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Abstract—The rise in deep learning models in recent years has
led to various innovative solutions for intelligent transportation
technologies. Use of personal and on-demand mobility services
puts a strain on the existing road network in a city. To mitigate
this problem, city planners need a simulation framework to
evaluate the effect of any incentive policy in nudging commuters
towards alternate modes of travel, such as bike and car-share
options. In this paper, we leverage MATSim, an agent-based
simulation framework, to integrate agent preference models that
capture the altruistic behavior of an agent in addition to their
disutility proportional to the travel time and cost. These models
are learned in a data-driven approach and can be used to
evaluate the sensitivity of an agent to system-level disutility and
monetary incentives given, e.g., by the transportation authority.
This framework provides a standardized environment to evaluate
the effectiveness of any particular incentive policy of a city, in
nudging its residents towards alternate modes of transportation.
We show the effectiveness of the approach and provide analysis
using a case study from the Metropolitan Nashville area.

Index Terms—Transportation; Urban Mobility; Simulation;

I. INTRODUCTION

With rapid innovations in intelligent transportation technolo-

gies (ITS), the transportation landscape is changing at a faster

pace today than at any point in history. On-demand mobility

services such as ride-shares are becoming more commonplace

and are often considered more convenient than public transit

options. Use of personal and on-demand mobility services puts

a strain on the existing road network in a city. This is evident

from the United States Census Bureau’s annual American

Community Survey 2017 report [1], which states that 85.3% of

all commuters commute to work by personal vehicles, either

driving alone or carpooling.

Many cities in the United States have started revising their

transportation demand management (TDM) programs [2] with

a strong focus on investment in road networks, traffic sensors,

and public transit services. However, these services often come

with a cost that needs to be borne by the commuters. Planning

and investing in these services requires a lot of manpower

and time. Hence, TDM programs focus mostly on providing

incentives to commuters for using alternate modes of travel

(e.g., bike- and car-share options) [3], [4]; such efforts have

been shown to alleviate some of the cost incurred by users for

using certain preferred modes.
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To develop an effective incentive policy, the city planners

need to evaluate the effect of any incentive policy on key

system metrics such as congestion, CO2 emissions, mone-

tary cost and so on. To this end, they often utilize various

simulation tools [5]–[8] to model traffic mechanics in road

networks. A common process is to first gather commuter

data from their database, which is then used to generate a

time-varying demand distribution and mode distribution of

commuters. These distributions are then used to generate

user preference profiles and finally, these profiles are used

by simulation tools to analyze the impact of commuters on

network congestion. However, the process of generating user

preference profiles needs some prior assumptions from the city

planner to create more plausible trips for commuters, that will

be then used in the simulation. There is a need for a simulation

that can integrate data-driven models which learn commuter

preferences from historical trip data of commuters and use

those preferences in evaluating different incentive policies.

State of the art models [9]–[11] are used for modeling

commuter preferences in simulation tools. However, these

models often fail to capture complex multi-modal dynamics.

The functions that govern basic mechanics of agent-based

traffic simulation often use a one size fits all approach—

i.e., models all agents or commuters in the system with

some specific behavior model with a fixed set of features. As

evidenced by recent studies [12], [13], this is often incongruent

with real-world behavior of commuters which varies with time,

network conditions, and other hidden features.

As more commuters adopt multi-modal mobility options,

they often have a rich set of non-overlapping preferences

which factor into their decision to choose a particular route.

Many other facets of the commuter decision-making process

are also not accounted for in state of the art simulation studies.

For instance, how a commuter makes decisions on when to

travel, which mode of travel to use, what routes to traverse

are often not jointly considered. Furthermore, recent studies

[14] show that commuters are getting more environmentally

conscious and are sensitive to the costs imposed by other

commuters in a city, in terms of local and global pollution,

oil dependence, accidents, and noise. Hence, there is a critical

modeling gap between simulation and data-driven models

learned with a real-world dataset.

To bridge these gaps in a multi-modal environment, this

paper focuses on how to offer a theoretically sound and

practically useful integrated modeling framework. Towards

this end, we leverage MATSim [5], an agent-based simulation

framework, to incorporate various decision-making models



and provide a standardized environment to evaluate the ef-

ficacy of these models in terms of the system-level impact of

particular intervention mechanisms. In particular, we make the

following key contributions:

1) Integration of agent choice models considering disutilities

and altruism within a well-used agent based multi-modal

transport simulator. These models enable us to evaluate

the sensitivity of an agent to system-level disutility and

the monetary incentives given by the transportation au-

thority of the city.

2) We also show how to learn these agent behavior models

from real-world data. This enables the simulation to be

configured for specific cities.

3) Finally, we present a case study from the Metropolitan

Nashville area. Based on models learned from the real-

world data, our simulation shows that 23% of agents

using cars changed their modes to bus and walk when

provided higher incentives. For the same simulation, our

results show that mean excess travel time of all agents

decreased by 12 min of mean excess travel time (MET),

yet the system-level cost is approximately $20000 due

to incentives.

The remainder of this paper is organized as follows. We

overview prior related work in Section II. In Section III,

we give a brief overview of the Mobilytics-Gym architecture

including a discussion of each component and present a

simulation workflow that uses this architecture to evaluate

incentive policies. In Section IV, we describe the implementa-

tion of the simulation workflow specific to the case study for

the Nashville metropolitan region. We conclude the article,

suggest avenues of further investigation in Section V. Table I

summarizes the symbols we used throughout this paper. The

source code is available on Github1.

II. STATE OF THE ART SIMULATION TOOLS FOR

TRANSPORTATION STUDIES

State of the art simulation tools such as MATSim [5],

AIMSUN [6], SUMO [7] which are used in transportation

studies [8], are effective tools for analyzing the impact of

commuter route choices on network congestion. MATSim [5],

in particular, supports implementing large-scale agent-based

transport simulations and is based on iterative dynamic traffic

assignment. That is, every agent repeatedly optimizes its daily

activity schedule while in competition for space-time slots

with all other agents on the transportation infrastructure. While

MATSim is capable of iteratively finding best routes for users,

we are interested in creating a simulation framework that

mirrors the real-world in the sense that given a system state by

the simulator, the agents use learned models to choose their

next actions and finally the effect is observed by all the agents.

In this sense, we use MATSim as a one-shot simulator to test

the viability and performance of different models that make

up the system.

1https://github.com/scope-lab-vu/mobilytics-gym

TABLE I: List of symbols

Symbol Description

V Set of network vertices

E Set of network edges

M Set of modes allowed in graph G

Me Set of modes allowed on an edge e ∈ E,Me ⊆ M

τ Time of the day

Gτ State of directed multi-modal graph (V,E,M) at time τ .

R Directed path from source vertex s ∈ V to destination
vertex d ∈ V

A Actuator function

T Actual travel time disutility function on an edge e ∈ E

T̂ Expected travel time disutility function on an edge e ∈ E

I Incentive function set by the system

C Cost disutility function for an edge e

Sτ State of environment (Gτ , I, T, C, T̂ ) at time interval τ

F Set of fixed or scheduled plans

ET Expected Travel time disutility function for route R

EC Expected cost function for route R

ESD Expected Social disutility function for route R

TR Function that uses uses current state along with current
plan to trigger new routing decision

MC Function that evaluates the probability of choosing a mode
sequence in route R

RC Function that evaluates route choices based on travel time,
cost, social cost, mode choice

MET Function that calculates mean excess travel time incurred
due to route plan of all agents in simulation

IC Function that calculates total cost incurred on the system,
due to incentives

One of the key problems with state-of-the-art simulation

tools is that the agents’ plans are fixed during the simulation.

This makes it difficult to evaluate the effect that incentive

policies which depend on the state of the network (e.g.,

congestion level) can have on changing agent behavior. That

is, if agents plans are fixed, then agents cannot react to the

incentives or any policy that needs to change their decisions

during the simulation. We can mitigate this problem by using

an approach where we start with an initial route plan, observe

the network congestion and then change route plans that have

the potential to possibly minimize congestion. In practice,

the approach to changing commuter behavior tends to be

adhoc, differs from region to region, and often depends on

prior assumptions made by local city planners. To capture

these differences and enable simulation of a wide variety of

approaches, the capability for simulated agents to change their

route in simulation needs to be integrated into state-of-the-art

simulators. Such a feature is essential for a standard framework

that can be configured for any city.

For analyzing the commuter impact on congestion, com-

muter travel behavior models are widely used in simulation

tools [9]–[11]. However, these models only capture the disu-

tility of a user proportional to travel time and monetary cost.

Studies from the literature on routing games show that some

commuters are partially willing to suffer (take on additional

cost) for the good of society [15], [16]. Models that capture

In the simulation tools previously discussed, several needed



features are lacking. For instance, in the state-of-the-art, exact

route plans are specified to the agents. In MATSim, agents

can have different preferences, but the weights for each of the

preferences need to be given explicitly before the simulation

is started. However, in practice, a city planner does not have

real-time routes of agents nor do they know the exact weights

corresponding to the agents’ preferences. Thus, data-driven

models that can learn agent preferences automatically are also

needed. Lastly, a traffic prediction model that can estimate

future states is also needed in order to support a real-time

router.

III. MOBILYTICS-GYM

In this section, we give a brief overview of the Mobilytics-

Gym architecture. Then, we detail each component of the

architecture. Finally, we present a simulation workflow that

uses this architecture.

A. Architecture

Figure 1 shows an agent-environment interface, where the

Agent is modeled as a decision-maker and everything external

to the agent is part of the Environment. An agent receives the

current state and makes a decision on what action to take,

given the current state. Here action is an interaction with any

entity in the transportation network such as choosing a road

link, boarding a bus, and so on. Such actions from all the

agents modify the environment state.

This is very similar to how the agent interacts with the

environment in a Markov Decision Process (MDP) [17] where

at each time step, the Environment is in some state, and the

Agent may choose any action that is available in that state. The

process responds at the next time step by randomly moving

into a new state, and giving the Agent a corresponding reward.

The key difference with our setup, however, is in how a

commuter makes a decision when they plan their trip and the

absence of reward function in our model. Note that we use

the terms agent, commuter and user interchangeably. In this

paper, we only focus on modeling and evaluating different

learnable components that constitute the agent’s sequential

decision process, while leaving the discussion on designing

proper reward functions to achieve some system objectives

for future work.

An agent is defined by a request query (s,m, d, τ), where

s ∈ V is the source, d ∈ V is the destination, m ⊆ M are set

of mode choices of agent and τ is the departure time or arrival

time of the trip. Each agent has a Plan Memory component,

which is responsible for storing the current route plan R for

the query. The action taken by the agent is based on the route

plan stored in Plan Memory. An agent can also change its

next plans in Plan Memory based on the network state and its

preferences. There are two types of agents in our framework:

1) Fixed Plan Agent: This agent has a pre-planned route

and does not have any decision model. Hence, they al-

ways follow the route plan (from Plan Memory) and never

change its route during a simulation. For example- Public

transit vehicles, background traffic and so on. These
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Fig. 1: Mobilytics-Gym architecture

agents play a role in affecting the plan of other agents

in the system. We define F = {R1,R2, · · · ,R|F|} as a

set of fixed routes, where |F | denotes the total number of

fixed plans in the system. Note, we are using the terms

plans and routes interchangeably.

2) Dynamic Plan Agent: This agent differs from the Fixed
Plan Agent in that, it can change it’s routes dynamically

in network based on network conditions and it’s own

preferences. The preference models used by this agent

emulates an agent’s decision-making process. Specifi-

cally, we try to capture the sequential decisions made by

an agent while planning their trip. This process mostly

involves following steps: (1) Agent decides if a router

is needed to get a new trip plan, (2) Agent asks a

router for new route considering its preferences, (3)

Agent decides if the route given by the router should

be followed. We enable these decisions by integrating

Trigger Model (Section III-B7), Router (Section III-B8),

Mode Choice model (Section III-B9), Route Choice model
(Section III-B10). These preference models are learned

from historical trips of an agent.

B. Components

1) Multi-modal Network: The base component that consti-

tutes Environment is a graph network which is used by agents

to move from an origin to a destination. The graph is time-

dependent since it changes with actions taken by all agents

in the network. Let Gτ = (V,E,M)τ be a time-dependent,

multi-modal, directed graph at time τ , where V is the set

of vertices, E ⊆ V × V the set of edges and M is the set

of modes allowed at time τ . We say there is an edge from

u ∈ V to v ∈ V , if and only if (u, v) ∈ E. Note that we

use the terms graph and network interchangeably. Each edge

e ∈ E has a set of edge labels Me that denotes the different

modes of transportation allowed on e, where Me ∈ M .

Let R be a directed path from any source vertex s ∈ V
to a destination vertex d ∈ V . A directed path of length |R|



from s at time τs to d at time τd is a set of edges along with

mode used to travel on each edge and time at which an edge

is traversed (enter or exit), i.e

R = {(e1,m1, τ1), (e2,m2, τ2), · · · (e|R|,m|R|, τ|R|)} ⊆ E,

where ei �= ej , ∀i �= j, mi ⊆ Mei and τs < τi < τd, ∀i.
2) Actuator: We need a function to evolve the state

based on the actions taken by all the agents in the system.

To this end, we formally define an actuator function as

A(Gτ−1,a1,a2, · · · ,an), which uses the past network state

Gτ−1 and actions {a1, a2, · · · , an} taken by all agents in the

network at time τ − 1, to give new state of the network Gτ

at time τ .
3) Travel Time Disutility: Since the graph Gτ is time-

dependent, the travel time on an edge e ∈ E also varies with

time. The travel time on an edge also varies with the mode

being used by the agent. Let T(e,m, τ) be a function that

that determines the actual travel time on an edge e ∈ E, for

mode m ⊆ Me, at time τ .

The function T is impacted by the actions taken by all

agents since that changes the state of the graph and often

can be modeled as a latency function [18]. It can be learned

from historical states of the network G0, G1, ..., Gτ−1 (from

Memory) and the current state of the network Gτ , to get

expected travel times for time τ+1, τ+2, · · · , τ+f , where f
is the number of time intervals in future. To differentiate this

from the actual travel time function, we denote the learned

travel time function as T̂. The accuracy of estimates from T̂
affects the agent’s plans and thus, the network congestion.

4) Incentives: We consider Incentives as any intervention

by the system to achieve some desired results, such as a

decrease in network congestion, a decrease in pollution and so

on. Such incentives are often monetary in nature and have an

immediate and direct effect on the user because these financial

incentives decrease the cost of a route. However, non-monetary

incentives such as paid holidays, free coupons and so on, are

difficult to design. They do not affect the immediate cost of

the route and instead gives a delayed reward to the user. In

this paper, we have only considered a financial incentive. Let

I(e,m, τ) be the function that determines the actual value of

incentive, where e ∈ E is an edge in network G, m ⊆ M is

the mode used on edge e and τ is the time at which edge e
is traversed. The function I is an intervention by the system

and hence it does not change during the simulation. It is used

to reduce the cost disutility mentioned later in this section.
5) Cost Disutility: There is the cost (monetary) associated

with the graph Gτ , such as transit fare, toll costs, and so on.

Let C(e,m, τ) be a function that that determines the cost

(monetary) incurred for traversing on an edge e ∈ E, for mode

m ⊆ M , at time τ . The function C is static–i.e does not

change during the simulation. It is also not learnable since

this function is set by different agencies that provide some

services in the transportation network.
6) State: State Sτ of the Environment at time τ , is a set

of environment variables at time τ , that is shared with all the

agents in the system. Formally, it can be defined as the tuple

(Gτ , I,T,C, T̂), where Gτ is the state of the network G at

time τ , I is the incentive function set by the system, T is the

actual travel time function , C is the actual cost function and

T̂ is travel time estimator as discussed earlier in this section.

7) Trigger Model: This model is the primary entry point

in the agent’s decision-making process. The time at which an

agent makes a new decision is crucial in route planning. If

an agent re-evaluates it’s planning at every intersection, then

it is following the best possible plan at every turn. While, if

an agent does not re-evaluate it’s route plan during the trip,

then it is not considering real-time network changes such as

congestion, transit delay, etc. and hence, may not be following

the best possible route to reach their destination.

Formally, we can realize this model as a function

TR(Sτ ,R, τ), where Sτ is the current state given by the

environment and R is the current route plan followed by

an agent and τ is the time at which the agent has to make

a decision. Some agents change their original plans more

frequently than others. The function TR can also be learned

from historical trips of an agent.

8) Router: The goal of the Router is to get minimum cost

route based on timed-query (s, d,m, τ) of an agent, where

s ∈ V is the source, d ∈ V is the destination, m ⊆ M are set

of mode choices and τ is the departure time or arrival time of

the trip. A time-dependent shortest path routing algorithm then

computes a feasible minimum cost path R, from s to d when

departing from s at time τ . It uses T̂ to evaluate expected

travel time in future states and cost function C to evaluate the

cost of any potential path.

State of the art graph-based routing algorithms has been

shown to be effective in real-time route planning in time-

dependent networks [19]. In this paper, we have used a time-

dependent variant of Dijkstra algorithm [20] called ALT [21],

[22], which improves upon basic A∗ search algorithm [23] by

introducing landmarks heuristics.

9) Mode Choice Model: The new route plan Rnew returned

by Router gives an agent information on next mode that should

be followed by an agent. However, an agent might have some

bias or preference over certain modes in a route. We define

function MC(Rcurr,Rnew, τ), which uses the route Rcurr cur-

rently being followed by agent from Plan memory, new route

Rnew given by Router, and time τ , to give probability value of

choosing the next mode that should be followed by an agent

as per new route Rnew. This function can be learned from

historical route plans followed by an agent.

10) Route Choice Model: We discussed earlier that Router
provides new route plan Rnew to agent. We also discussed

that the MC model gives the probability of choosing the

mode in new route Rnew. However, even if a route is present,

it may not be feasible for the agent—that is, the feasibility

of a route in the context of travel mode choice may depend

on economic constraints, altruism level and characteristics of

the agent. The attractiveness of travel alternatives is often

expressed via a utility function [24]. The analogous concept of

disutility has been used in transportation economics to evaluate

the displacement of time associated with the choice of different



transportation modes or routes [25]. Savings in travel time, by

definition, reduce the disutility associated with the total time of

displacement. Monetary cost, travel time, number of transfers,

calories burned, safety, etc. are some common disutilities for

a commuter [24], [25].

We have used the following factors to capture disutility
experienced by an agent when it follows route R:

• Expected Travel time: Since the route Rnew given by

the Router is the route that should be followed by the

agent in future time intervals, we need T̂ which gives

the expected travel times in future for each edge e in the

network. Let ET(R) be the function that evaluates the

expected travel time for traversing route R and which is

given by

ET (R) =
∑

(e,m,τ)∈R

T̂ (e,m, τ). (1)

• Expected Cost: The cost of a route R is not only

determined by the cost function C (which is set by the

agencies for using various services in the transportation

network), but also by the incentive function I, an inter-

vention by the system to reduce the cost. Let EC(R) be

the function that evaluates the expected cost for traversing

route R, where

EC(R) =
∑

(e,m,τ)∈R

C(e,m, τ)− I(e,m, τ). (2)

• Expected Social Disutility: Studies [15], [16] from

Routing game literature, shows that some agents are

partially willing to suffer (take on additional cost) for

the good of society. This is also known as altruism.

To capture the altruism level of an agent, we need to

capture expected social disutility of the system during

the time interval when the agent will follow its route plan

R. Here, expected social disutility is the total expected

travel time considering all the edges in the network graph.

Let ESD(R) be the function that evaluates the expected

Social Disutility for traversing route R, where

ESD(R) =
∑

e∈E,m∈M,τ∈R

T̂ (e,m, τ). (3)

We now define the discrete route choice model RC for an

agent, as a function of following parameters: (1) ET (Rcurr),
(2) EC(Rcurr), (3) ESD(Rcurr), (4) ET (Rnew), (5) EC(Rnew),
(6) ESD(Rnew), (7) τ , where ET,EC,ESD are the functions

defined earlier that evaluates a route R, Rcurr is the current

route present in Plan memory, Rnew is the new route given by

Router, τ is the time interval at which an agent is making a

decision.

C. Simulation Workflow

We now discuss the typical simulation steps. The first step

described later using the case study scenario is to learn the

agent’s route choice model, trigger model and the mode choice

models from the transportation data collected by a city. Once

these models have been learned (e.g., as a neural network),

they are ready for simulation. Then, the following steps are

performed.

1) Initialization: The first step is to initialize all the vari-

ables needed by the Environment and the agents in the system.

Specifically the Environment is seeded with initial variables

G0, I,C,A, T̂ at time τ = 0, as discussed in Section III-B.

We do not need to initialize the actual travel time function T
since it will be updated by the actuator function A as agents

start taking actions in the network. Each agent i is seeded with

initial route plan Ri given by its router based on its timed-

query request (si, di,mi, τi). Each agent is also provided with

trained models TR,MC,RC as discussed in Section III-B.

2) Run Simulation with Mobilytics-Gym: After the envi-

ronment variables are initialized and agents are seeded with

their initial plans, the simulation runs in discrete time steps.

In each time step τ , the environment gives state Sτ to all

agents in system and gets actions {a1, a2, · · · , an} from all the

agents, which is then used by actuator function A discussed in

Section III-B6 to evolve the state of graph from Gτ to Gτ+1.

Then, the environment gives new state Sτ+1 to all agents and

the process continues until all the agents run out of their plans.

3) Evaluate System Impact: Finally, after the end of the

simulation, we get the actual route R∗
i followed by each

agent i in the simulation. We use these routes to calculate

the following metrics for evaluating system impact:

1) Mean Excess Travel time (MET): We use this metric to

calculate extra travel time incurred due to route plan of all

agents in simulation, to give an indication on congestion

level. The mean excess travel time can be calculated

by MET (R∗) = 1
|R∗|

∑
q∈Q

∑
(e,m,τ)∈R∗

q
T (e,m, τ) −

φf (e,m, τ) where R∗ = {R∗
q}q∈Q is the set of routes

followed by the agent population Q and |R∗| denotes the

cardinality of R∗. Here, T (e,m, τ) is the actual travel

time experienced by an agent, as discussed earlier and

φf (e,m, τ) is the free-flow travel time function for a

given edge e, mode m and time interval τ .

2) Incentives cost (IC): The total cost incurred on

the system, due to incentives, can be calculated by

IC(R∗) = 1
|R∗|

∑
q∈Q

∑
(e,m,τ)∈R∗

q
I(e,m, τ) where

R∗ = {R∗
q}q∈Q is the set of routes followed by the

population Q and |R∗| denotes the cardinality of R∗.

Here, I(e,m, τ) is the incentive function set by the

system, as discussed earlier.

IV. CASE STUDY OF NASHVILLE

We now discuss the use of Mobilytics-Gym on a case study

for the Nashville metropolitan region. First, we discuss the

data used to learn the models.

A. Dataset

a) Trip Data: We use anonymized employee trip distri-

bution data localized to traffic analysis zones (TAZ)2. Further,

2TAZ is a special area delineated by state and/or local transportation
officials for tabulating traffic-related data, especially journey-to-work and
place-of-work statistics.



Fig. 2: Dataset over various TAZs. The colour scale increases with
the density of population in a TAZ, and shows the number of trips
to the University of Vanderbilt region.

we use the dataset from the United States Census [26] to model

the relative traffic demand density from each TAZ back to

the university area (see Fig. 2). Using these two datasets, we

sample randomized daily morning trips to the university area.

b) Other Data: In addition to the trip data, we have

access to static and real-time data from multiple data sources,

such as the Nashville Metro Transportation Authority (MTA)

for bus data, the Nashville Fire Department for accident data,

the Dark Sky API3 for weather data, and the HERE API 4 for

traffic data, including speed and travel time data.

B. Configuration for Nashville

In each of the following subsections, we describe the

components of Mobilytics-Gym for the Nashville simulation.

1) G0 = (V,E,M)τ=0: We use an OpenStreetMap

(OSM) export of the Nashville metropolitan area [27] to create

the road network. The OSM file contains information on

allowed modes (M ), length, geometry, and lane information,

and other static properties of junctions (V ) and links (E) in

the road network. We use this to initialize the initial state of

multi-modal network graph G0 = (V,E,M)τ=0, as discussed

in Section III-B1.

2) A(Gτ−1,a1,a2, · · · ,an): We use the MATSim [5]

simulator for our actuator function A. As noted in Section II,

we use MATSim as a one-shot simulator to simulate the traffic

dynamics and to test the viability and performance of different

models that make up the system.

3) C(e,m, τ): The disutility function C is defined in terms

of transit fares presently in place in Nashville and given in the

static general transit feed specification (GTFS) dataset [28].

On average, the transit fare is $1.5. Since there is no cost

incurred in walking, we kept the cost at $0 for ‘walk mode’.

We calculate the cost of using a car based on the average cost

of gas per gallon and average mileage per trip from following

studies [29], [30].

3https://darksky.net/forecast/40.7127,-74.0059/us12/en
4https://www.here.com/en

TABLE II: Incentive profiles (in dollars) used in the case study.

There are no incentives for using car. The incentive for walking

is set on a per-mile basis while the incentive for using the bus

is set on a per-ride basis.

Profile Car $ Bus $ Walk $
IP-1 0 0 0
IP-2 0 0.25 1
IP-3 0 0.5 1.5
IP-4 0 1 2.5
IP-5 0 1.25 4
IP-6 0 1.5 6

TABLE III: Feature description for travel time prediction

model.

Feature Dim Description
Hour of day,
Day of week

2 Hour of the day and Day of week used
to sample speed data

Length 1 Length of the street segment, collected
from OpenStreetMap

Freespeed 1 Freespeed on the street segment, col-
lected from HERE API

Number of
lanes

1 Number of lanes on the street segment,
collected from OpenStreetMap

TAZ 741 Binary indication of Traffic Analysis
Zone (TAZ) corresponding to this fea-
ture vector.

Realtime speed 1 The true speed value collected from
HERE API.

4) I(e,m, τ): Incentive design is difficult in practice. Since

the focus of this paper is in evaluating different agent models

given an arbitrary incentive function, we leave the discussion

on proper incentive design for future work. Giving incentives

to commuters based on travel mode is a commonly used

incentive mechanism by many cities in the United States [31].

Hence, we focus our experiments on this type of mechanism.

Table II shows the incentive profiles used for the experiments

in our paper. It starts with no incentives (for benchmark

analysis) and increases for the bus and walk modes. We should

note that the specific values used for the incentive profiles are

chosen after conducting an extensive set of simulations.

5) T̂(e,m, τ): We use a data-driven approach to build the

model T̂ for estimating travel times. We use historical traffic

data collected via the HERE API from January 1 to January 31,

2018, for the Nashville metropolitan area. We build a feature

set with the quantities described in Table III. All the features

are numeric quantities.

The resulting feature space has 747 dimensions and the

number of labeled data records is over 194 million, each of

which represents a feature vector captured at a time point for

a certain street segment. The training and testing data is min-

max normalized before being used in the models.

6) Fixed Plan Agents: To create Fixed Plan Agents, we use

GTFS data from Nashville MTA to create a set of fixed route

plans F as discussed in Section III-A.

7) Dynamic Plan Agents: To create Dynamic Plan Agents,

as discussed in Section III-A, we use real-world data from

Nashville to specify origin-destination pairs, used modes, and

origin zones based on the demand distribution data described



Fig. 3: MAE vs. Epoch curve during training of travel time prediction
model.

earlier in this section. Note that trip start times are generated

based on a uniform distribution in morning hours (i.e., 8AM-

10AM) during this simulation. The total number of agents used

for our case study is 4884.

8) Mode Choice Data: Since we do not have the mode

choice data needed for training agent models, we generate

this data in a simulated setting using MATSim. Specifically,

we run a simulation where 20% of the agents prefer the bus

and walk modes, 40% of the agents prefer the car mode, and

40% of the agents prefer the car or bus/walk mode selected

uniformly at random. Since the agent population is already

biased, the models will reflect this bias after being trained.

The trip data collected from the agents in these simulations

are then used by the model to train agent models.

9) Learning Travel Time Disutility Model (T̂ ): We use a

deep long short-term memory neural network (LSTM) [32],

which is a recurrent neural network architecture that can cap-

ture the long-term temporal dependency for short-term travel

speed prediction. Extensive tuning both in the configuration

of hidden layers and the activation and optimization functions

was done during training. The Adam optimizer [33] and

SGD [34] are chosen as optimizers for the neural network.

Early stopping criteria are employed to avoid overfitting. Fig. 3

shows the cost versus iteration curve during the training phase

for this model.

Fig. 3 shows the change in validation Mean Absolute Error

(MAE) with epoch steps during the training of the travel

disutility model T̂. The test MAE was found to be 4.87. This

is certainly not the best result compared to the start-of-the-art

models for estimating traffic speed [35]. However, our focus

in this paper is not on the model itself, but how the model is

used in the simulation.

10) Learning Agent preference models: As discussed in

Section III-B, the models used by Dynamic Plan Agents to

make a decision needs to be learned. The agent model contains

components that require training and in order to do so, agent

historical trip data is needed. Different models need a different

subset of overlapping features from the same trip data. We

discuss the features needed by different agent models below.

TABLE IV: Hyper-parameter tuning of agent models.

Model Hidden Activation OptimizerLayers Function
Trigger 100,70,40,

tanh SGD
model 20,10
Mode choice

100,60,40,10 relu Adam
model
Route choice 200,170,100,

relu Adam
model 50,20,10

1) Trigger model (TR): For this model, we build a feature

set containing following features: (a) One-hot encoded

vector of Source TAZ and Destination TAZ in which

source and destination vertices of the trip lies; (b) Hour of
day and Day of week of the trip departure time; (c) Mean
Congestion of outgoing links of source vertex; and (d)

Current mode of the agent at source vertex. We use a deep

feed-forward neural network (DNN) [36] for a binary

classification that indicates whether a routing decision

should be triggered or not given some inputs. For binary

classification, the activation function used in the output

layer is a sigmoid function [37].

2) Mode choice model (MC): For this model, we build a

feature set containing the following features: (a) One-hot

encoded vector of Source TAZ and Destination TAZ in

which source and destination vertices of the trip lies; (b)

Hour of day and Day of week of the trip departure time;

and, (c) Current mode of the agent at source vertex. We

use a DNN [36], for a multiclass logistic regression to

learn this model. For multi-class logistic regression, we

used a softmax function for activation in the output layer.

3) Route choice model (RC): For this model, we build a

feature set containing following features of the current

route the agent is following Rcurr and the new route

Rnew evaluated by router: (a) One-hot encoded vector of

Source TAZ and Destination TAZ in which source and

destination vertices of the trip lies; (b) Hour of day and

Day of week of the trip departure time; (c) Expected

Travel time ET (Rcurr), ET (Rnew); (d) Expected cost

EC(Rcurr), EC(Rnew); and, (e) Expected social disutil-

ity ESD(Rcurr), ESD(Rnew) for current and new route

respectively. We use a DNN with a softmax activation

function in the output layer to predict probabilities for

routes Rcurr and Rnew.

Table IV shows the parameters used for each agent model

after hyper-parameter tuning. Fig. 4 shows the loss vs epoch

curve during the training phase for the TR, MC, and RC
models. The loss was found to be 0.51,0.46,0.43 for TR,

MC, and RC models respectively.

C. Evaluating different incentive policies

Fig. 5 shows MET and IC for all the agents in the simula-

tion. The plot demonstrates that as the incentives provided for

the bus and walk modes increases, the MET value decreases.

This decrease in travel time is due to the fact that agents are

incentivized to use the bus and walk more. At the same time,

the IC increases steeply. For a modest decrease of 12min



Fig. 4: Loss vs. Epoch curve during training of agent models.

Fig. 5: System-level impact measured in terms of MET and incentives
cost (IC) for different incentive profiles.

of MET, the IC value increases by approximately $20000.

The higher amount of IC is due to following reasons: (1)

incentives were designed in a adhoc manner without emphasis

on the maximum budget set by the system or on appropriate

incentive values for bus and walk modes, (2) Incentive values

for walking are relatively steep compared to the bus. This is

due to the fact that most Vanderbilt University employees do

not live close to a bus stop, so higher incentives were needed

to show any meaningful change.

Fig. 6 shows the mode distribution for different incentive

profiles from Table II. The results imply that as more incen-

tives are given to agents, the number of agents using transit

increases, while at the same time number of agents using their

personal car decreases. It should be noted that in this plot,

agents are using multiple modes to reach their destination. The

large increase in transit ridership is due to the fact that agents

increasingly use the bus only in some legs of their entire trip.

The result shows that only 23% agents using cars changed

their modes when provided high incentives to walk and bus.

V. CONCLUSION

We presented a simulation framework that integrates

decision-making models and provides a standardized environ-

Fig. 6: Mode distribution plot for different incentive profiles.

ment to evaluate the efficacy of these models and incentive

schemes in terms of their system-level impact. In support of

the latter contribution, we included a case study from the

Nashville metropolitan. Regarding future work, we aim to

extend our current approach by: (a) including other modes of

transportation such as car share, scooters, and rental vehicles;

(b) using this simulation tool together with a more formal

optimization framework for designing incentives; and, (c)

designing models that can learn with causal inference—i.e., the

models not only learn to predict accurately, but also understand

the cause and effect of any prediction.
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