time available at the end point

ψ Radius of travel demand that a bus stop can cover

G1(D(Pik )) Loss Function associated with the people not serviced by the public
transit in segment Pik

G2(d (Pik )) Loss function associated with travel time delay in a segment Pik
Nc Number of critical stops, including the start and end points

ηi Threshold departure time delay value at the i th critical stop

pi Threshold probability regarding the departure time delay at the

i th critical stop

Given the notation for several variables, the optimization prob-

lem for choosing the optimal flex route can be derived by solving

the following optimization problem.

Min

Nc−1∑
i=1

E
[
w1 ×G2(d(Pik )) − (1 −w1) ×G1(D(Pik ))

]

subject to Pr
( Nc−1∑

i=1

d(Pik ) ≥ ts
)
< γ

T (Ci ) > T (Cj ), ∀i > j

Pr (T (Ci ) −T s (Ci ) ≥ ηi ) < pi , i = 1 · · ·Nc

The overall minimization function is a weighted combination of

two loss functions: (1) people served, and (2) time delay in taking

a scheduled route or a flex route. The weights for the combina-

tion of the two objective functions (w1) and (1 −w1), and the cost

functions associated with the number of people not served and

time delay may be obtained from the local transit authority. The

weights (w1) and (1 − w1) represent the importance of the two
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objective functions; higherw1 represents more emphasis on mini-

mizing the travel delays while a lowerw1 value represents places

more emphasis on serving people. Since the travel demand and

time delay are uncertain, we optimize their expectation values. The

optimization is carried out under three constraints: (1) probabilis-

tic total delay constraint, (2) Ordering of the critical stops, and

(3) Time delay at the critical bus stops on the scheduled route. γ
refers to the threshold probability value (0 ≤ γ ≤ 1), which can be

provided by the local transit authorities. Lower values of γ corre-

spond to tighter constraints while higher values of γ result in loose

constraints. The second constraint stipulates that the sequence of

critical bus stops remain the same as in the original schedule. The

third constraint specifies that the new departure time at the critical

stops should be within desired delays of the scheduled departure

time. ηi , i = 1, 2, 3 · · ·Nc represents the affordable departure de-

lay at a critical stop and pi , i = 1, 2, 3 · · ·Nc represents threshold

probability, i.e., the probability that the actual departure time at a

critical stop is greater than the scheduled departure time. Larger

time gaps between the scheduled and flex-route times can result in

disruptions of people’s travel plans.

To compute the number of people served, we define a parameter

ψ , which represents a radius around a bus stop (critical, non-critical

or flex). If a person lies within the ψ distance, then the person is

assumed to be served by the bus. Given a particular route (either

scheduled or fixed), the number of people that are served can be

computed, using the estimated spatial distribution of travel demand,

the flex stops andψ . An estimate of the time delay along a sched-

uled or a flex route is obtained using the Google Maps or equivalent

applications. The delay prediction is usually a point-value but in

reality, the actual delay may not match the predicted delay. There-

fore, we assume that the delay prediction is quantified through a

probability distribution. We use a lognormal distribution as it has

been previously used for modeling the travel time distribution [8].

The optimization is subject to a probabilistic constraint with respect

to the overall time delay, which is the aggregation of time delays

over all the individual segments. The optimization analysis helps

decide whether a flex route need to be taken as against a segment

the scheduled route. In case there are multiple possible flex routes,

the flex route that minimizes the overall loss function is selected.

Effectiveness of the Rerouting process: The next step after

performing the rerouting analysis is to decide if the new flex route

needs to be operated in place of the scheduled route. Rerouting

a scheduled route involves notifying people regarding the new

flex route. Frequent changes to the scheduled routes can cause

discomfort to regular passengers; therefore, we use the percent

increase in travel demand served on a flex route to quantify the

effectiveness of the rerouting process. If DF and DS represent the

total travel demand served on the flex and scheduled routes, then

the percent increase (denoted as PD ) in travel demand served on

the flex route is calculated as PD =
DF−DS

DS
× 100%.

We then define a threshold percentage Δ, and if PD > Δ, then
the new flex route is operated else the scheduled route is operated.

The threshold Δ can be determined by the local transit authorities.

In this way, we determine if a flex or scheduled route needs to be

operated. The optimization formulation described above considers

the uncertainty in travel demand and travel time, and performs

Table 2: Departure delay parameters at the critical stops

Critical stop ID ηi (min) pi
1 0.5 0.01

2 2 0.01

3 3 0.01

4 6 0.01

rerouting under a probabilistic constraint in the overall travel delay.

A common approach for solving such stochastic optimization prob-

lems is through Monte Carlo Sampling, where for each possible

flex route option, multiple realizations of the travel demand and

travel time are generated to evaluate the probabilistic objective and

constraint functions. For the sake of demonstration, we present the

implementation and results below considering only one realization

of travel time and travel demand.

4 IMPLEMENTATION AND RESULTS

Problem Parameters: For simplicity, we do not consider any

losses due to additional travel delay (G2(d(Pik )) in Table 1). Not

considering the loss due to additional travel delay signifies that

we are completely committed to accommodating as much travel

demand as possible under the slack time constraint.

We considered real transaction data occurring on several trips

taken on Route 7 between 9 am and 10 am, on every Monday in

October 2016. The γ parameter, which represents the delay thresh-

old is set to 1. This represents a stringent requirement that the

additional travel time should always be less than the available slack

time, which is assumed to be equal to 7 min. In this example, we

have four critical stops (including start and end stops), as shown

in Fig. 2. The departure delay parameters (ηi and pi , i = 1 to 4) are
given in Table 2. The parameter, Δ, that represents the threshold
increase in travel demand is assumed to be 10%.

Estimating Travel Demand:We use a combination of transac-

tion data from Route 7 and other nearby bus routes (21 bus routes in

total) also going to Music City Central available from the Nashville

MTA. For illustration, we assumed that 50% of travel demand to the

Music City Central use private transit modes (driving their own

vehicles or ride-sharing services), while the remaining use public

transit. Note that these numbers represent the proportions of travel

demand around Route 7, and do not represent the entire travel char-

acteristics in Nashville. The steps for simulating the travel demand

used for rerouting analysis is given below:

(1) Data pre-processing: The original transaction dataset ob-

tained from Nashville MTA had timestamp, vehicle, location

and route, but lacks some necessary information, such as

direction, trip, and stop. To extend the original transaction

data and obtain complete information of each transaction,

we pre-processed the dataset by linking the time stamp with

static schedule of Route 7. This helped us obtain detailed

information of every trip on Route 7.

(2) Data filtering: Transaction data is considered as valid travel

demand if the transaction happens within 1 mile from the

route and the transaction time is within a period that is

between 30 minutes before the time window starts and 30

minutes after the time window ends. MongoDB [6] was used

to store the transaction data as geospatial objects, which

enabled quick geographical query.
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Figure 2: Clusters of the travel demand obtained from DB-

SCAN clustering, their cluster centers(flex stops), and criti-

cal stops.

(3) Demand estimation: In order to better estimate the overall

travel demand, the original transaction data that happened

near bus stops is used to generate isotropic Gaussian blobs.

We doubled the transaction data to get the total travel de-

mand following the above mentioned assumption that the

transaction data represents half of the total travel demand,

and then distributed those points to nearby areas following

Gaussian distribution.

Identification of Flex Stops: After obtaining the overall travel

demand, we standardized the travel demand data by removing the

mean and scaling to unit variance. Density-based clustering using

DBSCAN was then performed to identify flex stops. The different

clusters, their centers (flex stops) and critical bus stops (obtained

from original Route 7 schedule) are shown in Figure 2. As discussed

in Section 3.3, the DBSCAN algorithm has two main parameters - ϵ
andminPoints . Based on the generated travel demand distribution,

we experimentally set the parameters (ϵ andminPoints) to 0.12 and
10 respectively. As some flex stops fell in locations not reachable

by the public transit, the closest locations on the major roads were

considered as flex stops.

Determination of the Best Flex Routes: Given the locations

of flex and known critical stops, we obtain the best possible flex

route by solving the discrete optimization problem in Section 3.4.

Generating possible flex routes: Several valid flex routes, i.e., the

routes that satisfy the constraints are generated. The generated flex

routes contain all the critical bus stops from the original route and a

subset of identified flex routes enabled by the slack time constraint.

Using scheduling data from Nashville MTA and Open-Trip Planner

(OTP), we created a travel time matrix for all critical and flex stops

Figure 3: Optimal flex routes showing the critical and flex

stops, along with scheduled route, for three trips on Route 7

departing at 9:01 AM, 9:22 AM and 9:42 AM.

and estimate the total travel time for each possible stop sequence

combination.

Selecting the routes with most demand coverage: For a bus route in

a selected time window, there are usually more than one bus trips

that depart in the same direction. In our example of Route 7, there

are three trips from Hillsboro High School to Music City Central

between the considered time window (9 am and 10 am). Since the

choice of flex routes for one route will affect the simulated demand

coverage of its next trip, we perform rerouting of all three trips

individually but evaluate their new routes altogether to maximize

the travel demand served by the buses. In order to decide which

bus trip should be changed from the original route to a flex route,

we use the Genetic Algorithm (GA) framework. In this context, an

individual/chromosome (these two words will be used interchange-

ably), which represent a sample in the GA, is a solution of how flex

routes are scheduled for the bus trips within a time window, and

a population is a set of solutions. Each chromosome is an array

of integers, of which each integer is the index of a selected flex

route for a trip. Particularly, the index 0 is reserved for the original

route, which means a trip will not be changed to any flex route. For

example, [0, 10, 4] represents that three trips in the time window:

(1) the 1st trip still follow the original route, (2) the 2nd trip uses

the 10th flex route, (3) the 3rd trip uses the 4th flex route.

Details of the genetic algorithm (GA) runs are given below. We

chose the initial population size for GA algorithm to be 50. The

fitness function is travel demand coverage of each individual solu-

tion. The parameterψ , which is the radius of travel demand that

a bus stop can cover, determines the number of people served by

the bus at each stop is assumed to be equal to 0.25 mile. We use

uniform crossover [17] to exchange the flex route choices between

individuals. The crossover rate is assumed as 40%. In each iteration,

20% of route choices in a population will be randomly changed to

use another path. We set two conditions for termination of the GA

algorithm: (1) if the number of iterations is larger than 100, (2) if the

best demand coverage has not increased in the most recent three

iterations.

Simulation Results: As mentioned above, there are three trips

within the considered time interval that depart at 9:01 AM, 9:22
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Figure 4: Travel demand coverage with iteration of the opti-

mization process

AM and 9:42 AM [1]. We first estimate the travel demand around

the route, identify flex stops for each demand cluster, and finally

determine the best flex routes running the genetic algorithm. The

best flex route choices for these trips are illustrated in Figure 3.

Figure 4 shows how the travel demand coverage changes in each

iteration when the genetic algorithm runs. The original routes only

cover travel demand of 285 people, and our flex route solution gets

an coverage of 379 people, which is a 32.98% improvement.

5 CONCLUSION AND FUTUREWORK

This paper proposed a flexible rerouting framework for the public

transit to better serve the spatial and temporal varying travel de-

mand. The temporal changes in the travel demand are analyzed by

discretizing the real time into uniform time intervals and within

each interval, rerouting considering spatial variations of travel de-

mand is considered. The bus stops on the scheduled routes are

categorized are critical and non-critical stops, the latter are the

stops with traditionally low demand and can be ignored. Instead,

the buses are rerouted to high-demand areas to accommodate more

people and thus, reduce the congestion on the roads, caused when

those people resort to private transit modes due to inaccessibility

to the public transit. Rerouting requires identifying the geographic

locations with high travel demand and this is achieved through

clustering. Density-based clustering using DBSCAN algorithm is

used to estimate high travel demand areas and the cluster centers

are identified as flex stops. If clusters with high densities are iden-

tified away from the scheduled transit routes, then the buses are

rerouted through the flex stops. Rerouting of public transit incurs

additional travel time, which needs to be less than the available

slack time at the end of the scheduled route.

The proposed methods were demonstrated for Route 7 operated

by the Nashville Metropolitan Transit Authority (MTA). The travel

demand was estimated using the real-world transaction data ob-

tained from the Nashville MTA. This work considered rerouting of

a single bus under varying travel demand. Future work should con-

sider multiple buses operating in the same geographic region, and

perform a multi-agent flexible rerouting analysis. We should also in-

vestigate game theory approaches such as providing incentives for

taking public transit [2] towards reaching sustainability in traffic

flow networks. This paper used percent increase in travel demand

as a metric for quantifying the effectiveness of rerouting process.

We will also use the total miles walked by all people and also num-

ber of miles per person as a metric for analyzing the effectiveness

of rerouting process.
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