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Abstract—Internet of Things (IoT), edge/fog computing, and
the cloud are fueling rapid development in smart connected
cities. Given the increasing rate of urbanization, the advancement
of these technologies is a critical component of mitigating
demand on already constrained transportation resources. Smart
transportation systems are most effectively implemented as a
decentralized network, in which traffic sensors send data to small
low-powered devices called Roadside Units (RSUs). These RSUs
host various computation and networking services. Data driven
applications such as optimal routing require precise real-time
data, however, data-driven approaches are susceptible to data
integrity attacks. Therefore we propose a multi-tiered anomaly
detection framework which utilizes spare processing capabilities
of the distributed RSU network in combination with the cloud for
fast, real-time detection. In this paper we present a novel real
time anomaly detection framework. Additionally, we focus on
implementation of our framework in smart-city transportation
systems by providing a constrained clustering algorithm for
RSU placement throughout the network. Extensive experimental
validation using traffic data from Nashville, TN demonstrates
that the proposed methods significantly reduce computation
requirements while maintaining similar performance to current
state of the art anomaly detection methods.

Index Terms—Smart Cities, Transportation, Anomaly Detec-
tion, Decentralized

I. INTRODUCTION

Emerging trends and challenges: Internet of Things
(IoT), edge/fog computing, and the cloud are fueling rapid
development in smart connected cities. Given the increasing
rate of urbanization, the advancement of these technologies
is a critical component of mitigating demand on already
constrained transportation resources. Recent research on smart
transportation systems has focused on optimal route planning
for congestion reduction, which has shown huge potential
impact on maximizing existing transportation resources [1].
The costs of optimizing route planning are relatively low
compared to large scale infrastructure upgrades, making this an
attractive option for city planners and transportation experts.

Approaches to optimal route planning are typically data-
driven [2], [3], [4]. The scale and real-time nature of these
systems require shared computing architectures to handle the
high velocity and volume of data originating from small sen-
sors placed throughout the network. One solution is edge/fog
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computing. In this case, services are moved to road-side units
(RSUs), which are low-powered edge devices [5] situated
between the sensor level and the cloud. Each RSU hosts
various computation services for a collection of sensors, and
communicates with the cloud. Implementing a network of
RSUs moves computation to the edge of the network, creating
a decentralized data processing system.

Data-driven approaches are susceptible to data integrity
attacks. The dynamic nature of real-time routing systems
means that the effects of such an attack have immediate impact
and substantial cascading consequences [6]. Additionally, the
distributed and shared nature of the underlying architecture
provides multiple points of entry, making data integrity attacks
even more likely. Given the potential human and economic
impacts of such an attack, the trustworthiness of data in
smart transportation networks is of critical importance. While
there is substantial research regarding anomaly detection in
transportation networks [7], these approaches are often com-
putationally costly and do not adapt well to the real-time nature
of distributed smart transportation data networks. Despite the
critical importance of data integrity in such systems, research
in this area remains underdeveloped.

Current state of the art statistical detection methods typically
rely on measures of central tendency such as median and mean
or their variants. While this approach works for deductive
attacks and additive attacks, in which sensor readings are
decreased or increased respectively, it fails for camouflage
attacks in which sensor readings are increased at some sensors
and decreased at other sensors. Camouflage attacks are of
particular importance when working with data-integrity attacks
in transportation networks, as such an attack would aim to
divert traffic and resources to specific regions or roads and
thus, maximize the effects of an attack.

Therefore we aim to improve data integrity in decentralized
smart transportation systems by proposing a novel real-time
anomaly detection algorithm for deductive and camouflage
data integrity attacks. Our approach maintains similar ac-
curacy to traditional methods, while addressing two critical
components of scaling anomaly detection to decentralized
systems. First, it reduces the computational costs associated
with computationally expensive traditional anomaly detection
by avoiding continuous computation on all sensors in real time.
This is accomplished by continuously monitoring anomalies at
the RSU level using a statistical means approach for aggregate
anomaly detection and reserving the more computationally
costly sensor level detection for cases in which anomalies are
found at the RSU level. Second, our approach is designed



so that the anomaly detection process itself is distributed,
mirroring the natural architecture of modern decentralized
smart networks and allowing seamless integration with such
systems.

We also provide a constrained hierarchical clustering algo-
rithm for RSU placement in an existing transportation system
fitted with traffic sensors. As shown later, this approach
improves zone level detection while also maximizing spare
processing capacity at the RSU level.

Contributions: This paper presents a decentralized anomaly
detection approach and architecture for distributed smart trans-
portation systems. Our focus is on orchestrated data-integrity
attacks, in which an organized attacker falsifies data in a
systematic attack process. This paper’s main contributions are
as follows:

• Anomaly detection is framed as a decentralized com-
putational system allowing for real-time processing and
scalability.

• An algorithm is provided for RSU placement which
maximizes processing capacity of the RSU network and
optimizes central tendency anomaly detection methods.

• We present a novel real time anomaly detection algorithm
which reduces the computational costs associated with
traditional anomaly detection methods while maintaining
similar accuracy.

Outline: We start by defining the problem and model
assumptions in Section II. Related work is covered in III. The
System Model is covered in Section IV, while the Sensing
Architecture is covered in Section V. RSU placement is
outlined in Section VI and the anomaly detection framework
is proposed in Section VII. Finally, simulations and results are
provided in Section VIII.

II. PROBLEM STATEMENT

Our primary concern is orchestrated data integrity attacks
in smart, decentralized transportation systems.

A. Problem Overview

The goals of our system are the following:
• Real-time identification of orchestrated data-integrity at-

tacks.
• Decentralized implementation. The system should inte-

grate easily with modern smart-city infrastructure and
be optimized for common hardware limitations in such
systems.

• Deductive and Camouflage Attacks - extend traditional
statistical means anomaly detection to camouflage attacks
in which mean and median are unchanged.

• Reduce computation requirements compared to tradi-
tional anomaly detection methods.

B. Assumptions

To achieve the above goals, we make the following assump-
tions.

1) Sensor Model: We assume that the city has sensors
capable of transmitting traffic speed data wirelessly to an RSU.

Fig. 1. System Architecture

In our investigation, speed data is collected by the sensor and
sent to its associated RSU.

2) Road-side Units: RSUs are low-powered fog nodes
[5] placed throughout the transportation network which are
capable of collecting and transmitting data from a collection
of sensors to a centrally located cloud-based routing system.

3) Centralized Cloud: A centralized cloud network is avail-
able to provide additional processing capabilities for sensor
level anomaly detection.

4) Attack Model: The attacker is capable of compromising
a subset of sensors or RSUs by manipulating their outputs.
These attacks occur at the sensor level. As the focus of this
paper is orchestrated data-integrity attacks, sensor or RSU
faults from physical failures is outside the scope of this paper.

C. Our Approach

The architecture for our system is detailed in Figure 1,
and consists of three fundamental components: the Sensor
level, RSU level and Cloud. Our anomaly detection framework
thus consists of two components, zone level detection and
sensor level detection. Zone level detection is run at the
RSU level, while the more computationally expensive sensor
level detection runs at the cloud. Framing detection in this
way maximizes existing hardware resources while reducing
computation requirements compared to traditional detection
approaches.

A major focus of this paper is on the integration and
implementation of the anomaly detection framework in de-
centralized smart transportation networks. As RSUs are fog
nodes, a fundamental question is how to deploy these devices
throughout the network. We identify three critical consid-
erations to answering this question. First, RSUs should be
located as close to possible to the sensors streaming to it in
order to minimize network latency. Second, as RSUs are low-
powered devices, the maximum number of sensors mapped to
a single RSU is to be constrained. Lastly, we look to group
sensors together as to maximize the efficiency of our anomaly
detection approach.
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III. RELATED WORK

Smart city research has advanced rapidly in recent years.
A large focus of this research has focused on implemen-
tation of sensor systems for transportation, communication
and infrastructure monitoring [8], [9], [10], [11], [12]. In
general, anomaly detection is focused on finding deviations
in single (point) or sequence (collective) values from normal
expected behavior. Traditional anomaly detection is based on
classification, statistical, state based, clustering or informa-
tion theory [7]. Classification methods are usually based on
Support Vector Machines (SVM), Bayesian Models, Gaussian
Processes or Neural Networks [13]. These methods require
large scale, detailed and accurate models of system behavior.
Additionally, supervised classification models require careful
consideration regarding user data privacy. This is of particular
concern when dealing with transportation systems and the
specific movement of users over time. State based methods
use Kalman Filtering [14] to estimate normal behavior. These
methods require making realistic assumptions on data distribu-
tions, a challenging task. Additionally hardware considerations
must be accounted for [15].

Our primary concerns regarding the anomaly detection prob-
lem are accuracy, computational requirements and easy distri-
bution over a decentralized network. For this reason, our zone
level detection uses a statistical approach. Related statistical
approaches include auto-regressive, exponential or cumulative
weighted moving averages (ARMA, EWMA, CWMA) and
Cumulative Sum Control Chart (CUSUM) of data as metrics
under normal operating behavior. These approaches are light
weight, and do not necessarily require anomalous data. Our
work presents a hybrid approach which uses a statistical
mean ratio that has proven effective in detecting data-integrity
attacks in power grid networks [16] and Gaussian Processes
for sensor level detection [17].

Hierarchical anomaly detection has shown to be useful
in monitoring large scale distributed web architectures [18].
The advantage of hierarchical anomaly detection is that the
detection computation can be balanced between low-powered
edge devices and central computation clusters. One approach is
to keep a central model of expected data behavior to compare
with current data [19]. In this case, when anomalous patterns
are found in the system the second, more computationally
expensive, procedure of identifying anomalous nodes within
the subsystem is performed [20], [21].

RSU placement has been studied in relation to maximizing
connectivity for smart cities using intersection-priority [22],
minimizing event reporting times along highways [23] and
maximizing information flow in urban areas [24]. Approaching
RSU placement through the context of anomaly detection
efficiency is a new topic.

IV. SYSTEM MODEL

A. Data Overview
To simulate the framework provided in Figure 1, historical

data is collected from the HERE API [25] for use as real-
time sensor data for Nashville, TN. Two months of data was

extracted from February 12, 2018 to April 12, 2018 for use as
historical training and reference data. Additionally, two weeks
of data from April 16, 2018 to April 27, 2018 was extracted
for testing and simulation. Only weekdays (Monday-Friday)
are considered.

The HERE data is composed of time stamped speed record-
ings, identified by its Traffic Message Channel identification
(TMC ID), [26]. Each TMC represents a segment of road in
which the speed was recorded. In our framework each TMC
ID acts as a sensor which provides speeds for optimal routing.
There are 9,979 TMCs, and therefore sensors, in our data set.

B. Data Integrity Attack Overview
Traditional anomaly detection in transportation systems

focus on detecting faulty sensors [13] [17], whether from
hardware failure or software issues in the collection of data.
In this model, anomaly detection is run in the cloud for each
sensor in isolation. Data-integrity attacks on the other hand
are orchestrated from a collection of sensors simultaneously to
maximize the effect of the attack on the global transportation
system.

The shared nature of computing resources in smart con-
nected cities provide multiple entry points for attackers, mak-
ing attacks likely events. Additionally, the dynamic real-time
nature of such systems means that well designed attacks will
have substantial cascading effects throughout the system. In
this sense, focused localized attacks on a collection of sensors
will propagate throughout the network quickly.

While traditional anomaly detection operate at the sensor
level, the identification of orchestrated attacks requires ag-
gregate detection across groups of sensors. In this context,
organized data integrity attacks spanning multiple sensors
within a selected region can have cascading effects throughout
the transportation system.

Our focus is primarily on two types of data integrity attacks.
In the first type of attack a selected percentage of sensors have
their speed values reduced and is referred to as a deductive
attack. These attacks aim to diverge traffic away from attacked
sensors by convincing the routing system that certain roads
have more congestion than in reality.

The second type of attack is camouflage attacks, in which
an organized attacker balances additive and deductive attacks
to evade detection and exert certain behaviors on the system.
Camouflage attacks are of particular concern in transportation
routing systems as an attacker can deviate network behavior
at a fine granular level to maximize impact of the attack. One
scenario would be an attack aimed at gathering vehicles along
a specific road segment or crowding drivers in a highly dense
area. Identifying attacks of this nature is of critical importance
to first responders and the defense industry, yet as this ap-
proach would leave mean and median unchanged, camouflage
attacks evade traditional central tendency approaches.

C. Simulated Deductive and Camouflage Attacks
To simulate deductive attacks and camouflage attacks, we

use the historical standard deviation of a sensor’s speed, repre-
sented by σs, as a basis for altering speed value d at attacked
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sensor s. Therefore das represents the speed value at sensor s
when attacked while ds is the actual speed recorded at sensor
s when not attacked. The severity of the attack is governed by
δ. Equation 1 represents the process for altering speeds from a
deductive attack at a single sensor while Equation 2 represents
the process for altering speeds from an additive attack at a
single sensor.

das = ds − δ ∗ σs (1)

das = ds + δ ∗ σs (2)

Each RSU r is responsible for a subset of sensors Sr ⊂ S
where Sr is the subset of sensors at RSU r and S represents all
the sensors in the network. Therefore, if we look to simulate
a deductive attack at RSU r during time window k affecting
p percentage of sensors, then p percentage of sensors are
randomly selected for the attack.

Conversely, to simulate a camouflage attack during time
window k, then p percentage of sensors at that RSU are
selected for attack and each of the attacked sensors is randomly
assigned to have its speed readings altered by a deductive
attack from Equation 1 or an additive attack from Equation
2.

V. SENSING ARCHITECTURE

In this section, we present a decentralized system architec-
ture for efficient sensing over a large city in real time. The
system is comprised of three central components as shown in
Figure 1.

A. Road Sensor System - Sensor Level

Traffic information is maintained by sensors distributed
throughout the network edges. The sensor units are responsible
for capturing current speed values at each road. Together, the
sensor network provides real-time monitoring of the trans-
portation network. In the context of our data, each TMC ID
[26] represents a sensor streaming real-time vehicle speed
information.

B. Roadside Unit System - RSU Level

Roadside Units (RSUs) are small, low powered devices with
wireless capabilities [5]. RSUs have two main responsibilities.
First, the RSU level is responsible for communicating data
from the sensors to the central cloud. Second, spare processing
capacity is used for zone level anomaly detection described
in Section VII-A. A depiction of the interaction between the
sensor level and RSU level is shown in Figure 2.

C. Utility System and Cloud Service

The cloud service is a broad term incorporating the utility
system, routing services and long term data storage. For this
work we are primarily concerned with the utility system, which
is a collection of high powered computation nodes residing in
the cloud. The role of the utility system is providing processing
for sensor level detection.

Fig. 2. Data Collection Framework - RSU-Sensor Interaction

VI. RSU DEPLOYMENT - CLUSTERING PROCEDURE

The way in which RSU devices are deployed affects re-
source utilization and network efficiency. Therefore in this sec-
tion we provide a constrained hierarchical clustering algorithm
for RSU deployment.

As each RSU is responsible for a subset of sensors, ulti-
mately the goal of the algorithm is to match each sensor si
with an RSU. Through a mapping process, each RSU r will
be responsible for the data collected from a subset of sensors
Sr ⊂ S where Sr is a collection of sensors mapped to RSU
r.

Since zone level detection outlined in Section VII-A is op-
timized when sensors with similar traffic patterns are grouped
together (see Section VIII-C), feature sets are generated for
each cluster using training speed data from the HERE API. For
cluster c consisting of sensors Sc, the speed data from these
sensors is broken into 30 minute time windows from 7:00AM
to 9:00PM, resulting in 28 features total. By taking the mean
speed at each time window k, the feature set for cluster c
is represented by F c = {f c(k1), ..., f c(k28)}. Clusters are
grouped together by similarity. We therefore use euclidean
distance to measure the similarity between two clusters.

Algorithm 1 RSU Clustering
1: Input: m, η
2: Initialize: C ← S
3: while len(C) > m do
4: lmin =∞
5: for i = 0 to len(C) do
6: cj ← nearest(ci, C)
7: if (len(Sci )+len(Scj )) ≤ η then
8: l(i,j) ← euclideanDist(F ci , F cj )
9: if l(i,j) < lmin then

10: lmin ← l(i,j), cv ← ci, cw ← cj
11: end if
12: end if
13: end for
14: cnew ← merge(cv, cw)
15: add cnew to C
16: remove cv and cw from C
17: end while
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Fig. 3. Cluster RSU - full layout and downtown Nashville. The clustering
approach results in multiple RSUs in the highly travelled downtown area,
allowing for resources to be deployed according to demands of the sensor
network.

The clustering procedure is detailed in Algorithm 1. Algo-
rithm 1 relies on three helper functions:

• nearest(ci, C): returns the cluster whose centroid is geo-
spatially closest to the centroid of cluster ci, according
to haversine distance.

• euclideanDist(F ci , F cj ): returns the euclidean distance
between the feature sets of clusters ci and cj .

• merge(cv, cw): returns a new cluster. The feature set of
the new cluster is recalculated using the combined set of
sensors in the new cluster.

Line one specifies the input parameters where m is the target
number of clusters and η is the maximum number of sensors
in a cluster. In the initialization step, C represents the set of
all clusters. C is initially set such that each cluster consists of
a single sensor.

The clustering procedure starts at line (3) and continues until
the number of clusters equals m. As we loop through each
cluster ci, the geographically nearest cluster cj is identified. If
the η constraint is satisfied and the euclidean distance between
Fi and Fj is less than lmin then we reassign lmin to l(i,j) and
update cv and cw accordingly. After each cluster is iterated
through, (cv , cw) are merged into a single cluster cnew which
is added to C and cv , cw are subsequently removed.

The visual representation of the cluster RSU network is
provided in Figure 3. For comparison, a grid RSU layout
where the geo-spatial boundary of the sensor network is
divided into a square grid with an RSU located at the center
of each grid was generated as shown in Figure 4.

Comparing the two layouts, the cluster RSU layout does a
better job concentrating RSUs in areas where there are a high
number of sensors. Additionally, by only merging spatially
adjacent clusters, the subset of sensors at each RSU maintains
a connected sub-graph of road edges.

The effect of η is illustrated by the sensor distributions in
Figures 5 and 6. By limiting the maximum number of sensors
in each RSU, the processing and networking demands placed
on each RSU can be controlled. Conversely, the grid layout
includes two RSUs that taken together, are responsible for
approximately 30% of all the sensors in the network. This
imbalance in sensor distribution creates high stress on a few
RSUs while under-utilizing the resources at the remaining
RSUs.

Fig. 4. Grid RSU - full layout and downtown Nashville. The grid layout
results in only one RSU in the highly travelled downtown area.
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Fig. 5. Grid RSU layout histogram - sensors per RSU distribution. This layout
places high stress on a small number of RSUs while under-utilizing the full
processing capabilities of the network.
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Fig. 6. Cluster RSU layout histogram - sensors per RSU distribution. Number
of sensors in an RSU does not exceed η = 50. Constraining the number of
sensors at an RSU places an upper bound on processing demand and ensures
processing requirements do not exceed the capacity of RSU hardware.

VII. ANOMALY DETECTION

This section describes our novel two-tiered anomaly detec-
tion approach in which zone level detection is continuously
run at the RSU network and sensor level detection is used to
identify sensors compromised by data integrity attacks. Sensor
level detection is only performed on a set of sensors when an
attack is first identified at the zone level.

A. Zone Level Detection

The zone level detection provides a mechanism for identify-
ing data integrity attacks at the RSU level. Zone level detection
is processed at the RSUs.

Each sensor continuously transmits time-stamped speed data
to its RSU. Since each RSU r is responsible for a subset of
sensors, the RSU collects the data from its set of sensors in
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Fig. 7. Qr(k) under deductive and camouflage attacks at a single RSU. Time
Window (k) set to 30 minute intervals, δ=2.5 and p=35%.

the last time window k. At each time window k, the harmonic
mean HMr(k) and arithmetic mean AMr(k) are calculated
per Equations 3 and 4 respectively. The statistical metric used
for anomaly detection is the ratio of HMr(k) to AMr(k), as
shown in Equation 5.

HMr(k) =
S∑S

s=1

1

ds

(3)

AMr(k) =

∑S
s=1 ds
S

(4)

Qr(k) =
HMr(k)

AMr(k)
(5)

While traditional central tendency detection methods based
on arithmetic mean or median are effective in detecting ad-
ditive or deductive attacks, camouflage attacks go undetected
since arithmetic mean and median remain the same. As shown
in Figure 7, where speed readings for 35% of sensors at a
selected RSU were subjected to a δ attack of 2.5, Qr responds
to camouflage attacks as well as deductive attacks.

For detection, Qr(k) is compared to the historical average
and standard deviation of Qr(k) at time window k as shown in
Equations 6 and 7. εr is a threshold that is unique to each RSU.
An investigation for determining εr is provided in Section
VIII-A

Qr(k) < Qr
ave(k)− εr ∗Qr

std(k) (6)

Qr(k) > Qr
ave(k) + εr ∗Qr

std(k) (7)

B. Sensor Level Anomaly Detection

For many smart transportation applications, such as optimal
routing systems, we must identify which sensors are attacked
to mitigate the effects of data integrity attacks in real time.
Therefore sensor level detection is required.

For sensor level detection we use Gaussian Processes to get
the expected speed and standard deviation at a given sensor
using the 15 sensors closest to that sensor. This approach
assumes a high correlation between speed readings at nearby
sensors [17]. We use CUSUM for detection, however as sensor
level detection is not continuous in our two-tiered anomaly
detection approach the process is restricted to two windows.

As a kernel function, the commonly used RBF (squared
exponential) kernel is used. A study of detection accuracy and
computation time between continuous sensor level detection
compared to two-tiered anomaly detection is provided in
Section VIII.

VIII. SIMULATIONS AND RESULTS

A. Determination of ε For Zone Level Detection

The effectiveness of zone level detection is highly dependent
on ε. For each RSU we simulated 100 deductive and 100
camouflage attacks with δ held constant at 2.5 in which 35% of
the sensors at an RSU are attacked. For each attack, a random
time window in the testing set between 7:00AM and 9:00PM
was attacked and zone detection was performed. To obtain
false positive and true negative results, zone detection was
also run at the same time window without the presence of a
data integrity attack. The process was repeated for εr values
ranging from 0 to 10 and recall (TPR) and false positive rate
(FPR) were recorded at each simulation step.

The cost of false positives at the zone level in two-tiered
anomaly detection is only in terms of the increased computa-
tion time required to run sensor level detection. Since the cost
of false positives is low, the value of εr is set such that the
number of false positives is approximately 20% at each RSU.
Therefore while the exact value of εr is unique at each RSU,
we can expect the resulting false positive rate to be roughly
20%.

Figure 8 provides a graphical representation of this process
for an example RSU, where recall was 99% and 94% for
deductive and camouflage attacks respectively when FPR was
20%. As discussed in the following section, recall at the zone
level remains relatively consistent across the RSU network
following this procedure.

B. Zone Level Detection - Investigation of δ and p

Here we investigate the bounds for which our zone level
detection is viable. There are two primary considerations in
quantifying the severity of a data integrity attack. First, the
severity of the attack on each affected sensor is represented
by δ (see Equations 1 and 2). Second, the percentage of sensors
affected by the attack (p) represents the breadth of an attack
at each RSU.

Two simulations are configured. First, p was held constant
at 35% and δ was varied from 0 to 3.5. For each δ value,
100 deductive attacks and 100 camouflage attacks were again
simulated at each RSU in the network. However for this
simulation, true and false positives and negatives at each RSU
were aggregated together at each value of δ, resulting in a
single recall value for the entire network at every δ. The results
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Fig. 8. Epsilon true positive rate (TPR) vs false positive rate (FPR) for a
single RSU, deductive and camouflage attacks. These curves were generated
for each RSU and the value of εr was selected such that FPR was 20%.
Attack parameters: δ = 2.5, p = 35%

of this simulation are provided in Figure 9, and show that for
both deductive and camouflage simulations the recall is greater
than 90% when δ is greater than 2.25.

For the second simulation the same procedure was followed
except this time δ was held constant at 2.5, while p was varied
from 0% to 60%. As shown in Figure 10, zone level detection
retains 90% accuracy for attacks affecting as low as 25% of
the sensors at an RSU.

C. Zone Level Detection Comparison - Grid vs Cluster RSU
Deployment

In Section VI we discussed the advantages of constrained
hierarchical clustering for RSU placement in terms of maxi-
mizing hardware resources. Here we investigate the benefits
of this approach in terms of anomaly detection.

The same zone level attack simulation as detailed in Section
VIII-A was applied to the cluster RSU and grid RSU networks
respectively, with δ = 2.5 and p = 35%. For detection, εr,
generated from Section VIII-A, is used. To find εr for each
RSU in the grid network, the process in Section VIII-A was
repeated for the grid network. Recall statistics for each RSU
is provided in Figure 11 while precision is shown in Figure
12.

Both networks are capable of running zone level detection,
as average recall was over 90% for both RSU configurations.
This implies that our zone level detection algorithm is an
adequate solution regardless of RSU layout. However, recall
is higher for the cluster RSU configuration showing that
clustering groups of sensors by traffic pattern similarity has
a positive effect on zone level anomaly detection.

D. Two-Tiered Anomaly Detection vs Sensor Only Detection

In Section VII two-tiered anomaly detection was outlined.
We now move on from zone level detection and investigate
two-tiered anomaly detection compared to continuous sensor
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Fig. 9. Recall (TPR) aggregated across all RSUs with five or more sensors vs
magnitude of attack (δ). εr used for detection and the percentage of sensors
attacked p is held constant at 35%. Recall for the network is greater than 90%
when δ is greater than 2.25 for both deductive and camouflage attacks.
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Fig. 10. Recall (TPR) aggregated across all RSUs with five or more sensors
vs percentage of sensors attacked at each RSU (p). Full network simulation -
each unique εr used for detection and δ is held constant at 2. Recall for the
network is greater than 90% for attacks affecting 25% or more sensors for
both deductive and camouflage attacks.

only detection with Gaussian Processes. The simulation proce-
dure remains the same as outlined in Section VIII-C, however
now we find true positives, true negatives, false positives and
false negatives at the sensor level.

Recall and precision are provided in Figures 13 and 14
respectively. Note that while true and false positives and neg-
atives were calculated at the sensor level, recall and precision
as shown in Figures 13 and 14 are aggregated at the zone
level. This procedure allows us to visualize the interaction
between zone level detection in the previous section and two-
tiered detection provided here, as well as directly compare
computation time per RSU as shown in Figure 15.

We find that precision and recall are similar between two-
tiered and sensor only detection. The major difference between
these approaches is in computation time, where two-tiered
detection is 35% less than sensor only detection and the
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Fig. 11. Zone level recall of (a) grid RSU layout - deductive attack simulation,
(b) Cluster RSU layout - deductive attack simulation, (c) grid RSU layout -
camouflage attack simulation, (d) cluster RSU layout - camouflage attack
simulation. Each data point represents recall at a single RSU in the network.
Only RSUs with more than 5 sensors considered. Attack parameters: δ =
2.5, p = 35%
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Fig. 12. Zone level precision of (a) grid RSU layout - deductive attack
simulation, (b) Cluster RSU layout - deductive attack simulation, (c) grid RSU
layout - camouflage attack simulation, (d) cluster RSU layout - camouflage
attack simulation. Each data point represents precision at a single RSU in the
network. Only RSUs with more than 5 sensors considered. Attack parameters:
δ = 2.5, p = 35%

computation time of zone level detection was negligible in
relation to the other two approaches.

An important observation is that our simulation procedure
effectively attacked 50% of the time, a much higher percentage
than can be expected in an actual deployment scenario. As
two-tiered detection only requires sensor level detection when
an attack is detected at the zone level and the computation time
from zone level detection is negligible, it can be assumed that
a 35% reduction in computation time between two-tiered and
sensor only detection is a conservative estimate.

IX. CONCLUSION AND FUTURE WORK

In this paper we presented a novel two-tiered anomaly
detection framework that maintains similar accuracy to current
state of the art systems with a significant reduction in pro-
cessing requirements. Additionally we covered the integration
of our anomaly detection framework in decentralized smart
transportation systems and provided a constrained hierarchical
clustering algorithm for RSU deployment.

Our current work focuses on deductive and camouflage
attacks. We would like to extend this to a variety of potential
attacks. Therefore, future work will include extending this
work to additive attacks as well as strategic attacker events
in which the attacker has a comprehensive understanding of
transportation system behavior. Additive attacks have worked
in other aggregate anomaly detection cases [16]. These attacks

80% 90% 100%
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(d)

Recall (TPR)

Fig. 13. Sensor level recall of (a) sensor only (GP) - deductive attack simu-
lation, (b) two-tiered detection - deductive attack simulation, (c) sensor only
(GP) - camouflage attack simulation, (d) two-tiered detection - camouflage
attack simulation. Each data point represents aggregate recall of sensor level
detection at a single RSU in the network. Only RSUs with more than 5 sensors
considered. Attack parameters: δ = 2.5, p = 35%
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(d)

Precision

Fig. 14. Sensor level precision of (a) sensor only (GP) - deductive attack sim-
ulation, (b) two-tiered detection - deductive attack simulation, (c) sensor only
(GP) - camouflage attack simulation, (d) two-tiered detection - camouflage
attack simulation. Each data point represents aggregate precision of sensor
level detection at a single RSU in the network. Only RSUs with more than 5
sensors considered. Attack parameters: δ = 2.5, p = 35%
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Fig. 15. Computation time (seconds) of (a) sensor level detection (GPs),
(b) zone level detection, (c) two-tiered detection

cause an increase in the Q value, which is capped at one. By
taking the inverse of our metric in relation to a jam factor,
which is also available as one of the data streams from the
HERE API, we can extend this work to such attacks.

Additionally, we would like to investigate the cascading
effects of data-integrity attacks on routing systems. We also
plan to use additional information, such as weather or planned
events, to predict anomalies ahead of time.
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