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Abstract—The rise in deep learning models in recent years has
led to various innovative solutions for intelligent transportation
technologies. Use of personal and on-demand mobility services
puts a strain on the existing road network in a city. To mitigate
this problem, city planners need a simulation framework to
evaluate the effect of any incentive policy in nudging commuters
towards alternate modes of travel, such as bike and car-share
options. In this paper, we leverage MATSim, an agent-based
simulation framework, to integrate agent preference models that
capture the altruistic behavior of an agent in addition to their
disutility proportional to the travel time and cost. These models
are learned in a data-driven approach and can be used to
evaluate the sensitivity of an agent to system-level disutility and
monetary incentives given, e.g., by the transportation authority.
This framework provides a standardized environment to evaluate
the effectiveness of any particular incentive policy of a city, in
nudging its residents towards alternate modes of transportation.
We show the effectiveness of the approach and provide analysis
using a case study from the Metropolitan Nashville area.

Index Terms—Transportation; Urban Mobility; Simulation;

I. INTRODUCTION

With rapid innovations in intelligent transportation technolo-
gies (ITS), the transportation landscape is changing at a faster
pace today than at any point in history. On-demand mobility
services such as ride-shares are becoming more commonplace
and are often considered more convenient than public transit
options. Use of personal and on-demand mobility services puts
a strain on the existing road network in a city. This is evident
from the United States Census Bureau’s annual American
Community Survey 2017 report [1], which states that 85.3% of
all commuters commute to work by personal vehicles, either
driving alone or carpooling.

Many cities in the United States have started revising their
transportation demand management (TDM) programs [2] with
a strong focus on investment in road networks, traffic sensors,
and public transit services. However, these services often come
with a cost that needs to be borne by the commuters. Planning
and investing in these services requires a lot of manpower
and time. Hence, TDM programs focus mostly on providing
incentives to commuters for using alternate modes of travel
(e.g., bike- and car-share options) [3], [4]; such efforts have
been shown to alleviate some of the cost incurred by users for
using certain preferred modes.
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To develop an effective incentive policy, the city planners
need to evaluate the effect of any incentive policy on key
system metrics such as congestion, CO2 emissions, mone-
tary cost and so on. To this end, they often utilize various
simulation tools [5]-[8] to model traffic mechanics in road
networks. A common process is to first gather commuter
data from their database, which is then used to generate a
time-varying demand distribution and mode distribution of
commuters. These distributions are then used to generate
user preference profiles and finally, these profiles are used
by simulation tools to analyze the impact of commuters on
network congestion. However, the process of generating user
preference profiles needs some prior assumptions from the city
planner to create more plausible trips for commuters, that will
be then used in the simulation. There is a need for a simulation
that can integrate data-driven models which learn commuter
preferences from historical trip data of commuters and use
those preferences in evaluating different incentive policies.

State of the art models [9]-[11] are used for modeling
commuter preferences in simulation tools. However, these
models often fail to capture complex multi-modal dynamics.
The functions that govern basic mechanics of agent-based
traffic simulation often use a one size fits all approach—
i.e., models all agents or commuters in the system with
some specific behavior model with a fixed set of features. As
evidenced by recent studies [12], [13], this is often incongruent
with real-world behavior of commuters which varies with time,
network conditions, and other hidden features.

As more commuters adopt multi-modal mobility options,
they often have a rich set of non-overlapping preferences
which factor into their decision to choose a particular route.
Many other facets of the commuter decision-making process
are also not accounted for in state of the art simulation studies.
For instance, how a commuter makes decisions on when to
travel, which mode of travel to use, what routes to traverse
are often not jointly considered. Furthermore, recent studies
[14] show that commuters are getting more environmentally
conscious and are sensitive to the costs imposed by other
commuters in a city, in terms of local and global pollution,
oil dependence, accidents, and noise. Hence, there is a critical
modeling gap between simulation and data-driven models
learned with a real-world dataset.

To bridge these gaps in a multi-modal environment, this
paper focuses on how to offer a theoretically sound and
practically useful integrated modeling framework. Towards
this end, we leverage MATSim [5], an agent-based simulation
framework, to incorporate various decision-making models
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and provide a standardized environment to evaluate the ef-
ficacy of these models in terms of the system-level impact of
particular intervention mechanisms. In particular, we make the
following key contributions:

1) Integration of agent choice models considering disutilities
and altruism within a well-used agent based multi-modal
transport simulator. These models enable us to evaluate
the sensitivity of an agent to system-level disutility and
the monetary incentives given by the transportation au-
thority of the city.

We also show how to learn these agent behavior models
from real-world data. This enables the simulation to be
configured for specific cities.

Finally, we present a case study from the Metropolitan
Nashville area. Based on models learned from the real-
world data, our simulation shows that 23% of agents
using cars changed their modes to bus and walk when
provided higher incentives. For the same simulation, our
results show that mean excess travel time of all agents
decreased by 12 min of mean excess travel time (MET),
yet the system-level cost is approximately $20000 due
to incentives.

2)

3)

The remainder of this paper is organized as follows. We
overview prior related work in Section II. In Section III,
we give a brief overview of the Mobilytics-Gym architecture
including a discussion of each component and present a
simulation workflow that uses this architecture to evaluate
incentive policies. In Section IV, we describe the implementa-
tion of the simulation workflow specific to the case study for
the Nashville metropolitan region. We conclude the article,
suggest avenues of further investigation in Section V. Table I
summarizes the symbols we used throughout this paper. The
source code is available on Github'.

II. STATE OF THE ART SIMULATION TOOLS FOR
TRANSPORTATION STUDIES

State of the art simulation tools such as MATSim [5],
AIMSUN [6], SUMO [7] which are used in transportation
studies [8], are effective tools for analyzing the impact of
commuter route choices on network congestion. MATSim [5],
in particular, supports implementing large-scale agent-based
transport simulations and is based on iterative dynamic traffic
assignment. That is, every agent repeatedly optimizes its daily
activity schedule while in competition for space-time slots
with all other agents on the transportation infrastructure. While
MATSim is capable of iteratively finding best routes for users,
we are interested in creating a simulation framework that
mirrors the real-world in the sense that given a system state by
the simulator, the agents use learned models to choose their
next actions and finally the effect is observed by all the agents.
In this sense, we use MATSim as a one-shot simulator to test
the viability and performance of different models that make
up the system.

Uhttps://github.com/scope-lab-vu/mobilytics-gym
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TABLE I: List of symbols

Symbol | Description
14 Set of network vertices
E Set of network edges
M Set of modes allowed in graph G
Me Set of modes allowed on an edge e € £, M, C M
T Time of the day
G State of directed multi-modal graph (V, E/, M) at time 7.
R Directed path from source vertex s € V to destination
vertex d € V
A Actuator function
T Actual travel time disutility function on an edge e € E
T Expected travel time disutility function on an edge e € E
1 Incentive function set by the system
C Cost disutility function for an edge e
Sr State of environment (G, I,T,C,T') at time interval 7
F Set of fixed or scheduled plans
ET Expected Travel time disutility function for route R
EC Expected cost function for route R
ESD Expected Social disutility function for route R
TR Function that uses uses current state along with current
plan to trigger new routing decision
MC Function that evaluates the probability of choosing a mode
sequence in route R
RC Function that evaluates route choices based on travel time,
cost, social cost, mode choice
MET | Function that calculates mean excess travel time incurred
due to route plan of all agents in simulation
Ic Function that calculates total cost incurred on the system,
due to incentives

One of the key problems with state-of-the-art simulation
tools is that the agents’ plans are fixed during the simulation.
This makes it difficult to evaluate the effect that incentive
policies which depend on the state of the network (e.g.,
congestion level) can have on changing agent behavior. That
is, if agents plans are fixed, then agents cannot react to the
incentives or any policy that needs to change their decisions
during the simulation. We can mitigate this problem by using
an approach where we start with an initial route plan, observe
the network congestion and then change route plans that have
the potential to possibly minimize congestion. In practice,
the approach to changing commuter behavior tends to be
adhoc, differs from region to region, and often depends on
prior assumptions made by local city planners. To capture
these differences and enable simulation of a wide variety of
approaches, the capability for simulated agents to change their
route in simulation needs to be integrated into state-of-the-art
simulators. Such a feature is essential for a standard framework
that can be configured for any city.

For analyzing the commuter impact on congestion, com-
muter travel behavior models are widely used in simulation
tools [9]-[11]. However, these models only capture the disu-
tility of a user proportional to travel time and monetary cost.
Studies from the literature on routing games show that some
commuters are partially willing to suffer (take on additional
cost) for the good of society [15], [16]. Models that capture

In the simulation tools previously discussed, several needed



features are lacking. For instance, in the state-of-the-art, exact
route plans are specified to the agents. In MATSim, agents
can have different preferences, but the weights for each of the
preferences need to be given explicitly before the simulation
is started. However, in practice, a city planner does not have
real-time routes of agents nor do they know the exact weights
corresponding to the agents’ preferences. Thus, data-driven
models that can learn agent preferences automatically are also
needed. Lastly, a traffic prediction model that can estimate
future states is also needed in order to support a real-time
router.

III. MOBILYTICS-GYM

In this section, we give a brief overview of the Mobilytics-
Gym architecture. Then, we detail each component of the
architecture. Finally, we present a simulation workflow that
uses this architecture.

A. Architecture

Figure 1 shows an agent-environment interface, where the
Agent is modeled as a decision-maker and everything external
to the agent is part of the Environment. An agent receives the
current state and makes a decision on what action to take,
given the current state. Here action is an interaction with any
entity in the transportation network such as choosing a road
link, boarding a bus, and so on. Such actions from all the
agents modify the environment state.

This is very similar to how the agent interacts with the
environment in a Markov Decision Process (MDP) [17] where
at each time step, the Environment is in some state, and the
Agent may choose any action that is available in that state. The
process responds at the next time step by randomly moving
into a new state, and giving the Agent a corresponding reward.
The key difference with our setup, however, is in how a
commuter makes a decision when they plan their trip and the
absence of reward function in our model. Note that we use
the terms agent, commuter and user interchangeably. In this
paper, we only focus on modeling and evaluating different
learnable components that constitute the agent’s sequential
decision process, while leaving the discussion on designing
proper reward functions to achieve some system objectives
for future work.

An agent is defined by a request query (s, m,d, ), where
s € V is the source, d € V is the destination, m C M are set
of mode choices of agent and 7 is the departure time or arrival
time of the trip. Each agent has a Plan Memory component,
which is responsible for storing the current route plan R for
the query. The action taken by the agent is based on the route
plan stored in Plan Memory. An agent can also change its
next plans in Plan Memory based on the network state and its
preferences. There are two types of agents in our framework:

1) Fixed Plan Agent: This agent has a pre-planned route
and does not have any decision model. Hence, they al-
ways follow the route plan (from Plan Memory) and never
change its route during a simulation. For example- Public
transit vehicles, background traffic and so on. These
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Fig. 1: Mobilytics-Gym architecture

agents play a role in affecting the plan of other agents
in the system. We define F = {R1,Ra,--- ,Rjp|} as a
set of fixed routes, where |F| denotes the total number of
fixed plans in the system. Note, we are using the terms
plans and routes interchangeably.

2) Dynamic Plan Agent: This agent differs from the Fixed
Plan Agent in that, it can change it’s routes dynamically
in network based on network conditions and it’s own
preferences. The preference models used by this agent
emulates an agent’s decision-making process. Specifi-
cally, we try to capture the sequential decisions made by
an agent while planning their trip. This process mostly
involves following steps: (1) Agent decides if a router
is needed to get a new trip plan, (2) Agent asks a
router for new route considering its preferences, (3)
Agent decides if the route given by the router should
be followed. We enable these decisions by integrating
Trigger Model (Section III-B7), Router (Section III-B8),
Mode Choice model (Section I11-B9), Route Choice model
(Section III-B10). These preference models are learned
from historical trips of an agent.

B. Components

1) Multi-modal Network: The base component that consti-
tutes Environment is a graph network which is used by agents
to move from an origin to a destination. The graph is time-
dependent since it changes with actions taken by all agents
in the network. Let G, = (V,E, M), be a time-dependent,
multi-modal, directed graph at time 7, where V is the set
of vertices, £ C V x V the set of edges and M is the set
of modes allowed at time 7. We say there is an edge from
uw €V towv €V, if and only if (u,v) € E. Note that we
use the terms graph and network interchangeably. Each edge
e € E has a set of edge labels M, that denotes the different
modes of transportation allowed on e, where M, € M.

Let R be a directed path from any source vertex s € V.
to a destination vertex d € V. A directed path of length |R)|



from s at time 75 to d at time 74 is a set of edges along with
mode used to travel on each edge and time at which an edge
is traversed (enter or exit), i.e

R - {(el7m177—1)’ (627771’277—2)7 e (e‘R‘anL|R‘7T‘R|)} g E?

where e; # e;,Vi # j, my C M., and 7, < 7; < 74, Vi.

2) Actuator: We need a function to evolve the state
based on the actions taken by all the agents in the system.
To this end, we formally define an actuator function as
A(G;_1,a1,a2, -+ ,ay), which uses the past network state
G._1 and actions {ay,as, -+ ,a,} taken by all agents in the
network at time 7 — 1, to give new state of the network G,
at time 7.

3) Travel Time Disutility: Since the graph G, is time-
dependent, the travel time on an edge e € E also varies with
time. The travel time on an edge also varies with the mode
being used by the agent. Let T(e,m,7) be a function that
that determines the actual travel time on an edge e € F, for
mode m C M,, at time 7.

The function T is impacted by the actions taken by all
agents since that changes the state of the graph and often
can be modeled as a latency function [18]. It can be learned
from historical states of the network G, Gy, ...,Gr_1 (from
Memory) and the current state of the network G, to get
expected travel times for time 7+1,7+2,--- , 7+ f, where f
is the number of time intervals in future. To differentiate this
from the actual travel time function, we denote the learned
travel time function as T. The accuracy of estimates from T
affects the agent’s plans and thus, the network congestion.

4) Incentives: We consider Incentives as any intervention
by the system to achieve some desired results, such as a
decrease in network congestion, a decrease in pollution and so
on. Such incentives are often monetary in nature and have an
immediate and direct effect on the user because these financial
incentives decrease the cost of a route. However, non-monetary
incentives such as paid holidays, free coupons and so on, are
difficult to design. They do not affect the immediate cost of
the route and instead gives a delayed reward to the user. In
this paper, we have only considered a financial incentive. Let
I(e,m, 7) be the function that determines the actual value of
incentive, where e € E' is an edge in network G, m C M is
the mode used on edge e and 7 is the time at which edge e
is traversed. The function I is an intervention by the system
and hence it does not change during the simulation. It is used
to reduce the cost disutility mentioned later in this section.

5) Cost Disutility: There is the cost (monetary) associated
with the graph G, such as transit fare, toll costs, and so on.
Let C(e,m,7) be a function that that determines the cost
(monetary) incurred for traversing on an edge e € E, for mode
m C M, at time 7. The function C is static-i.e does not
change during the simulation. It is also not learnable since
this function is set by different agencies that provide some
services in the transportation network.

6) State: State S, of the Environment at time 7, is a set
of environment variables at time 7, that is shared with all the
agents in the system. Formally, it can be defined as the tuple
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(G, LT, C,’i‘), where G, is the state of the network G at
time 7, I is the incentive function set by the system, 7" is the
actual travel time function , C' is the actual cost function and
T is travel time estimator as discussed earlier in this section.

7) Trigger Model: This model is the primary entry point
in the agent’s decision-making process. The time at which an
agent makes a new decision is crucial in route planning. If
an agent re-evaluates it’s planning at every intersection, then
it is following the best possible plan at every turn. While, if
an agent does not re-evaluate it’s route plan during the trip,
then it is not considering real-time network changes such as
congestion, transit delay, etc. and hence, may not be following
the best possible route to reach their destination.

Formally, we can realize this model as a function
TR(S.,R,7), where S, is the current state given by the
environment and R is the current route plan followed by
an agent and 7 is the time at which the agent has to make
a decision. Some agents change their original plans more
frequently than others. The function TR can also be learned
from historical trips of an agent.

8) Router: The goal of the Router is to get minimum cost
route based on timed-query (s,d,m,7) of an agent, where
s € V is the source, d € V is the destination, m C M are set
of mode choices and 7 is the departure time or arrival time of
the trip. A time-dependent shortest path routing algorithm then
computes a feasible minimum cost path R, from s to d when
departing from s at time 7. It uses T to evaluate expected
travel time in future states and cost function C' to evaluate the
cost of any potential path.

State of the art graph-based routing algorithms has been
shown to be effective in real-time route planning in time-
dependent networks [19]. In this paper, we have used a time-
dependent variant of Dijkstra algorithm [20] called ALT [21],
[22], which improves upon basic A* search algorithm [23] by
introducing landmarks heuristics.

9) Mode Choice Model: The new route plan R, returned
by Router gives an agent information on next mode that should
be followed by an agent. However, an agent might have some
bias or preference over certain modes in a route. We define
function MC(Reyr, Ruew, 7), which uses the route Ry, cur-
rently being followed by agent from Plan memory, new route
Rpew given by Router, and time 7, to give probability value of
choosing the next mode that should be followed by an agent
as per new route Rye,. This function can be learned from
historical route plans followed by an agent.

10) Route Choice Model: We discussed earlier that Router
provides new route plan R, to agent. We also discussed
that the MC model gives the probability of choosing the
mode in new route R,.. However, even if a route is present,
it may not be feasible for the agent—that is, the feasibility
of a route in the context of travel mode choice may depend
on economic constraints, altruism level and characteristics of
the agent. The attractiveness of travel alternatives is often
expressed via a utility function [24]. The analogous concept of
disutility has been used in transportation economics to evaluate
the displacement of time associated with the choice of different



transportation modes or routes [25]. Savings in travel time, by
definition, reduce the disutility associated with the total time of
displacement. Monetary cost, travel time, number of transfers,
calories burned, safety, etc. are some common disutilities for
a commuter [24], [25].

We have used the following factors to capture disutility
experienced by an agent when it follows route R:

o Expected Travel time: Since the route R, given by
the Router is the route that should be followed by the
agent in future time intervals, we need T which gives
the expected travel times in future for each edge e in the
network. Let ET(R) be the function that evaluates the
expected travel time for traversing route R and which is

given by
Z T(e7 m,T).
(e,m,T)ER

ET(R) (1

Expected Cost: The cost of a route R is not only
determined by the cost function C (which is set by the
agencies for using various services in the transportation
network), but also by the incentive function I, an inter-
vention by the system to reduce the cost. Let EC(R) be
the function that evaluates the expected cost for traversing
route R, where

EC(R)

> Cle,m, ) —I(e,m,7). ()

(e;m,7)ER

Expected Social Disutility: Studies [15], [16] from
Routing game literature, shows that some agents are
partially willing to suffer (take on additional cost) for
the good of society. This is also known as altruism.
To capture the altruism level of an agent, we need to
capture expected social disutility of the system during
the time interval when the agent will follow its route plan
R. Here, expected social disutility is the total expected
travel time considering all the edges in the network graph.
Let ESD(R) be the function that evaluates the expected
Social Disutility for traversing route 12, where

ESD(R) = > T(e,m,7).

ecEmeM,TeR

3

We now define the discrete route choice model RC for an
agent, as a function of following parameters: (1) ET(Reux),
(2) EC(Raur)s 3) ESD(Reur), (#) ET(Ruey)s (5) EC/(Riewy),
(6) ESD(Rpew), (7) T, where ET, EC, ES D are the functions
defined earlier that evaluates a route R, R, iS the current
route present in Plan memory, Ry is the new route given by
Router, T is the time interval at which an agent is making a
decision.

C. Simulation Workflow

We now discuss the typical simulation steps. The first step
described later using the case study scenario is to learn the
agent’s route choice model, trigger model and the mode choice
models from the transportation data collected by a city. Once
these models have been learned (e.g., as a neural network),
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they are ready for simulation. Then, the following steps are
performed.

1) Initialization: The first step is to initialize all the vari-
ables needed by the Environment and the agents in the system.
Specifically the Environment is seeded with initial variables
Go, I, C,A,’i‘ at time 7 = 0, as discussed in Section III-B.
We do not need to initialize the actual travel time function T
since it will be updated by the actuator function A as agents
start taking actions in the network. Each agent i is seeded with
initial route plan R; given by its router based on its timed-
query request (s;, d;, m;, 7;). Each agent is also provided with
trained models TR, MC, RC as discussed in Section III-B.

2) Run Simulation with Mobilytics-Gym: After the envi-
ronment variables are initialized and agents are seeded with
their initial plans, the simulation runs in discrete time steps.
In each time step 7, the environment gives state S, to all
agents in system and gets actions {a1, as, -+ ,a,} from all the
agents, which is then used by actuator function A discussed in
Section III-B6 to evolve the state of graph from G, to G4;.
Then, the environment gives new state S.1 to all agents and
the process continues until all the agents run out of their plans.

3) Evaluate System Impact: Finally, after the end of the
simulation, we get the actual route R; followed by each
agent ¢ in the simulation. We use these routes to calculate
the following metrics for evaluating system impact:

1) Mean Excess Travel time (MET): We use this metric to
calculate extra travel time incurred due to route plan of all
agents in simulation, to give an indication on congestion
level. The mean excess travel time can be calculated
by MET(R®) = [z Ygeq 2 (emryer; T(€:m,7) =
d(e,m,7) where R* = {R;},cq is the set of routes
followed by the agent population () and |R*| denotes the
cardinality of R*. Here, T'(e,m,7) is the actual travel
time experienced by an agent, as discussed earlier and
¢s(e,m,T) is the free-flow travel time function for a
given edge e, mode m and time interval 7.

Incentives cost (IC): The total cost incurred on
the system, due to incentives, can be calculated by
IC(R*) ﬁ Y4eq X (emryer; Le;m, 7) where
R* = {R;}4eq is the set of routes followed by the
population ) and |R*| denotes the cardinality of R*.
Here, I(e,m,7) is the incentive function set by the
system, as discussed earlier.

2)

IV. CASE STUDY OF NASHVILLE

We now discuss the use of Mobilytics-Gym on a case study
for the Nashville metropolitan region. First, we discuss the
data used to learn the models.

A. Dataset
a) Trip Data: We use anonymized employee trip distri-

bution data localized to traffic analysis zones (TAZ)?. Further,

2TAZ is a special area delineated by state and/or local transportation
officials for tabulating traffic-related data, especially journey-to-work and
place-of-work statistics.



Fig. 2: Dataset over various TAZs. The colour scale increases with
the density of population in a TAZ, and shows the number of trips
to the University of Vanderbilt region.

we use the dataset from the United States Census [26] to model
the relative traffic demand density from each TAZ back to
the university area (see Fig. 2). Using these two datasets, we
sample randomized daily morning trips to the university area.

b) Other Data: In addition to the trip data, we have
access to static and real-time data from multiple data sources,
such as the Nashville Metro Transportation Authority (MTA)
for bus data, the Nashville Fire Department for accident data,
the Dark Sky API? for weather data, and the HERE API * for
traffic data, including speed and travel time data.

B. Configuration for Nashville

In each of the following subsections, we describe the
components of Mobilytics-Gym for the Nashville simulation.

1) Go=(V,E,M),_o: We use an OpenStreetMap
(OSM) export of the Nashville metropolitan area [27] to create
the road network. The OSM file contains information on
allowed modes (M), length, geometry, and lane information,
and other static properties of junctions (V') and links (F) in
the road network. We use this to initialize the initial state of
multi-modal network graph Go = (V, E, M), as discussed
in Section III-B1.

2) A(G,_1,a1,az3, -+ ,a,): We use the MATSim [5]
simulator for our actuator function A. As noted in Section II,
we use MATSim as a one-shot simulator to simulate the traffic
dynamics and to test the viability and performance of different
models that make up the system.

3) C(e,m,7): The disutility function C is defined in terms
of transit fares presently in place in Nashville and given in the
static general transit feed specification (GTFS) dataset [28].
On average, the transit fare is $1.5. Since there is no cost
incurred in walking, we kept the cost at $0 for ‘walk mode’.
We calculate the cost of using a car based on the average cost
of gas per gallon and average mileage per trip from following
studies [29], [30].

3https://darksky.net/forecast/40.7127,-74.0059/us12/en
“https://www.here.com/en
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TABLE II: Incentive profiles (in dollars) used in the case study.
There are no incentives for using car. The incentive for walking
is set on a per-mile basis while the incentive for using the bus
is set on a per-ride basis.

Profile | Car $ | Bus $ | Walk $
1P-1 0 0 0

1P-2 0 0.25 1

1P-3 0 0.5 1.5
1P-4 0 1 2.5
IP-5 0 1.25 4

1P-6 0 1.5 6

TABLE III: Feature description for travel time prediction
model.

Feature Dim Description

Hour of day, | 2 Hour of the day and Day of week used

Day of week to sample speed data

Length 1 Length of the street segment, collected
from OpenStreetMap

Freespeed 1 Freespeed on the street segment, col-
lected from HERE API

Number of | 1 Number of lanes on the street segment,

lanes collected from OpenStreetMap

TAZ 741 Binary indication of Traffic Analysis
Zone (TAZ) corresponding to this fea-
ture vector.

Realtime speed | 1 The true speed value collected from
HERE API.

4) I(e,m, 7). Incentive design is difficult in practice. Since
the focus of this paper is in evaluating different agent models
given an arbitrary incentive function, we leave the discussion
on proper incentive design for future work. Giving incentives
to commuters based on travel mode is a commonly used
incentive mechanism by many cities in the United States [31].
Hence, we focus our experiments on this type of mechanism.
Table II shows the incentive profiles used for the experiments
in our paper. It starts with no incentives (for benchmark
analysis) and increases for the bus and walk modes. We should
note that the specific values used for the incentive profiles are
chosen after conducting an extensive set of simulations.

5) ’i‘(e7 m, 7): We use a data-driven approach to build the
model T for estimating travel times. We use historical traffic
data collected via the HERE API from January 1 to January 31,
2018, for the Nashville metropolitan area. We build a feature
set with the quantities described in Table III. All the features
are numeric quantities.

The resulting feature space has 747 dimensions and the
number of labeled data records is over 194 million, each of
which represents a feature vector captured at a time point for
a certain street segment. The training and testing data is min-
max normalized before being used in the models.

6) Fixed Plan Agents: To create Fixed Plan Agents, we use
GTFS data from Nashville MTA to create a set of fixed route
plans F as discussed in Section III-A.

7) Dynamic Plan Agents: To create Dynamic Plan Agents,
as discussed in Section III-A, we use real-world data from
Nashville to specify origin-destination pairs, used modes, and
origin zones based on the demand distribution data described
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Fig. 3: MAE vs. Epoch curve during training of travel time prediction
model.

earlier in this section. Note that trip start times are generated
based on a uniform distribution in morning hours (i.e., 8AM-
10AM) during this simulation. The total number of agents used
for our case study is 4884.

8) Mode Choice Data: Since we do not have the mode
choice data needed for training agent models, we generate
this data in a simulated setting using MATSim. Specifically,
we run a simulation where 20% of the agents prefer the bus
and walk modes, 40% of the agents prefer the car mode, and
40% of the agents prefer the car or bus/walk mode selected
uniformly at random. Since the agent population is already
biased, the models will reflect this bias after being trained.
The trip data collected from the agents in these simulations
are then used by the model to train agent models.

9) Learning Travel Time Disutility Model (T): We use a
deep long short-term memory neural network (LSTM) [32],
which is a recurrent neural network architecture that can cap-
ture the long-term temporal dependency for short-term travel
speed prediction. Extensive tuning both in the configuration
of hidden layers and the activation and optimization functions
was done during training. The Adam optimizer [33] and
SGD [34] are chosen as optimizers for the neural network.
Early stopping criteria are employed to avoid overfitting. Fig. 3
shows the cost versus iteration curve during the training phase
for this model.

Fig. 3 shows the change in validation Mean Absolute Error
(MAE) with epoch steps during the training of the travel
disutility model T. The test MAE was found to be 4.87. This
is certainly not the best result compared to the start-of-the-art
models for estimating traffic speed [35]. However, our focus
in this paper is not on the model itself, but how the model is
used in the simulation.

10) Learning Agent preference models: As discussed in
Section III-B, the models used by Dynamic Plan Agents to
make a decision needs to be learned. The agent model contains
components that require training and in order to do so, agent
historical trip data is needed. Different models need a different
subset of overlapping features from the same trip data. We
discuss the features needed by different agent models below.
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TABLE IV: Hyper-parameter tuning of agent models.

Hidden Activation ..
Model Layers Function Optimizer
Trigger 100,70,40,
model 20,10 tanh SGD
Mode choice | 66 40,10 | relu Adam
model
Route choice | 200,170,100, rel Adam
model 50,20,10 4

1) Trigger model (TR): For this model, we build a feature
set containing following features: (a) One-hot encoded
vector of Source TAZ and Destination TAZ in which
source and destination vertices of the trip lies; (b) Hour of
day and Day of week of the trip departure time; (c) Mean
Congestion of outgoing links of source vertex; and (d)
Current mode of the agent at source vertex. We use a deep
feed-forward neural network (DNN) [36] for a binary
classification that indicates whether a routing decision
should be triggered or not given some inputs. For binary
classification, the activation function used in the output
layer is a sigmoid function [37].

Mode choice model (IMC): For this model, we build a
feature set containing the following features: (a) One-hot
encoded vector of Source TAZ and Destination TAZ in
which source and destination vertices of the trip lies; (b)
Hour of day and Day of week of the trip departure time;
and, (c) Current mode of the agent at source vertex. We
use a DNN [36], for a multiclass logistic regression to
learn this model. For multi-class logistic regression, we
used a softmax function for activation in the output layer.
Route choice model (RC): For this model, we build a
feature set containing following features of the current
route the agent is following R, and the new route
Ryew evaluated by router: (a) One-hot encoded vector of
Source TAZ and Destination TAZ in which source and
destination vertices of the trip lies; (b) Hour of day and
Day of week of the trip departure time; (c) Expected
Travel time ET(Reur), ET(Ryew); (d) Expected cost
EC(Reur); EC(Ruew); and, (e) Expected social disutil-
ity ESD(Reurr), ESD(Rpeyw) for current and new route
respectively. We use a DNN with a softmax activation
function in the output layer to predict probabilities for
routes Reyr and Rpew.

2)

3)

Table IV shows the parameters used for each agent model
after hyper-parameter tuning. Fig. 4 shows the loss vs epoch
curve during the training phase for the TR, MC, and RC
models. The loss was found to be 0.51,0.46,0.43 for TR,
MC, and RC models respectively.

C. Evaluating different incentive policies

Fig. 5 shows MET and IC for all the agents in the simula-
tion. The plot demonstrates that as the incentives provided for
the bus and walk modes increases, the MET value decreases.
This decrease in travel time is due to the fact that agents are
incentivized to use the bus and walk more. At the same time,
the IC increases steeply. For a modest decrease of 12min
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Fig. 4: Loss vs. Epoch curve during training of agent models.
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Fig. 5: System-level impact measured in terms of MET and incentives
cost (IC) for different incentive profiles.

of MET, the IC value increases by approximately $20000.
The higher amount of IC is due to following reasons: (1)
incentives were designed in a adhoc manner without emphasis
on the maximum budget set by the system or on appropriate
incentive values for bus and walk modes, (2) Incentive values
for walking are relatively steep compared to the bus. This is
due to the fact that most Vanderbilt University employees do
not live close to a bus stop, so higher incentives were needed
to show any meaningful change.

Fig. 6 shows the mode distribution for different incentive
profiles from Table II. The results imply that as more incen-
tives are given to agents, the number of agents using transit
increases, while at the same time number of agents using their
personal car decreases. It should be noted that in this plot,
agents are using multiple modes to reach their destination. The
large increase in transit ridership is due to the fact that agents
increasingly use the bus only in some legs of their entire trip.
The result shows that only 23% agents using cars changed
their modes when provided high incentives to walk and bus.

V. CONCLUSION

We presented a simulation framework that integrates
decision-making models and provides a standardized environ-
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Fig. 6: Mode distribution plot for different incentive profiles.

ment to evaluate the efficacy of these models and incentive
schemes in terms of their system-level impact. In support of
the latter contribution, we included a case study from the
Nashville metropolitan. Regarding future work, we aim to
extend our current approach by: (a) including other modes of
transportation such as car share, scooters, and rental vehicles;
(b) using this simulation tool together with a more formal
optimization framework for designing incentives; and, (c)
designing models that can learn with causal inference—i.e., the
models not only learn to predict accurately, but also understand
the cause and effect of any prediction.
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