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Abstract—We propose Top-N-Rank, a novel family of list-
wise Learning-to-Rank models for reliably recommending the
N top-ranked items. The proposed models optimize a variant
of the widely used cumulative discounted gain (DCG) objective
function which differs from DCG in two important aspects: (i)
It limits the evaluation of DCG only on the top N items in
the ranked lists, thereby eliminating the impact of low-ranked
items on the learned ranking function; and (ii) it incorporates
weights that allow the model to leverage multiple types of implicit
feedback with differing levels of reliability or trustworthiness.
Because the resulting objective function is non-smooth and hence
challenging to optimize, we consider two smooth approximations
of the objective function, using the traditional sigmoid function
and the rectified linear unit (ReLU). We propose a family of
learning-to-rank algorithms (Top-N-Rank) that work with any
smooth objective function. Then, a more efficient variant, Top-
N-Rank.ReLU, is introduced, which effectively exploits the prop-
erties of ReLU function to reduce the computational complexity
of Top-N-Rank from quadratic to linear in the average number
of items rated by users. The results of our experiments using two
widely used benchmarks, namely, the MovieLens data set and the
Amazon Video Games data set demonstrate that: (i) The “top-
N truncation” of the objective function substantially improves
the ranking quality of the top N recommendations; (ii) using
the ReLU for smoothing the objective function yields significant
improvement in both ranking quality as well as runtime as
compared to using the sigmoid; and (iii) Top-N-Rank.ReLU
substantially outperforms the well-performing list-wise ranking
methods in terms of ranking quality.

Index Terms—list-wise ranking; top n recommendation; learn-
ing to rank; latent factor model; rectifier function;

I. INTRODUCTION

Collaborative filtering (CF) is one of the most widely used
methods in recommender systems. CF systems recommend
similar items to users who share similar traits or similar tastes
[1]. Learning to Rank (LTR) methods, which directly learn to
accurately rank items based on the user’s ratings, rankings, or
implicit feedback over a set of items, are widely used to learn
the perfect rankings for top-n recommendation scenarios [2],

[3].
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A. Related Work

Learning to Rank (LTR) methods can be categorized into
point-wise, pair-wise and list-wise methods. Point-wise meth-
ods learn ranking models from the scores assigned by users
to individual items (see e.g., [4]). Pair-wise methods (e.g.,
BPR [5]), learn binary classifiers that compare ordered pairs
of items to decide whether the first item is preferred to the
second. The applicability of such methods is limited by the
high computational cost of pair-wise comparisons of user-
rated items in generating the training samples for the binary
classifiers [6]. List-wise methods leverage the entire list of
items consumed by the users to optimize a list-wise ranking
loss function or the probability of permutations that map
items to ranks [7], [8]. Typically, such methods optimize a
smooth approximation of a loss function that measures the
distance between the reference lists of ranked items in the
training data and the ranked list of items produced by the
ranking model. For example, CLiMF [3], which optimizes a
smooth lower bound of mean-reciprocal rank (MRR), aims
at ranking a small set of most-preferred items at the top of
the list; TFMAP [9] optimizes the mean average precision
(MAP) of top-ranked items for each user in a given context.
Other methods optimize discounted cumulative gain (DCG)
or normalized DCG (NDCG) can be found in [10], [11].
Examples of list-wise methods that optimize the probability
of permutations that map items to ranks include: ListPMF,
which represents each user as a probability distribution of
the permutations over rated items based on the Plackett-Luce
model [12]; ListRank [13], which aims to identify a ranking
permutation that minimizes the cross-entropy between the
distribution of the observed ranking of items based on user
ratings and the predicted rankings with respect to the top-
ranked item; or methods that optimize the log-posterior over
the predicted preference order with the observed preference
orders [12]; and methods that leverage deep neural nets (e.g.,
[4]) to learn the non-linear interaction between user-item pairs
(See [14] for a survey of such methods).

Existing LTR approaches suffer from several limitations.
Although, in practical applications, only the top (say N)
items in the ranked list are of interest, and the lower-ranked



ratings in the list are less reliable, most existing LTR methods
are optimized on the ranks of the entire lists, which, could
potentially reduce the ranking quality of the top-ranked items.
Furthermore, the computational complexity of straightforward
approaches to optimizing ranking measures (e.g., DCG [15],
MRR [3], AUC [11] or MAP [9]), scale quadratically with
m (the average number of observed items across all users),
which renders such methods impractical in large-scale real-
world settings.

B. Overview and Contributions

To address the limitations of existing LTR systems, we
propose Top-N-Rank, a novel latent factor based list-wise
ranking model for top-N recommendation problem which
directly optimizes a novel weighted “top-heavy” truncated
variant of the DCG ranking measure, namely, wDCG@N.
Since in many situations, the users only refer to the top-
ranked items in the list, the higher positions often have more
impact on the ranking score than the lower ones. Our proposed
measure, wDCG@N, differs from the conventional DCG in
two important aspects: (i) It considers only on the top N items
in the ranked lists, thereby eliminating the impact of low-
ranked items; and (ii) it incorporates weights that allow the
model to learn from multiple kinds of implicit feedback.

Because wDCG@N is non-smooth, we introduce the recti-
fied linear unit (ReLU) as a smoothing function, which is more
suited to top N ranking problems than the traditional sigmoid
function. ReLU not only eliminates the contribution of the
low-ranked items on our loss function, but also allows us to
obtain a significantly faster variant of the wDCG@N-based
LTR approach (Top-N-Rank.ReLU), yielding a substantial
reduction in computational complexity from O(kn'm?) to
O(kn’m), where k denotes the dimension of latent factors,
n' denotes the batch size of users for the stochastic gradient
descent algorithm and m is the average number of (observed)
items, making Top-N-Rank.ReLU scalable to large-scale real-
world settings.

The main contributions of this paper can be summarized as
follows:

1) We have introduced a novel list-wise ranking model
for top-N recommendation, which directly optimizes a
weighted top-heavy truncated ranking objective func-
tion, wDCG@N. Our model improves the quality of the
top-N item lists by mitigating the impact of the lower-
ranked items, and is capable of handling multiple types
of implicit feedback (if available).

We have introduced the rectified linear unit (ReLU) to
smooth our objective function. We have demonstrated
that ReLU could (1) eliminate the impact of the lower-
ranked items and (2) substantially speed up the calcula-
tions by careful algorithm design.

We have proposed a fast learning algorithm (Top-N-
Rank) for generic smoothing functions, and a substan-
tially more efficient variant (Top-N-Rank.ReL.U) for the
ReLU smoothing function which reduce the computa-
tional complexity from O(kn'm?) to O(kn'm).

2)

3)
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We compared the performance of Top-N-Rank and Top-N-
Rank.ReLU with several state-of-the-art list-wise LTR meth-
ods [3], [10], [12], [13], [16] using the MovieLens (20M)
data set [17] and the Amazon video games data set [18]. All
experiments were performed on Apache Spark cluster [19]
and the raw data are stored on Hadoop Distribute File System
(HDEFS).

II. PRELIMINARIES

Let 4 = {uj,ug,...,u,} be the set of n users,
Z = {i1,i2,...,im} be the set of m items and P =
{p1,p2,.-.,pt} be the set of ¢ types of implicit feedback.

The interactions of users with items and the associated implicit
feedback are represented by X = U x Z x P, where the entry
(u,i,pu;) € X denotes the interaction of user u with item ¢
and the associated implicit feedback p,;. We further denote
by Z." the subset of items actually observed by or presented
to u. For each i € Z;, we denote the rating of i by f,; and
the position of ¢ based on u’s rank ordering of items by RUJFZ
We reserve the indexing letters w to indicate arbitrary user in
U and 7 to represent arbitrary item in Z.

A. Latent Factor Model

Latent factor models (LFMs) are state-of-the-art in terms
of both the quality of recommendations as well as scalabil-
ity [20]. LFMs represent both users and items using low-
dimensional vectors of latent factors. Let 6 be the set of latent
factors such that 6“*¢" is an n x k matrix with the u-th row
guse” denoting the latent factors of u and 6%¢™ is an m x k
matrix with the i-th row 6:°™ denoting the latent factors of .
The rank k, of the latent factor matrices is much smaller than
n or m. The rating for u to ¢ is predicted by the dot product
of e and gitem,

B. Discounted Cumulative Gain

The discounted Cumulative Gain (DCG) [21] is a widely
used measure of quality of recommendations, which measures
the degree to which higher ranked items are placed ahead of
the lower ranked ones, with the contribution of lower ranked
items discounted by a logarithmic factor. Let y,; be a binary
indicator to represent whether ¢ is relevant to u, then DCG of
u is computed by:

DCG, =)
€T

Notice that the ranked position (start from zero) of item 4
can be computed by:

QWui 1

log (Ru; + 2) M

JET

2

where 1(z) is an indicator function with 1(x) = 1 if x is true
and otherwise 1(x) = 0. Given our emphasis on getting the top
rated items ranked correctly in the list of recommended items,
DCG appears to be good criterion to optimize on. However, as
evident from (1), DCG suffers from two important limitations:



(i) Although DCG de-emphasizes the contribution of the lower
ranked items, it does not eliminate the collective effect of a
large number of lower ranked items, even if the ranking of
such lower ranked items are less reliable. If the goal is to
optimize the ranking of the N top rated items, it makes sense
to tailor objective function to focus explicitly on the ranking
of the N top-rated items and ignore the rest. (ii) Because DCG
assigns equal weights to all implicit user feedback, it fails to
account for differences in their trustworthiness.

III. TorP-N-RANK

We proceed to introduce wDCG@N, a variant of DCG that
overcomes its drawbacks. We then describe two smoothing
functions (sigmoid and rectified linear unit (ReLU)) that can
convert WDCG@N to a smoothed function that is amenable to
being optimized using the standard optimization techniques.
Finally, we show how to use the ReLU approximation of
wDCG@N to obtain a scalable LTR algorithm.

A. Top-N-Rank Training Objective

To address the limitations of DCG, we
wDCG@N, which is defined as follows:

introduce

log (Ru; + 2) ¥

wDCG,@N = Z 1(Ry; < N) -
i€T
The first term in (3), 1 (R,; < N) is an indicator function
that selects only the N top-rated items and ignores the rest.
The coefficient w,,,, in the second term denotes the weight of
the implicit feedback p,;, which can model the reliability or
importance of the feedback. The choice of w,,, is application
and data-dependent. For example, one can set wp,, to the
number of items rated by (or presented to) the user [22] or
the conversion rate (the proportion between buyers and users
who conducted the implicit feedback). The resulting ranking
objective can be formulated as:

— . 2
L(0) = max XEZ;WDCGM@N A5

“4)

where ||||§ denotes the L?-norm and \ is the regularization
coefficient that controls over-fitting.

B. Smooth Approximations of Top-N-Rank Training Objective

A non-smooth training objective such as the one in (4) is
challenging to optimize. Hence, we replace the non-smooth
training objective in (4) by its smooth approximation. Specif-
ically, we approximate the indicator function in (2) by a
smooth function h such that 1(fu; < fu;) = h(Ay;;) with

Ayji = fuj — fus- In what follows, we will consider two
different smooth functions that accomplish this goal.

Sigmoid function. The sigmoid function is widely used
in existing list-wise LTR-based recommendation models (e.g.,
[3], [9]) for its appealing performance in practice. Instead of
adopting the sigmoid function directly, we introduce a scaling
constant C' (C' > 1) to provides more accurate estimation,
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such that the indicator function is approximated by g (CA,;;)
where g () = 1/(1 + exp (—x)).

Rectifier function. The rectified linear units (ReLU) [23],
is a nonlinear smooth function with several properties that
make it attractive in our setting. The one-sided nature of ReLU
(relu (x) = max {0, z}) eliminates the contribution of of the
lower-rated items to the objective function. Second, ReLU is
computationally simper: only comparison and addition opera-
tions are required. Third, the form of ReLLU permits an efficient
algorithm (see Algorithm 2) with computational complexity
that is linear in the average number of (observed) items across
all users (see section III-C2). When ReLU is used, we have
1 (fui < fuj) = relu (Ayji)

1) Parameterization of the Smooth Functions: Recall that
the “top-N term”, 1(R,; < N), was introduced to indicate
whether item ¢ ranks among the top N item list. However,
a poor choice of the hyper-parameters in the smooth function
could lead to gross under-estimation or over-estimation of R,,;
and thus negate the utility of the “top-N term”.

Here we examine how to choose the parameters of the
sigmoid and the ReLU functions so that they behave as
intended. In the case of the sigmoid function, we see that
a choice of C' matters, with proper values of C' (e.g., C = T7)
yielding the desired behavior. In the case of ReLU, we
can ensure the desired behavior by controlling the initial
distribution of latent factors 6. Suppose that 6 ~ U (0,b),
where b is the width of the uniform distribution. Then ac-
cording to the Central Limit Theorem, for arbitrary wu,4, fy;
approximately follows a Gaussian distribution, i.e., f,; ~
N (M,JQ) with p [Et Ouer -Hffem] kb2 /4 and

= E[}, 0uer- 9“””] — p? = Tkb*/144. In order
to ensure that |f,; —p| < 1, making use of the fact that
P(|fui—p| <30) =~ 1, we find 3c = 1, and hence b =
2/ V/Tk, which provides the basic setting for all of the Top-N
models using the ReLU as the smoothing function.

C. Fast LTR Algorithms

1) Fast LTR Algorithm for Generic Smooth Function: To
optimize the objective function reported in (4), we need to
compute the predicted score of each item and then perform
the pair-wise comparison to determine their positions in the
rank-ordered list. Because in most cases, the number of items
m far outnumbers the dimension of the latent factors k,
the complexity of a single pass is O (knm?). One common
practice is to exploit the sparsity of X by considering only
the predicted scores of the observed items, yielding a smooth
objective function such as:

Lt —mln—ZZhN RJr

ueU jeTt

®)
+ 10113

The gradient of L*(6) w.r.t. 6 is given by (6).



oL™ n OAyji
e :Z Z wDCG .(Z R (Ayji) 50 )
uE€U ;e jeTT
N — R,
N - By 4 MV R o

(RL’ +2) IOg(RIi +2)
(6)

Algorithm 1: Top-N-Rank

: User-item feedback X C U x Z x P, the
truncate coefficient N, smooth function h,
dimension of latent factors k, learning rate «,
regularization coefficient \, batch size n’

Output: The learned latent factors 6

Input

1 Initialize 8@ set t = 0
2 while not converged do
3 U® = draw n’ samples randomly from I/
p y
4 for u € U do
(t)
user 1 user +
5 Update ;! (t+1) — 0. ® (8‘35367«)
based on (6)
6 for i € Z,} do
item (t+1) __ pitem () o+ \®
7 Update 6;*¢™ =01 —« (aeztm)
based on (6)
8 end
9 end
10 t=t+1
11 end
12 return 6
The gradients for A,; wrt. 6 are g@,ﬁ:ii =
(gitem™ — gite™) and gﬁ;ﬁi = —fuser. k' is the derivative

of smooth function which is presented in section III-B.
The pseudo-code for Top-N-Rank (using stochastic gradient
descent) is given in Algorithm 1.

Similar to [3], the computational complexity of Top-N-Rank
for one iteration is O(kn/m?) (n denotes the average number
of observed items across all users).

2) Enhanced LTR Algorithm for Large-scale Top-N Rec-
ommendation: Algorithm 1 can be intractable in large-scale
systems with massive number of items. The use of ReLU
permits a more efficient version of Top-N-Rank (denoted
as Top-N-Rank.ReLU) to further reduce the complexity to
O(kn’m). The pseudo-code for Top-N-Rank.ReLU is given
in Algorithm 2.

For a single user, step 5 and 12 is computed in
O(km + mlogm). Note that R;’m (step 7 and step 14)
and Ejezi h' (Aujx,) %@;ﬁeﬁ? (step 8 and step 15) can be
calculated in O (1) and O (k) respectively through step-by-step
accumulation, the complexity of step 6-11 and step 13-17 are
O(km). Therefore, the overall computational complexity of
Top-N-Rank.ReLU for one iteration is O(n'm(k + logm)).
In practice, logm is usually very small (less than 20) even
in large-scale systems, Thus, we can expect that &k is of the
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Algorithm 2: Top-N-Rank.ReL.U

: User-item feedback X C U x Z x P, the
truncate coefficient N, smooth function h,
dimension of latent factors k, learning rate «,
regularization coefficient ), batch size n’

Output: The learned latent factors 6

Input

1 Initialize (°) randomly from U(0,2/v/7k) and t = 0
2 while not converged do
3 U® = draw n’ samples randomly from U/
4 | forucU® do
5 7= the descending orders of items indicated by
the predicted score f;F
6 for i =2,...,|n| do
7 R;rm = Zj<i (fuﬂéA_ fum)
8 jeri I (Bujms) Zgeer =
item item
ZJ<1 (97'(]' - 97'(7',
9 compute and add the current gradient to
639#5; based on (6)
10 end
11 Update guser(t+l) — guser(®) _ (a%;)(t)
based on (6) ’
12 = the descending orders of items indicated by
the predicted score f,
13 for i =2,...,|n| do
14 R;_Trb = Zj<i (fuﬂé)A_ fuﬂ'l)
15 ZjEII h,/ (AUJTQ) ﬁ,;;’ = (1 — Z) G’TUJ:Ser
) , (®)
16 [deate egem(“rl) _ e;tiem(t) —a (8(‘31_[2:7”)
based on (6) '
17 end
18 end
19 t=t+1
20 end

21 return 0()

same scale with logm, then the complexity is simplified to
O(kn'm), making Top-N-Rank.ReLU suitable for large-scale
settings with massive item sets.

IV. EXPERIMENTS AND RESULTS

We report results of two sets of experiments. The first set of
experiments compare the performance of Top-N-Rank models
using either the sigmoid and the ReLU functions for smoothing
with or without the “top-N truncation”. Our results show that
Top-N-Rank.ReLLU (using “top-N truncation” and the ReLU
function, i.e., Algorithm 2) outperforms the other methods on
both the benchmark data sets. The second set of experiments
compare the performance of Top-N-Rank.ReLU with several
state-of-the-art list-wise LTR CF approaches. Our results show
that Top-N-Rank algorithms outperform the these methods on
both the benchmark data sets.



All of our experiments were performed on an Apache
Spark cluster [19] with four compute nodes (Intel Xeon 2.1
GHz CPU with 20G RAM per node) with the raw data
stored on Hadoop Distributed File System (HDFS). The model
parameters were tuned to optimize performance on the training
data. We describe below the details of the experiments and the
results.

A. Experimental Setup

1) Data Sets: We used two benchmark data sets in our
experiments: (i) the Amazon video games data set [18], which
contains a subset of video games product reviews (ratings, text,
etc.) from Amazon. There are 7,077 users, 25,744 items and
more than 1 million ratings in this data set. (ii) The MovieLens
(20M) data set [17], which contains 138,493 users, 27,278
items and more than 20 millions of ratings. The ratings in both
data sets are split to 1-5 stars, with more stars corresponding
to higher ratings. We use only the user rating data to conduct
the experiments.

2) Evaluation Procedure: We first remove users who rated
fewer than 10 items. For the remaining users, we convert the
ratings to implicit feedback based on the item ratings provided
by each user. That is, for each u, we assign w,,, = 1 when
fui > 4 and otherwise w,,, = —1 [10]. We randomly select
half of the ratings provided by each user for training, and
use the rest for evaluation. On each test run, we average the
performance over all of the users. We repeat this process
5 times and report the performance averaged across the 5
independent experiments.

We measure the performance based only on the rated items
as in [10]. Because we focus on the placement of the top-
rated items in the rank-ordered list, it is natural to use the
Normalized Discounted Cumulative Gain (NDCG) [24] as the
performance measure. In this paper, we report the average of
NDCG@1 through NCDG@N across all users.

The definition of NDCG at the top-N positions for a user
u is given by:

DCG,@N
IDCG, QN

where DCG,, @N is the DCG value for the top-N ranked items
as described in (1). IDCG, @N is the perfect ranking score
which is obtained when the ranked list is created by sorting
the items in descending order of their implicit feedback values
(ratings).

NDCG,@N = 7)

B. Comparison of Variants of Top-N-Rank

We compare the performance of LTR models trained with
the smoothed and regularized wDCG@N objective using either
the sigmoid and the ReLU functions for smoothing, with or
without the “top-N truncation”: (i) Top-N-Rank.ReLU: our
proposed Top-N-Rank model trained to optimize wDCG@N
smoothed using the ReLU function (Algorithm 2); (ii) non-
Top-N.ReLU: The LTR model trained to optimize wDCG
smoothed using the ReLU; (iii) Top-N-Rank.sgm: our pro-
posed top-N model trained to optimize wDCG@N smoothed
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using the sigmoid function (Algorithm 1); and (iv) non-Top-
N.sgm: The LTR model trained to optimize wDCG smoothed
using the sigmoid function.

In these experiments, we set the number of latent factors
k = 10 and the number of items ranked, N = 20. For the
sigmoid function, C' = 7 and for the ReLU function, b =
2/ VTk (see section III-B1). The regularization coefficient A
is set to 0.1; and the batch size n’ is set to 10% of the users in
the training data. All methods are run until either maximum
iteration maxR = 30 is reached or sum-of-square distance
between parameters of two consecutive runs falls below the
threshold € = 0.1.

The results of our experiments are summarized in Table 1.
Our results clearly show that the Top-N-Rank models with the
“top-N truncation” term in the objective function consistently
and statistically significantly (based on paired Student’s t¢-
test) outperform the non top-N counterparts. This confirms our
intuition that Top-N-Rank models focus on correctly ordering
the top-rated items, and hence are resistant to the cumulative
effect (often unreliable) of lower-rated items. The results in
Table I also show that Top-N-Rank.ReLLU substantially outper-
forms Top-N-Rank.sgm. Moreover, the performance of Top-
N-Rank.sgm is comparable to that of Non-Top-N.ReLU. We
conclude that the ReLU function, with an appropriate choice of
b is better able to more accurately rank the top-rated items. The
runtime for Top-N-Rank.ReLU is significantly lower than that
of Top-N-Rank.sgm (results not shown), proving the appealing
efficiency of Top-N-Rank.ReLU.

C. Top-N-Rank.ReLU Compared with the State-of-the-Art
List-wise LTR Models

We compare Top-N-Rank.ReLU with several state-of-the-
art list-wise LTR CF approaches: (i) MF-ADG: An algorithm
that optimizes the Averaged Discounted Gain (ADG), which is
obtained by averaging the DCG across all users [10]. Similar to
our work, MF-ADG is designed to work with implicit feedback
data sets. The sampling parameter ~ is fixed at 100; (ii)
CLiMF: A MF model that is designed to work with binarized
implicit feedback data sets, which optimizes mean-reciprocal
rank (MRR) [3]. Instead of directly optimizing MRR, CLiMF
learns the latent factors by maximizing the smoothed lower
bound of MRR; (iii) XCLiMF: An extension of CLiMF
that optimizes the expected reciprocal rank (ERR), which is
designed to work with graded user ratings [16]; (iv) ListRank:
A MF model that optimizes the cross-entropy between the
distribution of the observed and predicted ratings using top-
one probability, which is obtained using the softmax function
[13]; and (v) ListPMF-PL: A list-wise probabilistic matrix
factorization method that maximizes the log posterior over the
predicted rank order with the observed preference order, using
the Plackett-Luce model based permutation probability [12].

The results of our experiments are summarized in Table II.
Top-N-Rank.ReLU consistently outperforms the baseline mod-
els on both the Amazon Video Game and MovieLens data sets,
regardless of the length of recommended item lists. Student’s
t test further demonstrate the significance of our results (not



TABLE I: Comparison of Variants of Top-N-Rank

Data sets Algorithms NDCG@1 NDCG@3 NDCG@5 NDCG@10 NDCG@20
Top-N-Rank.ReLU 0.8186 0.8009 0.8079 0.8334 0.8455
non-Top-N.ReLU 0.8033 0.7866 0.7976 0.8242 0.8350
Amazon Video Games Top-N-Rank.sgm 0.7956 0.7747 0.7861 0.8167 0.8269
non-Top-N.sgm 0.7871 0.7657 0.7780 0.8109 0.8196
Top-N-Rank.ReLU 0.7811 0.7648 0.7532 0.7469 0.7521
non-Top-N.ReLU 0.7775 0.7593 0.7466 0.7389 0.7430
MovieLens Top-N-Rank.sgm 0.7784 0.7564 0.7415 0.7323 0.7346
non-Top-N-Rank.sgm 0.7575 0.7315 0.7121 0.6968 0.6954

TABLE II: Top-N-Rank.ReLU compared with the state-of-the-art list-wise LTR models

Data sets Algorithms NDCG@1 NDCG@3 NDCG@5 NDCG@10 NDCG@20
Top-N-Rank.ReLU 0.8135 0.7964 0.8043 0.8325 0.8383
MF-ADG 0.7809 0.7646 0.7762 0.8103 0.8178
CLiMF 0.7101 0.7137 0.7388 0.7779 0.7829
Amazon Video Games xCLiMF 0.709 0.7131 0.7381 0.7776 0.7823
ListRank 0.7045 0.7106 0.7367 0.7761 0.7809
ListPMF-PL 0.7043 0.7123 0.7376 0.7762 0.78
Top-N-Rank.ReLU 0.7827 0.7665 0.7548 0.7483 0.7531
MF-ADG 0.7301 0.6993 0.6799 0.6681 0.6698
CLiMF 0.7459 0.7187 0.7013 0.691 0.6943
Movielens xCLiMF 0.7609 0.7406 0.7271 0.7193 0.7236
ListRank 0.7657 0.7423 0.7284 0.7206 0.7232
ListPMF-PL 0.6981 0.6715 0.659 0.6568 0.6638

shown). Although Top-N-Rank.ReLLU maximize wDCG on the
top-20 items, the results show that the model offers better
quality of recommendations across the top 1-20 items relative
to the baselines. This may be explained in part by the following
limitations of the individual methods: CLiMF and xCLiMF
are designed to optimize the smoothed reciprocal rank (RR),
which does not fully exploit the user ratings, because of its
emphasis on optimizing only a few of the relevant items for
each user; MF-ADG maximizes an approximation of ADG, on
a small set of sampled data which may limit the quality of the
estimates; ListRank and ListPMF-PL are designed for rating
data, but assign the same weight to all items with the same
rating. Perhaps more importantly, all of the methods except
Top-N-Rank.ReLU attempt to optimize the ranking over the
entire set of the user-rated items, as opposed to only the N
top-ranked items, which makes them susceptible to the noise
in the ratings of low-ranked items.

V. SUMMARY AND DISCUSSION

In this paper, we proposed Top-N-Rank, a novel family of
list-wise Learning-to-Rank models for reliably recommend-
ing the N top-ranked items. The proposed models optimize
wDCG@N, a variant of the widely used cumulative discounted
gain (DCG) objective function which differs from DCG in two
important aspects: (1) It limits the evaluation of DCG only on
the top N items in the ranked lists, thereby eliminating the
impact of low-ranked items on the learned ranking function;
and (2) it incorporates weights that allow the model to learn
from multiple kinds of implicit user feedback with differing
levels of reliability or trustworthiness. Because wDCG@N
is non-smooth, we considered two smooth approximations
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of wDCG@N, using the traditional sigmoid function and
the rectified linear unit (ReLU). We proposed a family of
learning-to-rank algorithms (Top-N-Rank) that work with any
smooth objective function (e.g., smooth approximations of
wDCG@N). We designed Top-N-Rank.ReLLU, a more efficient
version of Top-N-Rank that exploits the properties of ReLU
function to reduce the computational complexity of Top-N-
Rank from quadratic to linear in the average number of items
rated by users. The results of our experiments using two widely
used benchmarks, namely, the Amazon Video Games data set
and the MovieLens data set demonstrate that: (i) The “top-
N truncation” of the objective function substantially improves
the ranking quality; (ii) using the ReLU for smoothing the
wDCG@N objective function yields significant improvement
in both ranking quality as well as runtime as compared to using
the sigmoid function; and (iii) Top-N-Rank.ReLU substantially
outperforms the state-of-the-art list-wise ranking CF methods
(MF-ADG, CLiMF, xCLiMF, ListRank, and ListPMF-PL) in
terms of ranking quality.

Some promising directions for further research include: (i)
Fusing the proposed top-N truncation component and ReLLU
smoothing function with different list-wise LTR objectives
(i.e., MAP, AUC or MRR); (ii) investigation of complex
interaction structure of user-item pairs with the help of deep
neural nets; (iii) extending the proposed model to tensor
factorization or factorization machines to take in multiple types
of features.
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