IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 13, 2018, accepted December 19, 2018, date of publication December 28, 2018,
date of current version January 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2890005

A Self-Organized Task Distribution Framework
for Module-Based Event Stream Processing

SUNYANAN CHOOCHOTKAEW ', HIROZUMI YAMAGUCHI, (Member, IEEE),
AND TERUO HIGASHINO, (Senior Member, IEEE)

Graduation School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
Corresponding author: Sunyanan Choochotkaew (sunya-ch@ist.osaka-u.ac.jp)

This work is supported in part by “Japan-US Network Opportunity 2 (JUNO2),” the Commissioned Research of National Institute of
Information and Communications Technology (NICT), JAPAN, and JSPS KAKENHI 26220001.

ABSTRACT Tackling bottleneck and privacy issues of cloud computing, we attempt to push event stream
processing down to devices which are currently empowered to compute and communicate at the edge of the
networks. To accomplish that, we propose a self-organized task distribution framework that is composed of
multiple brokers collaborating through our module-based event stream processing engine called EdgeCEP.
Our system request is event-dependent specified in a brand-new event specification language; still, the event
is stored and processed by the relational database. We newly formulate the problem of self-organized task
distribution subjective to preferable constraints of computation and communication. The solution for each
broker to find individual optimal decision is to apply tabu search with flow-based greedy move regarding
pre-ranking flow table. Many experiments are conducted to study and evaluate the performance of the
proposed system. The simulation shows that the proposed flow optimization outperforms the naive algorithm,
concretely, 2-times more tasks getting processed and successfully delivered within the same fixed period.
The proposed edge-centric method achieves data traffic 7-times less than the cloud-centric approach. The
prototype engines have been deployed and evaluated in the real environment.

INDEX TERMS Stream processing, complex event processing, edge computing, self-organized task

distribution, Internet of Things (IoT).

I. INTRODUCTION
Toward the world of smart things, superabundant flows of
information require processing to discover the hidden mean-
ing behind. Since the 1960s, Cloud Computing comes a long
way as a promising solution to handle the exponentially rapid
growth of information. Pushing away the heavy computation,
such as video stream processing, to the cloud server has
become common sense nowadays. Meanwhile, the bottleneck
problems due to the limitations of network links and security
issues of cloud services significantly cause a high concern.
At the same time, the progress of tiny computation modules
is opening the door to break through the limitation of local
devices in the past. Such modules now yield a moderate
capability to execute complicated processing. User-attaching
devices such as smartphones are not only acting as con-
sumers but can also be information providers. On the other
hand, the consumers are not limited to those user-attaching
devices but could be automatically-actuating modules to con-
trol the things like alarm, light, and door. According to [1],

45% of 1oT information will be stored, processed, analyzed,
and acted at, or close to, the network edge. Due to delay
tolerance and security requirements, many applications pre-
fer such kind of environment, for example, security-camera
searching for missing child, smart home, smart city, con-
nected health collaborative edge [2], [3]. However, to the best
of our knowledge, each of edge computing applications has
been developed for only one specific purpose, which is not
for general cases. A concrete example is a cooperative video
processing in multimedia IoT system from the framework
proposed in [4]. With that framework, the whole video will
be transferred to the central server even though the camera
has enough capability to complete the task itself.

To unlock the capability of drawing computation power
down to the edge-device layer, we propose a self-organized
task distribution framework for module-based event stream
processing on edge called EdgeCEP. Through this paper,
edge refers any computing and network resources along
the path from producing sources to consuming destination.

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission. 6493

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6291-7330

IEEE Access

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

This framework mainly adopts the concept of Complex
Event Processing (CEP) that allows devices to be pro-
grammable with a serial of module functions, not only a
set of logic as found in [5]-[8]. Furthermore, we get rid of
the device naming issue as found in the famous module-
based tools, like StreamBase [9], Spark [10], Storm [11],
and WSO2 [12], by using event-dependent specifications
instead of device-dependent requests. Since the process plan
of device-dependent approaches is composed of the source-
processor streaming flow graph, a static topology of sources
and processors is preferable. In contrast, event-dependent
approaches do not require any global registration. An event in
the request represents any of those event streams, no matter
it comes from which devices. It allows processors of the
system to be mobile and dynamic, preferable characteristics
of devices at the edge. To achieve that, we design a hybrid
module-based processing framework with a new supportive
language combining advantages of the conventional-logic
specification and the module-processing functionalities.

We consider a system architecture as shown in Fig. 1.
Presuming specialists (event composers) contribute on com-
posing event definitions uploaded to the online repositories,
subscribers or system users refer to those definitions for gen-
erating subscriptions on their system to specify knowledge to
be processed as well as responding action. The subscriptions
are, then, dispatched to the on-site networks. Over there, mul-
tiple EdgeCEP devices collaboratively sense, process, and
act accordingly to the assigned subscriptions via machine-
to-machine (M2M) communication. The processed results
may return to the cloud storage for monitoring or even fur-
ther extending to provide real-time context-aware services as
well-designed in [13]. Optimizing cost over such distributed
devices should be done differently from general processing
distributing systems. Such systems usually assume equity of
battery power and energy-consumption balancing is mainly
focused [14]. Some edge devices can be stationarily con-
necting to the power supplier. However, some cannot do that
due to the mobility application. In the latter case, energy

FIGURE 1. EdgeCEP architecture.

6494

contribution becomes a concerning factor. An example of
patient anomaly detection and report is illustrated in Fig. 2.
In this example, the heart rate (HR) sensor on the patient’s
smartwatch, unlike an alway-powered camera, cannot per-
form complicated processing itself. Our idea is to allow data-
generator source, HR sensor, to leave processing task to
any capable nodes, like a smart bed, along delivering flow
to the destination, doctor tablet. Correspondingly, we have
newly formulated a flow-based optimizing function over two
following assumptions. Firstly, all edge devices can pro-
vide preferable constraints of computation and communica-
tion contribution regarding its battery limitation. Secondly,
devices will be determined as available when it has the poten-
tial to finish the task within a specific deadline.

FIGURE 2. Illustration of framework application.

To observe limitation and present advantages of the pro-
posed framework, we have carried out a scaling simulation.
Additionally, to confirm practicality, we have tested our
EdgeCEP prototype with real environmental deployment. We
installed the prototyped EdgeCEP to the Intel Edison running
on top of batman-adv mesh networks [15].

The organization of the paper is as follows. The first section
gives the background of Complex Event Processing (CEP).
The second section focuses on the task distribution on CEP.
Summary of the main contributions is also here. The third
section describes the proposed module-based event stream
processing engine (EdgeCEP). The fourth section is about
the proposed task-distribution framework, problem defini-
tion, and solution. The last section reports and concludes the
experimental results.

Il. COMPLEX EVENT PROCESSING (CEP)

Processing for continuous and timely information has been
well-surveyed previously in [16]. In the survey, authors scru-
tinize 34 related works from 1988 to late 2010 and classify
them into three groups: (i) Active database, (ii) Data Stream
management, and (iii) Complex Event Processing or CEP.
The first group often has scalability issues caused by the
growth of rule numbers and the frequency of event arrival

VOLUME 7, 2019

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

IEEE Access

rates due to persistent storages and, finally, is almost obsolete
now. Meanwhile, the second and third groups are widespread
use and investigated until now. Through many great efforts of
researchers dedicated so far, the principles defined in [16] are
unable to classify those two groups anymore. In other words,
the term CEP is no more limited to the notification event
data models but also covers the stream-based processing
tools that support complex event detection as well. In this
section, we categorize the related works by the processing-
request specification. The first group is CEP with device-
dependent specifications. This group requires the name of
flow-producing devices, either unique IDs or device contexts
such as type and location for making a processing request.
The second group is CEP with event-dependent specifica-
tions. This group uses a pre-defined event name and attributes
instead.

A. CEP WITH DEVICE-DEPENDENT SPECIFICATION

A device-dependent specification commonly applies tuple-
based processing approaches. All methods in Data Stream
management group classified by [16] fall into this category.
All methods in Data Stream management group classified by
[16] fall into this category. A producing source flows a stream
with pre-defined attributes stored in the relational database.
The simplest, mostly generally-used request specification is
query representations refer SQL, for example, CQL [17].
There are three fundamental steps to process the contin-
uous flows: (1) windowing (2) processing relation tables,
and (3) producing streams from result relations. To window
the flow, the source name and available attributes must be
pre-defined. Most operations that deal with high-relevant
data such as video processing requires comparatively low
latency. On top of that, some engines have been introduced
specifically for a complicated computational technique such
as machine learning [18], [19]. To the best of our knowl-
edge, the existing stream-based software such as Stream [17],
Apache Spark Streaming [10], Apache Storm [11], TIBCO
StreamBase [9], and WSO2 [12], are deployable only on
a centralized node, or clustered nodes with static topol-
ogy. Unfortunately, most of them have no concern about
environmentally-adaptive stream processing to cope with
dynamicity of computational/network resource availability
due to new query injection, node mobility, and so on.

B. CEP WITH EVENT-DEPENDENT SPECIFICATION

The earliest form of event-dependent specification is a logi-
cal statement with and/or conjunction of multiple events as
found in [5]. Then, the natural event-specification language,
e.g. TESLA, comes with more flexibility in [6]. All methods
in Complex Event Processing group classified by [16] fall
into this category. They adopt pattern matching and content
filtering along with highly-expressive event specification.
Instead of advanced setting as in the stream-based model,
producing sources can be discovered by advertisements in
runtime. Due to this nature, the event-based model allows
fully-distributed deployment. They are usually driven by

VOLUME 7, 2019

rules [5], [6], [20] or automata [7], [8]. Formerly, the most
classic method is PADRES [5], proposed as a rule-based dis-
tributed Pub/Subsystems by mapping subscriptions to rules,
and publications to facts. We can straightforwardly decom-
pose composite subscriptions if composited events are com-
ing from both sides of a binary tree. Still, in this kind
of engines, only conjunction and disjunction operations are
available. Next, RACED [6] widens expressiveness of the
subscription by TESLA language. It makes complex event
detection available in a distributed manner, and a master-
slave subscription protocol is proposed to reduce the number
of non-potential packets. Adaptive Content-Based Routing
in General Overlay Topologies is, then, proposed in [21] to
handle cyclic and dynamic topology. Toward IoT, the efficient
rule engine tools aim for large-scale, real-time systems like
smart building systems are proposed in [20]. It uses the
minimal perfect hash function for filtering and dynamic adap-
tion scheme for blocking non-potential rules. Furthermore,
the significance of event derivation certainty is addressed and
concerned about designing an efficient and accurate rule-
based reasoning mechanism in [22]. However, this kind of
engines usually suffers from a spatiotemporal operation, such
as aggregation, due to a great cost of computation and mem-
ory space compared with the relational-based approach.

C. TASK DISTRIBUTION PROVISION ON CEP

Many proposals attempt to distribute task executions over
multiple nodes called brokers to overcome a scalability issue.
It is known as multiagent system [23]. In the stream-based
architectures, process plans are usually in the form of an oper-
ating function graph, considered as module. In reference [24],
the processing is generalized into two levels of analytics. For
the event-based model, most of the processing in distributed
systems are assumed to be straightforwardly decomposable
(i.e., conjunction, disjunction). Reference [7] states a gen-
eral framework of task distribution concerning link usage
and computational effort under-addressed distribution and
detection policies. However, to the best of our knowledge,
the existing policies rely on routing protocols and adopt
only nearest-to-source heuristic [5], [6], [25]. We consider
them as hop-based approaches. Meanwhile, since most of
the stream-based engines leave decisions to the users, there
are a few research that proposes autonomously distributed
mechanisms. One of them is [26], which optimizes operation
placement from the given queries. A few state-of-art research
have focused on a task mapping and scheduling considering
resource limitations in wireless sensor networks. Reference
[27] formulates a general algorithm. Some cost functions are
regarding energy consumption [14], [28]. Reference [29] pro-
poses a buyer-seller computational task-assignment frame-
work for wireless sensor networks with an auction-based
mechanism, similar to the handover algorithm in [30]. Most
recently, reference [31] utilizes workload estimation from
[32] together with operator-profiling for parallelizing. Ref-
erence [33] handles unordered arrival of multiple unsyn-
chronized input sources by newly defining slack-ready tuple

6495

IEEE Access

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

to provide a deterministic solution while keeping real-time
requirement satisfaction. Reference [34] maps workload par-
titioning and scheduling in clustered Storm [11] which is
stream-based engine into the graph-partitioning problem to
come through the high performance of resource utilization
which reducing network loads. To support an in-situ expan-
sion of IoT-service requests, [35] proposes an adaptive scale-
out mechanism. However, none of the above proposals con-
siders delivery cost from processors to destinations, which
is an additional concern for distribution on edge networks.
Also, they did not mention the challenges of input sharing
and concatenating reference.

D. CONTRIBUTION SUMMARY

This paper is an extension of work earlier presented in [36]
with significant enhancement. The primary contributions of
this work are summarized as follows.

Firstly, we design a hybrid module-based event stream
processing framework aiming for self-organized IoT edge
devices over wireless networks. The proposed architec-
ture uses the event-dependent specification like logic-based
approaches [5]-[8] but stores and processes with relational
databases like general module-based approaches [9]-[12].
It obsoletes the assumption of source knowledge in stream
processing while remains the use of relational storage for
efficiently processing high-relevant data in a self-organized
manner. To achieve this, we especially define a new event
specification language to express relational operation, and
design and develop a broker-based middleware for its dis-
tributed execution together with place-and-play API to sup-
port customized devices and functions.

Secondly, we newly formulate and solve cost-optimized
task assignment and delivery over resource constraints.
Unlike previously-proposed task distribution on clusters of
fair processors, existing energy-based optimizing function,
as found in [14] and [28], may not be appropriate due to
the variety of energy contribution capability on distributed-
processing units like edge devices. Thus, we define a problem
of task assignment and delivery plan to optimize the commu-
nication cost under node and link constraints and propose a
fully distributed solution. Also, we introduce a dependence-
grouping solution to handle an input sharing and concatenat-
ing referencing in multiple request environment.

Thirdly, we conduct multiple levels of experiments to study
and evaluate the proposed method. The most basic layer
is a unit test on the computation module. We test on Intel
Edison, a tiny computer module designed for IoT devices.
In the aspect of distribution logic, we perform a prelim-
inary logical experiment in the theoretical scenario and a
large-scale simulation in the nursing-home use case com-
paring with centralized and naive distributing approaches.
We also implemented the EdgeCEP prototype and deployed
it into Intel Edison for a smart room application enabling the
advanced batman protocol [15] for reliable ad-hoc network
connection.

6496

Ill. EdgeCEP: MODULE-BASED EVENT STREAM
PROCESSING ENGINE ON EDGE COMPUTING

EdgeCEP is a hybrid event processing engine that is support-
ive for fully-distributed collaboration of processing on the
edge of networks. Referring an architecture shown in Fig. 1,
the devices with EdgeCEP are considered as brokers. There
are only three significant conditions to be a broker: (i) com-
putation power (ii) network connection (iii) programmability.
Brokers could be a tiny computer module like Intel Edi-
son or a high-efficiency server. Commonly, they are proces-
sors. Still, if some sensing modules are attached, they are
additionally considered as sensors. On the other hand, if they
install some actuating modules, they can play actors role as
well. All brokers are connecting with a self-organized routing
protocol like batman [15]. Some of them may be Internet
gateways. All brokers collaborate to complete all requests,
called subscription. The subscription is composed of the ways
to detect, analyze, and generate an output as well as an actu-
ator and an action to be activated. It is written in our newly-
defined supportive language and committed by subscribers
(system users) and synchronized with all connecting brokers.
It will process the corresponding sensing flows and deliver
the outputs to the corresponding actuators to drive a specified
action in response.

A. EdgeCEP-SUPPORTIVE LANGUAGE

Inspired by TESLA [37] and CQL [17], we newly define an
expressive event specification language combining syntax for
relational operations. A general structure is represented as
below:

define Name(Atty, ..., Atty) [aggr] [every T]
< pre >*
[case n:]
detect Pattern(content|, ..., contenty,)
assign attry =f, ..., attry = fp; f = F(content)
[consuming eq, ..., ep; e; € content]
< post >*
where* Atty = g1, ..., Atty, = gn; g = Glattr)
[group by (location|srcid))

*only for aggregation specification (aggr)

To create a specification, there are three steps to follow:
(1) address the name and attributes of events at define key,
(2) state interest pattern of events in terms of a set of contents
at detect key, and (3) declare how to produce an output
from the detected events at assign key. Note that, we use the
term “‘content” to denote conjunction of events with values
that satisfy the specific conditions. For instance, the content,
“Temperature.val > 40°C”, refers a “Temperature” event
with a condition “val > 40°C”. So, when a sensor detects
temperature more than 40°, the generated event will be fil-
tered in this content group. The second and third steps can be
done more than one time to define multiple interest patterns
in some specifications using the keyword case. To illustrate,
we assume a pattern of tracking, which corresponds to a
Tracking sensor deployed at the border between two-sided
locations and provides that the direction equals to “0”” when

VOLUME 7, 2019

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

IEEE Access

someone moves from right to left and ““1”” when moves from
left to right as presented in Fig. 6. Using this, the Moveln
specification for an event when someone moves in one loca-
tion can be defined as below. With a similar specification,
we can define the MoveOut event in the opposite way.

define Moveln(location,timestamp)
case 0:
detect Tracking(direction = 0)
assign location = Tracking.left,
timestamp = Tracking.timestamp
consuming Tracking
case 1:
detect Tracking(direction = 1)
assign location = Tracking.right,
timestamp = Tracking.timestamp
consuming Tracking

We might use the same contents to produce multiple events.
Among those productions, some need to apply them just
once to avoid replications. The key consuming is applied for
specifying which contents will be used just once and then
consumed. The keyword time-window, every 7, is used to
designate time to produce in a periodical manner.

For aggregation, there is an aggregation keyword aggr
to perform assignment and produce an event specified in
the define clause after the event name and attributes. If
the specification is aggregation type, it must specify both
< pre > and < post > parts. In the same way as the
map and reduce method, the former part is supposed to be
distributed detecting and assigning. Meanwhile, the latter part
is for concluding the final results. < Pre > part is same as
the basic specification mentioned above. < Post > part has
only one key, where, to declare the value-assigning function
from < pre > to event attributes. The keyword time-window
is mandatory to specify a period of < post > executions.
The following example is the specification of people counts in
each location for every 2 minutes. Note that, group keyword
is used to represent grouping attributes such as location, srcid
at runtime and outer stands for the outer join.

define PeopleCount2Mins(location,count,timestamp) aggr
every 2 mins

< pre >

detect outer Moveln and outer MoveOut

assign location=group.location,
count=Count(Moveln)-Count(MoveOut),
timestamp=Max(MoveOut.timestamp)

< post >

where location=group.location, count=Sum(count),

timestamp=Max(timestamp)
group by location

B. BROKER DESIGN

There are three modules included in the EdgeCEP bro-
ker: Content Filterer, Task Processor, and Coordinator (see
Fig. 3). When an event arrives, the receiver will enqueue
them to the matching queue of Filterer to filter interest
events. Meanwhile, Coordinator periodically calculates the
distribution plan for task assigning and offloading, and an
event notifying using historical records from Content Filterer

VOLUME 7, 2019

FIGURE 3. Broker component.

and Task Processor. Controlled by the calculated distribution
plan, Task Processor activates only assigned tasks and Con-
tent Filterer forwards the rest to appointed nodes.

1) TASK PROCESSOR

Task in our work is the processing work that must be accom-
plished by the forked process named agent. A task can be
either definition task or subscription task. We specify the
former by the language stated in Section III-A beforehand and
available as references. The later is requested by users with a
slightly different format, as in the example below. In concrete,
the specification of subscription tasks has no attributes and
requires a subscriber, User I, with requesting sequence (seq),
1, and an actor, AirController.

Subscription seq 1 from User1 to AirController

detect last People Count2Mins(count > Q)
as PeopleCount and
AvgTempSMins(avg < 20 or avg > 25)
as AvgTempOut within 5 mins
from PeopleCount

assign humid=AvgTempOut .avg,
location=group.location,
timestamp=PropleCount .timestamp

consuming AvgTempOut

group by location

A task forks one agent for each case to allow parallel
detecting and assigning operations. For example, according
to the task Moveln, two agents will be forked to execute
individual cases. One detects Tracking event with direction =
0 while the other detects an event with direction = 1.
An agent works as follows. Firstly, it detects a pattern using
a state sequence of subscribed contents specified in detect.
The example shows subscription to send an event when the
average temperature over 5 minutes out of comfortable range
(avg < 20 or avg > 25) after detecting some people within
the last 5 minutes. Note that, detecting some people is referred
by the content People Count2Mins(count > 0) of the previous
example event PeopleCount2Mins. The sequence is denoted
by the keywords within and from. According to this example,
there are two states in sequence, PeopleCount and AvgTem-
pOut, where PeopleCount comes before AvgTempOut. Each
state owns relational storage to memorize the relevant events.
Note that, we use JDBC driver for SQLite connection. Sec-
ondly, an agent will periodically check if interesting-pattern
sequence reaches final state regarding the time window (7) in
define specified by the keyword every. If it reaches the final

6497

IEEE Access

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

state, an agent will generate an event according to the assign
state. Note that, if time window is not specified, the agent will
check final-state reaching for every time that new relevant
event inserted. Outputs of definition tasks are pushed back
to Content Filterer while the outputs of subscription tasks are
delivered directly to the destination broker.

2) CONTENT FILTERER

Content Filterer adopts the publish-subscribe mechanism for
mapping the general form of an incoming event to Interest
Content before streaming to corresponding agents in Task
Processor. For better understandability, we give an example
subscription to detect faces of people entering the room writ-
ten below:

Subscription seq 1 from User1 to Gateway

detect Moveln and Video within 5 mins from
Moveln

assign face=FaceDetect(Video),
location=group.location,
timestamp=DMoveln.timestamp

consuming Video

group by location

The cooperation between Content Filter and task agents
in Task Processor is illustrated in Fig. 4. Correspond-
ingly to the example, the main subscription task calls the
Moveln task. Agents to process Moveln task will be also
activated. One agent subscribes for the event “Tracking
(direction = 0) and the other agent subscribes for the event
“Tracking(direction = 1)” to the content filterer. It derives
the identifier, which is composed of source id, location, and
event type (any of them might be non-specified), and the
corresponding content with checking conditions from the
specified pattern. For instance, correspondingly to FaceDe-
tection subscription, an identifier (-, Entrance,Moveln) refers
any Moveln-type events from any sources in Entrance loca-
tion. An asterisk symbol stands for non-condition. If the iden-
tifier already exists in the hash table, the link of that identifier
object will append only the new content with checking condi-
tions. If not, a new identifier object will be added to the hash
table with the link starting with that corresponding content.

FIGURE 4. Example of content filter and task processor cooperation.

6498

When an event comes, it will extract a set of all possible
identifiers that contains at least one composition and compare
the hash value. If the identifier object is matching, it will next
compare the content condition. If the event content is also
matching, it will publish (i.e., enqueue the processing queue)
to one or more subscribing agents. In this fashion, the filterer
acts as a host with multiple sources. To achieve that, we apply
a minimal perfect hash to filter irrelevant events.

3) COORDINATOR

Coordinator performs the optimization algorithm to deter-
mine a distribution plan that minimize resource utilization
while keeping the specified constraints satisfied using statisti-
cal record of flows and knowledge about subscription, broker,
and networks from Content Filter, and statistical record of
execution from processing and aggregating agents in Task
Processor. The distribution plan is applied to control for-
warding behavior of Content Filter and processing behavior
of Task Processor. The assigning part in task-distribution
plans can affect the neighbor decision on local optimization.
It sends this assignment part to the neighbors as information
as well. The communication flow is depicted in Fig. 5. Our
approach is not only based on distance heuristics, like nearest
to the source or shortest path to destinations but also considers
resource constraints and input flow volume (arrival rate).
Fig. 6 shows an example of a simple distribution plan to cut
face images from video stream when someone moved into
the interest location. In other words, the collaborating task
is to process the subscription given in the above subsection
(IlII-B.2 Content Filter). Regardless of all constraints,
the tasks, Moveln and Face detection, are both assigned by the
above heuristics. The particular problem definition and the
solution are described in Section I'V.

FIGURE 5. Coordinator communication flow.

C. EdgeCEP API

To allow any devices connected to the EdgeCEP engines,
we develop a Java API, Event Driver, for users to interpret
the sensing streams from their devices to the event entity.

VOLUME 7, 2019

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

IEEE Access

FIGURE 6. Task distribution: face-recognition example.

It can refer to the existing definition or form a new one. The
connecting brokers must update the new implemented classes
to execute. They have to suspend the processing and re-build
the EdgeCEP program.

1) EVENT DRIVER

The driver class for connecting sensors to the EdgeCEP is an
extension of the abstract class, Driver, by implementing the
following functions.

Driver(String driverName, String eventType)
boolean init()
Object[] getValues()

The constructor must specify the name of the driver to be
referred and the producing event type. An initial function, init,
is called at starting state. A getValues will repeatedly run until
interrupted in the separate thread.

2) PROCESSING FUNCTION

Beyond standard functions, any Java application is eligible to
be included in the EdgeCEP as an extension by just extending
a class called Function. There are two abstract-functions to
implement:

Object execute(List rypes, Object[] values)
Type getDefaultType()

An execute function will be activated when producing the
events by inputting an array of memorized values and their
corresponding type. A getDefaultType function is to refer the
output type.

IV. SELF-ORGANIZED TASK DISTRIBUTION FRAMEWORK
The proposed framework is composed of multiple broker
nodes that are collaborating on processing via self-configured
and self-organized ad-hoc networks. The global knowledge
of user, i.e. subscriptions and event definitions stored in XML
format (see example in Fig. 7), are supposed to be syn-
chronized. Each broker will periodically update its decision

VOLUME 7, 2019

FIGURE 7. Example of Moveln event definition stored at broker.

FIGURE 8. The 3" broadcast Info message from node 6.

and broadcast the Info message for every specific window
time. The info message contains the information that is nec-
essary for others to calculate the distribution plan, as will
be addressed in the problem definition below. We give an
example of info message in Fig. 8. In this section, we for-
mulate a task distribution problem and introduce a sub-
optimal searching algorithm to solve in general as well as
procedures to deal with aggregation and task-dependency
issues.

A. TASK DISTRIBUTION PROBLEM DEFINITION

As defined above, fask represents composite definition and
subscription. Subscription tasks are always active while def-
inition tasks will be active only when any subscription tasks
refer to them. A distribution plan is composed of (i) the
assigning matrix, designating which processing task is going
to be active on which broker node, (ii) the offloading matrix,
showing paths from the stream-source broker to the cor-
responding assigned broker, and (iii) the notifying matrix,
showing paths from the processor to the destination actuator.
In this part, we formally give a problem definition to min-
imize resource utilization on edge networks concerning the
total flow volume from sources to destinations of all active
tasks under resource and consistency constraints.

6499

IEEE Access

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

Problem 1 (Global Task Distribution): Consider the edge
network of a set of bi-directional connecting broker nodes, B.
Presume global knowledge: (1) distance matrix H = (hgps) €
ZIBIXIBIXIBI a5 hop count from node ¢ to node s via node p,
(2) link-constraint matrix L = (I) € 7Bl as link capacity of
node g, and (3) node constraint ® = (6,) € 7Bl as processing
capability of node q.

Given a set of processing tasks, T, with a specified des-
tination node for each task, denoted by D(T), and a gener-
ated content set, C. Let matrix A = (a;) € {0, 1}ITxIC]
denote mapping of task i (z; € T) to content j (¢; € C).
Suppose statistical predictions for each node g to provide
(D) @ = (@) € ZIBIXICl a5 the input flow volume of c;,
Q)Y = Wiy € ZITIXIBI a5 the output flow volume of 7; and
Q)2 = (wig) € ZITIXIBI a5 the execution cost of 7;. We define
assigning matrix Xtxpxp, corresponding offloading matrix
YT« BxBxB, and notifying matrix Ztxpxpxp as follows.

Presume a routing protocol to provide a set of nodes in an
momentary optimized path from any node g to any node ¢
when applying assigning matrix X, denoted by Path(X, ¢, t).

XTxBxB * Xigt

1; if task i of node q is entrusted to node t
0; otherwise

YrxBxBxB * Yigst

1; if xigp = 1 and node s € Path(X, g, t)

0; otherwise

ZTxBxBxB : Zigst

I; if xigr = 1 and node s € Path(X, t, D(t;))

0; otherwise

Define a coefficient matrix E = (eyyy) € {0, 1}|BIxIBIx|BIx|C]
to specify whether the node s is in the path to deliver content ¢;
from source node g to assigned node ¢ or not, formulated as:

[T|
1; a;; > 1
E: eqsij = Zi Yigst - dij
0; otherwzse

Therefore, the problem is to find X with the following
objective function and constraints.

IC| T
Minimize Z Z Z Z egsijPqi + Z Zigst Vig
qgeB seB teB | j=1
subject to
(1) resource constraints:

IT|
VqEB inqq CWig = '9q

i=1

IC| IT|
VseB Z Z{Z eqstjPqi + Zthst‘ﬂzq} <l

geB teB j=1

(2) consistency constraints:
VieTvq,seB;q;és Xigs = Xiss

6500

To solve the problem above, all brokers need to obtain the
up-to-date global knowledge about topology and link/node
capacities. Since such information is often unachievable in
practical, we additionally define another problem for individ-
ual nodes to solve with limited local knowledge as below.

Problem 2 (Local Task Distribution): Given that each
node g with processing capacity 0,; maintains a set of local
members G = {q} U {s; hygs < r}, where r is a vicinity-
coverage degree. Presume a routing protocol to provide (1) a
set of nodes in a momentary path from host node to any
local member t € G when applying assigning matrix X,
denoted by Path/(X, t), and (2) the number of hops to reach
the destination of each task via each local member, denoted
by hoptodestg. We define the local distribution plan (X', Y’,
Z') as follows:

, , 1; if task i is entrusted to node t
X TXx, =
TxG - it . .
0; otherwise
v v 1; if x;, =1 and node s € Path’'(X,1)
ToxRgxG - Jist = 0; otherwise
T; .
P hoptodest,"; if x/, =1
TxG - %it = \n. .
0; otherwise

Correspondingly, we define the local coefficient matrix £ =
(esU) € 0, 11GIXIGIXICI ¢ S/ = 1l if local node s is in the path to
offloading-target node ¢. Otherwise, ¢}, = 0. Provide local
knowledge at stable state of s € G — {q}: (1) residual link
capacity I}, (2) residual processing capability 6; (3) assigning
plan X* = (x}) € {0, 1}ITXIGl when G* denotes the local-
member set of node s.

Similarly to Problem 1, we assume statistical method to
provide (1) &’ = (qb]f) € ZI€! as the momentary input flow
volume of ¢;, 2) V' = (Y/) € Z/Tl as the expected output
flow volume of 7;, and (3) Q' = (w}) € Z/T! as the average
execution cost of t;. The momentary input flow is accumu-
lation of flows originated at the current node and flows for-
warded by the other nodes. Since a path from assigned node
to the task destination is not always determined, the maxi-
mum link-capacity increment at any node s € G — {g} is

a summation of known-path input flows (3, Z‘Sll sz]¢ §)

and unknown-path output flows (ZteG Zml(l —x;)¥/). For

momentary consistency, if we assign the task i tonode ¢t € G,

the node ¢ must already decide to execute task i (xi’t =1).
Therefore, the problem is to find the above-defined X’ that

IC Tl

Minimize Y 1Y " el) + ZZ,,@&

teG | seG j=1

subject to
(1) node constraints: Y;cg Zl | Xl 0l <6/
c
(2) link constraints: Veg— ZIGG{ZJ ll €y

T
ZI ll(l _xm)w } = lA/

(3) momentary consistency constraints:
max(l —x/,, xl) =1

VieG—{g}VieT

VOLUME 7, 2019

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

IEEE Access

B. TASK DISTRIBUTION SOLUTION

The task distribution problem can be reduced to the General-
ized Assignment (MINGAP) problem by fixing all tasks with
a single input from only one source with multiple constraints.
According to [38], MINGAP is equivalent to a Generalized
Assignment Problem (GAP). The partition problem of a
given set of positive integers into two equal-sized subsets
can be reduced to GAP when assigning weight-fixed items to
two just-enough equal-capacity knapsacks. Correspondingly,
the above-defined problem is NP-hard. Since optimal solu-
tions usually consume too much time to retrieve, we propose
amethod to find a sub-optimal solution from local knowledge
regarding Problem 2 enhanced with pre-estimation ranking
working as the following explanation.

Every node s periodically broadcasts its status, contain-
ing constraints (/; and ;) and assigning matrix (X]). For
every specific period of time or when interrupted by task
update, each node g executes the tabu-based searching algo-
rithm with knowledge of tasks (T = (C, A, D)), candi-
date nodes (G), statistics (stat = (', ®’, ¥)), constraints
(constraint = (l‘éeG—{q}’ e XS/eG_{q})), and routing proto-
col (RoutingProtocol = (Path’, hoptodest)), as simply writ-
ten in Algorithm 1, to update its new assigning matrix. Tabu
search allows users to limit the searching round to avoid too-
much resource consumption. We additionally apply a greedy
selection algorithm for a better sub-optimal solution in such
round-limit search. Because the Parh function requires X',
the exact flow volume cannot be computed before know-
ing that. However, we compute an estimated flow volume,
WrxG : wir, when assign a task 7; to a specific node ¢ € G by
using the basic assigning matrix (X?%5¢), which is to assign
all tasks to the host node, with the following function.

IC|
Wi = (Z a,j¢;)|Path’(Xbase,)| + ¥lhoptodest,
=1

For each searching-round, it will find the change of the
task that can validly get minimum flow volumes applied for
the next search. For each task i, it will try changing the
assignment to node ¢ in ascending order of the estimated
volume (Wrxg). If the changed X' (i.e., X™ in the pseudo
code) is in the tabu list, it will continue trying the next
order. If not, it will compute the validity and volume by
the formulation in Problem 2 and add that change to the
tabu list.

To avoid loop-forwarding, at node g, the task i cannot be
offloaded to node ¢ if it meets all of the following conditions
in the same time: (1) node ¢ currently offloads task i to itself
(2) previous X used to offload task i to node ¢. If there is
no feasible solution in the iteration, we adapt the algorithm
to choose X’ that does not violate loop-forwarding condition
and has the minimal total violation cost (3, ¢ Violate!”'),
where

Violatets2 Violaz‘et<I>
— t+ s
0; L

Violate!"®! =

VOLUME 7, 2019

Algorithm 1 Pseudo Code of Local optimization

For an arbitrary node g:

Input: T,G,stat ,constraint ,Routing Protocol

Output: X

X%’“Xsé : xil;ase = {1|t = g, O|otherwise};

WTXCG tWwi = _

(XS] ag)|Path! (XP35¢, 1)] + ! hoptodest;"s

minglubal <« 00}

tabu < {};

xeur o Xbase;

Xmin <« Xhase;

while X" = pull and !stopCondition () do

min'ocdl « oo;

fori =1to |T| do

Xtmp <« COpy Xcur;

queue <— enqueue Wi,];

while gueue # ¢ do

sort queue ascendingly;

first <— dequeue queue;

if X" = 0 then

set Xl.ttmp =1 and Xits”‘lsl;t =0;

if X" ¢ tabu then

add X" to tabu;

valid < validate X" with

constraint;

volume < find objective value of

Xtmp;

if valid A (volume < min'°®) then
Xnext <« Xtmp;

local _ yolume:,

min
end
break;

end

end
end

end

XCLH” <« Xnext;

if min'ocd < minslobal then
Xmin <« xeur.

global local .

min <~ min ;

end

end
X = Xmin;

In the aspect of computation complexity, we use n, k, y
and p that denote the number of tasks, the number of nodes,
the bounded number of iterations and possibilities to move
for each iteration respectively. The complexity of the pre-
calculating program is O(npk). The complexity of the greedy
move depends on volume estimation is O(pk). Accordingly,
the complexity of our algorithm is O(y(npk +pk)) = O(ynpk)
for each of individual nodes. Meanwhile, the complexity of
centralized full-searching is O((pk)xk!).

6501

IEEE Access

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

C. AGGREGATION HANDLING PROCEDURE

For aggregation tasks, we cannot determine the results until
knowing all relevant data collected from all brokers. In this
paper, we use the term, aggregation task, to stand for such
a kind of tasks. In common, the aggregation task needs to
perform on a specific node. However, in distributed systems,
the aggregation is usually divided into two steps. The first
step is to distributedly execute while the second step is to
finish at one node. In the similar way, we allow distribution
by pre-post specification, mentioned in Section III-A. In the
similar way, we allow distribution by pre-post specification,
mentioned in Section III-A. To decide the header node for
the second step, we exploit a blind bid protocol that leads to
only one agreement by evaluating the values of all candidates
from topology and identification. We suppose to produce the
aggregation result periodically. The header node will make
a request and wait for all replies with a specific timeout to
execute post-processing.

D. TASK-DEPENDENCY HANDLING PROCEDURE

There are some cases that more than one subscription require
processing on the same event streams. For clearer understand-
ing, we give an example of the system running the three
following subscriptions: Stranger Notification to notify when
unrecognized persons enter the house, Members’ Entrance
Record to keep records when recognized persons, i.e.g,
a member of the house, come back and Anomaly to detect
anomaly behavior in the house. We can construct a directed
acyclic graph (DAG) to show the dependency of activating
tasks, including subscription tasks and referred to definition
tasks as shown in Fig. 9. Roots are atomic events while leaves
are subscription tasks. Edges start from referred events (par-
ents) or definition tasks to referring to tasks (children). Since
the Stranger Notification and Members’ Entrance Record
subscription tasks require (or depend on) the Face Label task,
they are both children of Face Label. In other words, they are
sharing the dependency.

FIGURE 9. Example of task dependency.

Assigning tasks without considering the dependency might
cause these two following problems: (1) early consumption
and (2) ambiguous passing. For the former, one task might
early consume a required event of other tasks. For example,
when a node with the Face Label stream decides to execute

6502

Stranger Notification task but assign Members’ Entrance
Record task to a neighbor node. Since the Face Label stream
will be consumed for the Stranger Notification task, Mem-
bers’ Entrance Record task will never be inputted. The latter
is how to forward the event that is subscribed by two or more
tasks assigned to different nodes.

Without replication, which coming with extra resource
consumption, we introduce a dependency-grouping tech-
nique ensuring the dependency-sharing tasks to execute on
the same node. Applying the task distribution solution in
subsection IV-B, we consider an assigning and passing sets
of tasks instead of individual task i. Starting with fixed task
members assigned to itself, it constructs an assigning set. It
further includes the dependency-sharing tasks of those fixed
members. The dependence-sharing tasks include (1) parents,
(2) parents’ one-hop children (siblings), and (3) dependence-
sharing tasks of parents and siblings. In the example given
in Fig. 10 (left), with fixing a Face Label task, Face (parent)
is included in the same dependency-aware set. Also, Video
and Body, which are Face’s parent and sibling, are included
too. An example for two fixed members of assigning set is
presented in Fig. 10 (right). The assigning restriction deals
with the early-consumption issue.

FIGURE 10. Example results from the dependency-grouping technique
(Right: an assigning set by fixing {Face Label}, Left: an assigning set by
fixing {Face Label, Act Label}).

To avoid the ambiguous passing issue, we group the tasks
that are not in the assigning set into multiple sets for further
passing. Tasks will be in the same passing set if they are
relatives regardless of hops inside the assigning set, named
descendants. Accordingly, if the task i offloaded tonode #; €
G and i offloaded to node #; € G are in the same passing set,
they must be passed to the same node (Vser, y;m] = ygzm).

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We evaluate our proposed system in four perspectives: (i) unit
design comparing the performance of processing between the
conventional rule engine and proposed relation-based engine,
(i1) task distribution and delivery algorithm in the preliminary
experiment, (iii) scalability of distribution solution by large-
scale simulation in the theoretical scenario and practical nurs-
ing home scenario, and (iv) utility of prototype program in the

VOLUME 7, 2019

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

IEEE Access

FIGURE 11. Computation time of aggregation task on Intel Edison.

real environment. Through all experiments, we fixed the stop
condition for searching at 20 rounds.

A. UNIT TEST

To affirm our broker design, we develop two simple engines,
one with our proposed relation-based processing component
and the other with the JESS rule-engine [39]. Both engines
are installed on the same Intel Edison board and run a sim-
ple aggregation task finding an average of temperature data
within last x seconds defined as following:

define MonitorAvgTemp(avgTemp : FLOAT)
from Temp() range x secs
where avgTemp = avg(Temp.val)

As expected, with a variation of iteration numbers from
different range x, the result in Fig. 11 shows that a pure rule-
based approach needs extremely-expensive computation cost
for a high number of iterations. Meanwhile, the cost of the
combination approach remains low even if the number of
iterations is high. At 1500 iteration numbers, an average com-
putation time of rule-engine approach is 16.9 times higher
than the relation-based approach.

B. PRELIMINARY EXPERIMENT

To observe the radius factor of local knowledge, we imple-
ment JAVA program of the proposed flow-based algorithm
and test under the controlled scenario as presented in Fig. 12.
We omit the link constraints in this experiment to reduce the
complexity of the communication path.

With different producing rates of the source nodes, includ-
ing Stair, In-building, Mobile and Monitor, total flow vol-
umes per time slot are summarized in Table 1. The results
confirm that available knowledge, reflected by the radius of
the vicinity group, affect the distribution decisions as well as
the total flow volume.

In particular, there are three interesting findings. Firstly,
insufficient knowledge not only leads to an extremely-large
flow volume but can also cause an infinite loop due to the

VOLUME 7, 2019

FIGURE 12. Logical test scenario.

TABLE 1. Summary table of total flow volume for various radius at each
producing-rate scenarios.

Radius
Producing rate 1 2 3 4 5 6
100 73,440 41,280 41,280 41,280 41,280 41,280
150 27,623 27,515 26,555 26,555 26,555 26,555
200 16,670 16,670 16,950 16,670 16,670 16,670
250 10,824 10,824 10,824 10,824 10,824 10,824
300 5,650 5,650 5,650 5,650 5,650 5,650

firstly-step wrong decision. For instance, as seen Fig. 13,
where producing rate = 100, some tasks are forwarded in a
cycle path when only one-hop knowledge is available (r=1).
As a result, the number of total flows continuously increases
over time. On the other hand, when expanding the knowledge
to two-hops, the whole processing can reach the best stable
state (i.e., when the total flow volume equals to the total
flow volume from full knowledge without fluctuation). Sec-
ondly, the better solution needs a larger total volume at early
steps because it assigns the node farther from source for the
better result in the overall path. According to Fig. 14 when

6503

IEEE Access

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

FIGURE 13. Logical test: particular result when producing rate = 100.

FIGURE 14. Logical test: particular result when producing rate = 150.

FIGURE 15. Logical test: particular result when producing rate = 200.

producing rate = 150, the best solutions gain larger flow
till running step 8. Thirdly, the larger radius is not always
a better decision. According to the result in Fig. 15 when
producing rate = 200, radius = 3 obtains inferior solution
due to incomplete knowledge while the smaller-radius runs
achieve better solution because of fortunate random-pushing.

As shown in the trend line (Fig. 16), the higher radius
causes the larger overhead packets with slow increment.
Thus, the possibility to achieve the best solution must be
traded off with the overhead downside. For example, in the
test scenarios, beyond the radius that covers the resource-
abundant server (radius = 4), the best solution could be
guaranteed.

6504

FIGURE 16. Overhead trends over various radius.

C. SIMULATION

1) THEORETICAL SCENARIO

In the theoretical scenario, we assume six types of nodes to
produce the data flow as shown in Table 2, where Q(T}) is the
benchmark time to complete task 7, for one input. The fixed
and blank nodes will be arranged in square grid topology
while the mobile nodes will be moving around all covering
areas by Random-waypoint mobility model with the random
speed from 2 to 20 m/s as shown in Fig 17.

TABLE 2. Node types in theoretical scenario.

Type Data Size (KB) | Sampling T (s) Capability (us)
fixed S 10 1 Q(T)) x 100%+€
fixed M 10 0.5 2 X Q(T>) X 50%+¢€
fixed L 500 1 Q(T3) x 100%+¢
mobile M 10 0.5 2 X Q(T4) X 50%+¢€
mobile L 500 1 Q(Ts) x 50%+e
(blank) 0 0 | 2XxQT>) % 100%+e€

FIGURE 17. Theoretical scenario.

The benchmark (£2) is computed as shown in the
equation (1). In this simulation, we set CPI and Clock Rate
as 2.5 and 500 MHz, respectively.

CPI x Intruction Countr,
Clock Rate
We assume five tasks to process the input from each fixed

and static nodes. The reduced ratio and instruction count
depend on the data size that they produce as shown in Table 3.

QTy) = ey

VOLUME 7, 2019

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

IEEE Access

nResult 1st Run
70000

70000

nResult 2nd Run

nResult 3rd Run

. Fo . Fo 120000 + . Fo
. He I HC . He
£0000 |- £0000 [Irn RN

50000

40000

30000

20000

10000

1 2 3 4 3
Task No.

FIGURE 18. The number of delivered result to the destination node of each tasks for three simulation runs of dense scenario

(n=102).

50000

40000

30000

20000

10000

100000 -

80000 }

E0000

40000 -

20000

2 3 4 3
Task No.

FIGURE 19. Flow volume distribution in dense scenario(N = 102) after 45-minutes.

TABLE 3. Tasks in theoretical scenario.

Task No.

TABLE 4. Average result of dense scenario (n = 102) from three random

runs.
Task | Input Node | Reduced Ratio | Instruction Count
T fixed S 0.5 1000 Approach Avg T, | Avg Ty | Avg nResult
T, fixed M 0.5 1000 Flow Optimization (FO) 1.60 6.41 183511.4
Ts fixed L 0.1 10000 Highest Computation power (HC) 1.14 7.28 1073444
Ty mobile M 05 1000 Random Neighbor (RN) 1.05 6.93 112185.7
Ts mobile L 0.1 10000

To control the total flow affected by each task, we ran-
domly assign a type to each node by considering the evenly
total flow generated. Thus, the minimum numbers of each
type are 50, 25, 1, 25, and 1, respectively, to generate equal
500 KB/s. Destinations for the tasks are random for each
running. We set the window time of assignment recalculation
and simulation time as 5 and 30 minutes, respectively.

We compare our proposed decision algorithm, flow opti-
mization, (FO) with another two greedy algorithms for a
node to choose the offloading node when it reaches the com-
putation capability limit. The first method is to choose the
broker with highest computation power left (HC). The second
method is to choose the random broker node (RN).

We start with the minimum 102 nodes and randomize
destination set for each of three simulation runs. Fig. 18
shows the task results delivered to its specified destination
(nResult) after 30 minutes. Regardless of the position of desti-
nations, the proposed decision algorithm always provides the
higher throughput in term of the number of delivered results.

VOLUME 7, 2019

As presented in Table 4, although the proposed method FO
has events processed after the compared approaches (see
time to be processed (7))), it delivers the highest amount of
processing results with the fastest delivering time (7). In par-
ticular, for the dense scenario, where every node produces
one input stream and resources are not sufficient, the distri-
butions of incoming flows recorded at the last window after
45-minutes running of all nodes are illustrated as in Fig. 19.
Note that, it does not include the self-generated flow. We
can observe that our proposed flow optimization (FO) and
choosing highest computation power left (HC) can distribute
the flow volume across all nodes more efficiently than choos-
ing random broker node (RN). Since there is no sufficient
resource until some nodes detect a loop and no choice but do
the processing, the nodes always forward the large-volume
flows.

Then, we reduce the density of flow volume by increasing
the number of nodes to 200, 500 and 1000. Fig. 20 presents
the total flow volume after 45 minutes. Our proposed algo-
rithm works best in all cases, especially in the dense scenario.

6505

IEEE Access

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

Flow Volume (N = 200

Flow Volume (N = 102]
—*—FO0

5e+08 1.2e+09
_ = " —HC
§4e+05 ;; Te+09 / \\%74‘; = ;7 Ak
% ser0sl P~ L S e8| | e
£ / N £ /
% / ¥ _g 6e+08 ’r
2 zes08 1 2 4es08 |
2 1e+08 /,’ £ 20408 ,'/
0% o
0 2 4 6 8 0 2 4 6 8
Simulation Run Simulation Run
Flow Volume (N = 500) Flow Volume (N = 1000)
3e+09 6e+09
= - —+|—*—FO
T 2.5e+09 T 5e+09
z z e
; 2e+09 / ; 4e+09 ’r RN
§ 15409 [| _E 3e+09 | |
2 tesonf/ 2 20409 f | FIGURE 22. Large-scale smart nursing home scenario (6 = 25 K).
3 / 3 /
L 5e+08/ T 1e+09 |
ol ot
0 2 4 6 8 0 2 4 6 8 TABLE 5. Data flow statistics from large-scale simulation.
Simulation Run Simulation Run
FIGURE 20. Flow volume after 45-minutes. Method #Packets (N) Bytes (KB) Loss Rate (%)
Flow based 11,833 17,366.6 3.28
Hop based 11,838 17,373.9 4.54
Communication-constraint Violation Count Computation-constraint Violation Count Centralized 84’ 501 1 24, 128.3 6.68
o 600" Il Fo
[He [He
Jan [
500
hop-based approach, it also outperforms on flow volumes

3000

400

Count

2000

Count

200

1000
100

0

102 1000

200 500

o
Number of Nodes (N)

102 1000

200 500
Number of Nodes (N)

FIGURE 21. Average constraint-violation count of all scenarios.

In the aspect of constraint violations, the proposed approach
significantly reduces the violation count for all cases as

shown in Fig. 21.

2) NURSING HOME SCENARIO
In this experiment, we use the Java program from Sub-
section V-B and deploy the plan results in the Scenargie
simulation with a smart nursing home scenario consists of
three buildings: A, B1, and B2, as depicted in Fig. 22.
Input flows are 1.5KB/min from an environmental sensor,
1.5KB/s from a wearable device, and 6.75MB/s from a video
streamer. The simulating system runs four requests: (i) Gen-
eral surveillance sending to a local server (ii) Face detection
on Building A sending to Internet gateway (iii) Average
environmental information sending to an air flow controller
for each floor (iv) Heart-rate pattern detection sending to the
nearest nurse tablet. In this scenario, we first evaluate our
offloading-node selection algorithm (flow-based) to nearest-
to-source heuristic approach (hop-based) and all-to-gateway
approach (centralized). Results at stable state are summarized
in Table 5. The proposed method produces data flow about
7-times lower to the centralized approach. Comparing to the

6506

and loss rate. To evaluate our proposed distributed assign-
ment mechanism, we compare its collaborating overhead,
a broadcasting message of the node status, to that from
the centralized-assigning approach. We summarize results
in Table 6, where cover flood, guarantee flood, and optimal
flood refer to flooding to all nodes, maximum hop to reach the
server, and minimum hop that provides the minimal result as
a cover flood, respectively. The total number of packets in
the distributed approach is higher than the centralization in
general. However, the packet size of the centralized approach
is much larger respective to the content numbers. Further-
more, the simulation scenario also shows that the total size
of overhead packets from the centralized assigning is larger
than the distributed approach with cover flooding.

TABLE 6. Collaborating overhead from large-scale simulation.

Assigning Approach #Packets (N) Bytes (KB)
Distributed Cover flood (Hop=11) 958 92.0
Guarantee flood (Hop=9) 827 79.4
Optimal flood (Hop=1) 31 4.0
Centralized Server pushing 131 139.0

D. REAL-ENVIRONMENT DEPLOYMENT

In this experiment, we deployed the prototype system to six
Intel Edison placed in the laboratory with sixteen temperature
and humidity sensors, eight tracking sensors, and one camera
as depicted in Fig. 23. The video camera flooded twenty
of 216 x 144-size frame per second. The temperature and
humidity sensors sensed every one minute.

At starting state, five atomic definitions and five composite
definitions are loaded into the system. Atomic definitions
are Temp, Humid, Tracking, and Video for temperature
event, humidity event, tracking event, and video-frame

VOLUME 7, 2019

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

IEEE Access

FIGURE 23. Real-environment scenario.

FIGURE 24. Deployed devices: temperature-humidity sensor, tracking
sensor, and intel edison module.

TABLE 7. Subscription 1 - out-range average temperature when some
people stay.

Subscription seq 1 from Userl to AirController
detect last PeopleCount2Mins(count > 0)
as PeopleCount and
AvgTempSMins(avg < 20 or avg > 25)
as AvgTempOut within 5 mins
from PeopleCount

assign humid=AvgT empOut.avg, location=group.location,
timestamp=PropleCount.timestamp

consuming AvgT empOut

group by location

event, respectively. Composite definition are AvgTempSMins,
AvgHumid5Mins, Moveln, MoveOut, and PeopleCount2Mins
for event of average value for last 10 minutes in a spe-
cific location of temperature, event of average value for last
10 minutes in a specific location for humidity, event when
someone comes in a specific location, event when someone
get out from a specific location, event to count people in a
specific location for every 2 minutes, respectively.

In runtime, there are three subscriptions requested by
user 1 as followings: (1) Out-Range Average Temperature
when some people stay (Table 7), (2) Out-Range Average
Humidity when some people stay (Table 8), and (3) Face
Detection when someone comes in (Table 9).

The results of two-hours run with 10-minutes time-window
are concluded in Table 10. We notice that the second and
third subscriptions, as well as, referred definition tasks are
mainly executed at the destination-nearest broker due to
aggregation overhead while the first subscription performs

VOLUME 7, 2019

TABLE 8. Subscription 2 - out-range average humidity when some people
stay.

Subscription seq 2 from Userl to AirController
detect last PeopleCount2Mins(count > 0)
as PeopleCount and
AvgHumid5Mins(avg < 30 or avg > 50)
as AvgHumidOut within 5 mins
from PeopleCount
assign avg=AvgHumidOut.avg, location=group.location,
timestamp=PropleCount.timestamp
AvgHumidOut
location

consuming
group by

TABLE 9. Subscription 3 - face detection when someone comes in.

Subscription seq 3 from Userl to Gateway

detect Moveln and Video within 5 mins from Moveln

assign face=FaceDetect(Video), location=group.location,
timestamp=Moveln.timestamp

consuming Video

group by location

at the source-nearest broker. In the aspect of performance,
the summarized results also present that the broker 1 and 2
gain 25% higher communication cost due to aggregation
cost and information-exchange overhead. At the same time,
communication costs on the rest brokers are reduced at least
60% from the base cost, especially video stream from the
broker 6 to 4.

VI. POTENTIAL IMPROVEMENTS

Our proposed approach still has several points that need to be
improved. There are three of them that I would like to mention
here. Firstly, the current version of our prototype does not
allow users to customize the quality of the service. Although
users can specify the demands of resource usage limitation,
when those demands could not be satisfied, all violations are
valued equally. Some edge networks prefer communication
loss than overload computation. For example, in the sensor
networks on pedestrians of a smart city with very-limited
battery power, the monitored information is large but insignif-
icant. Some may have no problem with computation power
supply. Still, communication must be reliable such as smart
hospital systems. To make a decision, we consider the Multi-
Criteria Decision Analysis (MCDA) as one of the potential
approaches to the solution [40].

Secondly, as stated in Section IV, there is much real-time
information required for computing the distribution plan. The
current implementation straightforwardly uses the historical
records. In other words, we assume the uniform distribution
of arrival. Our system might combine with the arrival work-
load modeling module [32] to deal with various kind of data
distribution. It fits the past-incoming records to the standard
distribution and estimates the potential flow volumes before-
hand as applied in [31].

Thirdly, even if edgeCEP allows users to extend new
functions, it still requires re-building to apply them. Also,
the memory of some devices is so limited that cannot even
store a big reference function classes. One possible solution

6507

IEEE Access

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

TABLE 10. Average flow volume (bytes per window) from two-hours run of real-environment deployment (¢ = 0.1 s, / = 100 KB/s).

Flow-based Cost
ID | Tasks Base Cost | Output Flow Aggregation Cost Overhead Total | Reduction Ratio
1 *PeopleCount, *AvgTemp, *AvgHumid 9,201.4 659.3 4,255.3 1,988.9 11,312.9 0.8
Subscriptionl, Subscription2, Subscription3
2 PeopleCount, AvgTemp, AvgHumid, Subscription] 2,950.0 0 796.8 1,987.8 3,826.7 0.8
3 PeopleCount, AvgTemp, AvgHumid, Subscriptionl 9,010.4 0 756.6 1,989.0 3,869.5 2.3
4 PeopleCount, AvgTemp, AvgHumid, Subscriptionl 11,995.2 294 772.6 2,092.7 4,396.3 2.7
5 PeopleCount, AvgTemp, AvgHumid, Subscriptionl 5,996.6 0 756.2 1,988.7 3,847.8 1.6
6 PeopleCount, AvgTemp, AvgHumid, Subscriptionl 422.5M 294 796.7 1,988.7 4,646.6 90,923.4

* header of aggregation task

is to load an operation code on-the-fly by keeping just only
class-owner node and class property. The code-offloading
mechanism has been developed in many ways as found in
BOINC [41], and Tasklets [42].

VIl. CONCLUSION

This paper has introduced a self-organized task distribution
framework for module-based event stream processing (Edge-
CEP). The EdgeCEP is a general complex event processing
engine that combines the advantage of an event-dependent
specification, along with efficient tuple-based processing by
pseudo-source mechanism employing publish-subscribe and
content matching techniques. We newly define a supportive
event-specification language enabling relational operations.
We introduce an optimization problem of the task distribution
plan. The proposed framework applies tabu search with a
flow-based greedy move to find the sub-optimal solution. The
solution computation is periodically executed independently
at each node and shared with other necessary information
for others to compute the plan. We observe and evaluate the
proposed system in many levels and experiments including
large-scale simulation and real-environmental deployment.
The simulation in the theoretical scenario shows that the
proposed flow optimization outperform the trivial algorithms.
The average delivering time is almost 1 and 0.5 seconds
faster than choosing the highest computation power left and a
random broker, respectively, in dense networks. The proposed
method can process almost 2-times results more than the
others at the end of the simulation. Furthermore, it can reduce
total packets 6.6 times from the centralized approach in the
practical nursing home scenario. We successfully deployed
a prototype engine over an ad-hoc wireless sensor network
composed of Intel Edison modules in the real environment.
The running result presents decreasing communication cost
in general.

REFERENCES

[1] Cisco Internet Business Solutions Group, “The Internet of Things: How
the next evolution of the Internet is changing everything,” White Paper,
Jan. 2011.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646, Oct. 2016.
P. G. Lopez et al., “‘Edge-centric computing: Vision and challenges,” ACM
SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, pp. 37-42, 2015.

C. Long, Y. Cao, T. Jiang, and Q. Zhang, “Edge computing framework for
cooperative video processing in multimedia IoT systems,” IEEE Trans.
Multimedia, vol. 20, no. 5, pp. 1126-1139, May 2017.

[2]
[3]
[4]

6508

[51

[6

—

17

—

[8]
[9]

(10]

(11]
[12]
[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

(24]

[25]

G. Li and H.-A. Jacobsen, “Composite subscriptions in content-based
publish/subscribe systems,” in Proc. ACM/IFIP/USENIX Int. Conf. Mid-
dleware. New York, NY, USA: Springer-Verlag, 2005, pp. 249-269.

G. Cugola and A. Margara, “RACED: An adaptive middleware for com-
plex event detection,” in Proc. 8th Int. Workshop Adapt. Reflective Mld-
dleware (ARM), New York, NY, USA, 2009, pp. 5-1-5-6.

P. R. Pietzuch, B. Shand, and J. Bacon, “A framework for event com-
position in distributed systems,” in Proc. ACM/IFIP/USENIX Int. Conf.
Middleware. New York, NY, USA: Springer-Verlag, 2003, pp. 62-82.

G. Cugola and A. Margara, “Complex event processing with
T-REX,” J. Syst. Softw., vol. 85, no. 8, pp. 1709-1728, Aug. 2012,
doi: 10.1016/j.js5.2012.03.056.

(2015). StreamBase. [Online]. Available: http://www.streambase.com

M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, ‘“Discretized
streams: An efficient and fault-tolerant model for stream processing on
large clusters,” in Proc. 4th USENIX Conf. Hot Topics Cloud Com-
put. (HotCloud), Berkeley, CA, USA, 2012, p. 10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2342763.2342773

Storm: Distributed Realtime Computation System. Accessed: Jul. 6, 2017.
[Online]. Available: http://storm.apache.org/

WSO?2. Accessed: Jul. 6, 2017. [Online]. Available: http://wso2.com/

A. G. De Prado, G. Ortiz, and J. Boubeta-Puig, “CARED-SOA: A context-
aware event-driven service-oriented Architecture,” IEEE Access, vol. 5,
pp. 4646-4663, 2017.

Y. Tian, E. Ekici, and F. Ozguner, “Energy-constrained task mapping and
scheduling in wireless sensor networks,” in Proc. IEEE Int. Conf. Mobile
Adhoc Sensor Syst. Conf., Nov. 2005, pp. 8 and 218.

Freifunk. (Jan. 2017). B.A.TM.A.N. Advanced. [Online]. Available:
https://www.open-mesh.org/projects/batman-adv/

G. Cugola and A. Margara, ‘“‘Processing flows of information: From data
stream to complex event processing,” ACM Comput. Surv., vol. 44, no. 3,
pp. 15:1-15:62, Jun. 2012.

A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language:
Semantic foundations and query execution,” VLDB J., vol. 15, no. 2,
pp. 121-142, Jun. 2006.

A. Akbar, A. Khan, F. Carrez, and K. Moessner, ‘Predictive analytics
for complex IoT data streams,” IEEE Internet Things J., vol. 4, no. 5,
pp. 1571-1582, Oct. 2017.

M. N. Alkhomsan, M. A. Hossain, S. M. M. Rahman, and M. Masud,
“Situation awareness in ambient assisted living for smart healthcare,”
IEEE Access, vol. 5, pp. 20716-20725, 2017.

Y. Sun, T.-Y. Wu, G. Zhao, and M. Guizani, “Efficient rule engine for smart
building systems,” IEEE Trans. Comput., vol. 64, no. 6, pp. 1658-1669,
Jun. 2015.

G. Li, V. Muthusamy, and H.-A. Jacobsen, “Adaptive content-
based routing in general overlay topologies,” in Proc. Middleware
ACM/IFIP/USENIX 9th Int. Middleware Conf. Berlin, Germany: Springer,
2008, pp. 1-21.

S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin, “Efficient processing of
uncertain events in rule-based systems,” IEEE Trans. Knowl. Data Eng.,
vol. 24, no. 1, pp. 45-58, Jan. 2012.

Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. New York, NY, USA:
Cambridge Univ. Press, 2008.

A. Akbar et al., “Real-time probabilistic data fusion for large-scale ToT
applications,” IEEE Access, vol. 6, pp. 10015-10027, 2018.

G. Cugola and A. Margara, “Deployment strategies for distributed com-
plex event processing,” Computing, vol. 95, no. 2, pp. 129-156, 2013.

VOLUME 7, 2019

S. Choochotkaew et al.: Self-Organized Task Distribution Framework for Module-Based Event Stream Processing

IEEE Access

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-aware operator placement for stream-processing
systems,” in Proc. 22nd Int. Conf. Data Eng. (ICDE), Washington, DC,
USA, 2006, p. 49, doi: 10.1109/ICDE.2006.105.

M. H. A. Awadalla, “Task mapping and scheduling in wireless sensor
networks,” JAENG Int. J. Comput. Sci., vol. 40, no. 4, pp. 257-265, 2013.
H. Park and J. W. Lee, “Task assignment in wireless sensor networks via
task decomposition,” Inf. Technol. Control, vol. 41, no. 4, pp. 340-348,
2012.

A. T. Zimmerman, J. P. Lynch, and F. T. Ferrese, ‘“Market-based compu-
tational task assignment within autonomous wireless sensor networks,” in
Proc. IEEE Int. Conf. Electro/Inf. Technol., Jun. 2009, pp. 23-28.

B. Dieber, L. Esterle, and B. Rinner, “Distributed resource-aware task
assignment for complex monitoring scenarios in visual sensor networks,”
in Proc. 6th Int. Conf. Distrib. Smart Cameras (ICDSC), Oct. 2012,
pp. 1-6.

R. Mayer, B. Koldehofe, and K. Rothermel, “‘Predictable low-latency event
detection with parallel complex event processing,” IEEE Internet Things
J., vol. 2, no. 4, pp. 274-286, Aug. 2015.

D. G. Feitelson, Workload Modeling for Computer Systems Performance
Evaluation, 1st ed. New York, NY, USA: Cambridge Univ. Press, 2015.
N. Zacheilas, V. Kalogeraki, Y. Nikolakopoulos, V. Gulisano,
M. Papatriantafilou, and P. Tsigas, “Maximizing determinism in
stream processing under latency constraints,” in Proc. 11th ACM Int.
Conf. Distrib. Event-based Syst. (DEBS), New York, NY, USA, 2017,
pp. 112-123, doi: 10.1145/3093742.3093921.

L. Fischer and A. Bernstein, ‘““Workload scheduling in distributed stream
processors using graph partitioning,” in Proc. IEEE Int. Conf. Big Data
(Big Data), Oct. 2015, pp. 124-133.

Y. Nakamura, T. Mizumoto, H. Suwa, Y. Arakawa, H. Yamaguchi, and
K. Yasumoto, “In-situ resource provisioning with adaptive scale-out for
regional IoT services,” in Proc. 3rd ACM/IEEE Symp. Edge Comput.
(SEC), Oct. 2018, pp. 203-213.

S. Choochotkaew, H. Yamaguchi, T. Higashino, M. Shibuya, and
T. Hasegawa, “EdgeCEP: Fully-distributed complex event processing
on IoT edges,” in Proc. 13th Int. Conf. Distrib. Comput. Sensor Syst.
(DCOSS), Jun. 2017, pp. 121-129.

G. Cugola and A. Margara, “TESLA: A formally defined event specifi-
cation language,” in Proc. 4th ACM Int. Conf. Distrib. Event-Based Syst.
(DEBS), New York, NY, USA, 2010, pp. 50-61.

S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations (Wiley Series in Discrete Mathematics and Optimiza-
tion). Hoboken, NJ, USA: Wiley, 1990.

E. Friedman-Hill. (2007). Jess, The Rule Engine for the Java Platform.
[Online]. Available: http://herzberg.ca.sandia.gov

G. Britain, “Multi-criteria analysis: A manual,” Dept. Communities Local
Government, London, U.K., 2009.

D. P. Anderson, “BOINC: A system for public-resource computing and
storage,” in Proc. 5th IEEE/ACM Int. Workshop Grid Comput., Nov. 2004,
pp. 4-10.

D. Schafer, J. Edinger, J. M. Paluska, S. VanSyckel, and C. Becker,
“Tasklets: ‘Better than best-effort’ computing,” in Proc. 25th Int. Conf.
Comput. Commun. Netw. (ICCCN), Aug. 2016, pp. 1-11.

VOLUME 7, 2019

SUNYANAN CHOOCHOTKAEW received the
B.Eng. degree in computer engineering from Chu-
lalongkorn University, Thailand, in 2014, and the
M.E. degree in information and computer sciences
from Osaka University, Japan, in 2017, where she
is currently pursuing the Ph.D. degree with the
Mobile Computing Laboratory, Graduate School
of Information Science and Technology, under the
supervision of Prof. T. Higashino.

HIROZUMI YAMAGUCHI received the B.E.,
M.E., and Ph.D. degrees in information and com-
puter sciences from Osaka University, Japan, in
1994, 1996, and 1998, respectively. He is currently
an Associate Professor with Osaka University. His
current research interests include design, devel-
opment, modeling, and simulation of mobile and
wireless networks and applications. He is a mem-
ber of the IEEE.

TERUO HIGASHINO received the B.S., M.S,,
and Ph.D. degrees in information and computer
sciences from Osaka University, Japan, in 1979,
1981, and 1984, respectively. He joined the fac-
ulty of Osaka University, in 1984. Since 2002, he
has been a Professor with the Graduate School
of Information Science and Technology, Osaka
University. His current research interests include
design and analysis of distributed systems, com-
munication protocol, and mobile computing. He is

a Senior Member of the IEEE, and a Fellow of IPSJ.

6509

	INTRODUCTION
	COMPLEX EVENT PROCESSING (CEP)
	CEP WITH DEVICE-DEPENDENT SPECIFICATION
	CEP WITH EVENT-DEPENDENT SPECIFICATION
	TASK DISTRIBUTION PROVISION ON CEP
	CONTRIBUTION SUMMARY

	EdgeCEP: MODULE-BASED EVENT STREAM PROCESSING ENGINE ON EDGE COMPUTING
	EdgeCEP-SUPPORTIVE LANGUAGE
	BROKER DESIGN
	TASK PROCESSOR
	CONTENT FILTERER
	COORDINATOR

	EdgeCEP API
	EVENT DRIVER
	PROCESSING FUNCTION

	SELF-ORGANIZED TASK DISTRIBUTION FRAMEWORK
	TASK DISTRIBUTION PROBLEM DEFINITION
	TASK DISTRIBUTION SOLUTION
	AGGREGATION HANDLING PROCEDURE
	TASK-DEPENDENCY HANDLING PROCEDURE

	IMPLEMENTATION AND EXPERIMENTAL RESULTS
	UNIT TEST
	PRELIMINARY EXPERIMENT
	SIMULATION
	THEORETICAL SCENARIO
	NURSING HOME SCENARIO

	REAL-ENVIRONMENT DEPLOYMENT

	POTENTIAL IMPROVEMENTS
	CONCLUSION
	REFERENCES
	Biographies
	SUNYANAN CHOOCHOTKAEW
	HIROZUMI YAMAGUCHI
	TERUO HIGASHINO

