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ABSTRACT

Discovery of disease biomarkers is a key step in translating
advances in genomics into clinical practice. There is growing
evidence that changes in gut microbial composition are associated
with the onset and progression of Type 2 Diabetes (T2D), Obesity,
and Inflammatory Bowel Disease (IBD). Reliable identification of
the most informative features (i.e., microbes) for discriminating
metagenomics samples from two or more groups (ie.,
phenotypes) is a major challenge in computational metagenomics.
We propose a Network-Based Biomarker Discovery (NBBD)
framework for detecting disease biomarkers from metagenomics
data. NBBD has two major customizable modules: i) A network
inference module for inferring ecological networks from the
abundances of microbial operational taxonomic units (OTUs); ii)
A node importance scoring module for comparing the
constructed networks for the chosen phenotypes and assigning a
score to each node based on the degree to which the topological
properties of the node differ across two networks. We empirically
evaluated the proposed NBBD framework, using five network
inference methods for inferring gut microbial networks combined
with six node topological properties, on the identification of IBD

biomarkers using a large dataset from a cohort of 657 and 316 IBD
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and healthy controls metagenomic biopsy samples, respectively.
Our results show that NBBD is very competitive with some of the
state-of-the-art feature selection methods including the widely
used method based on random forest variable importance scores.
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1 Introduction

Inflammatory bowel disease (IBD) is a group of disorders that is
characterized by flares of inflammation in the gut. Several studies
have shown that the gut microbiota plays an important role in the
pathogenesis of IBD [10; 15; 16; 20]. Recent advances in
sequencing technology have expanded rapidly the amount of
metagenomics samples collected from the gut under different
health/disease conditions [4; 32]. Despite the existence of several
IBD metagenomics datasets (e.g., [10; 13; 34]) and metagenome-
wide analysis studies (e.g. [6; 10; 13]), the role of the gut
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microbiome in the pathogenesis of IBD remains poorly
understood [10]. Therefore, there is an urgent need for effective
methods for data analysis, interpretation, and translation of the
resulting insights into clinical practice [30]. Of particular interest
are computational and statistical methods for integrative analyses
of large metagenomics datasets to discover reliable biomarkers of
IBD disease [29] as well as microbial signatures for different IBD
subtypes [23].

Identification of disease biomarkers from metagenomics data
calls for effective methods for selecting, from a very large number
of candidate features, a small subset of features that can accurately
discriminate between the phenotypes (e.g., IBD versus healthy).
This task is very challenging in practice due to [28]: i) curse of
dimensionality (i.e., large number of features and small numbers
of samples); ii) high degree of sparsity of the metagenomics data
samples (where only a small fraction of the entries have non-zero
values); iii) complexity of the underlying biology and limitations
in sequencing technology and taxonomy classification pipelines.
To address these challenges, several statistical methods have been
proposed in the literature to compare abundance of features (e.g.,
genes or OTUs) between two groups [36]. Some of these methods
have been designed specifically for RNA-Seq data (e.g., DESeq [1]
and edgeR [27]) while recently tools such as metagenomeSeq [24]
and analysis of composition of microbiomes (ANCOM) [19] have
been developed specifically for metagenomics data, which is often
more sparse than RNA-Seq data. Machine learning based feature
selection [11] is another widely used approach for identifying the
most discriminative (informative) features from either RNA-Seq
or metagenomics data.

Against this background, we present an integrative framework
for Network-Based Biomarkers Discovery (NBBD). NBBD
integrates comparative network analysis for prioritizing
biomarkers and the machine learning approach for assessing the
discriminative power of the top selected biomarkers. We tested
the proposed framework on the challenging task of identifying
biomarkers from a large dataset of new-onset IBD metagenomics
biopsy samples collected from pediatrics. Using our framework as
a test-bed for evaluating five commonly used ecological network
inference tools and six node topological properties, our results
suggest that networks inferred from the same data but using
different tools have substantial differences in their topological
identify  highly

discriminative biomarkers even from poorly inferred networks

properties. Moreover, our method can
(e.g., networks with high rates of false positive and/or negative
edges). Our results also suggest that the network-based feature
selection method is very competitive with some state-of-the-art
feature selection methods for determining the most discriminative
features from metagenomics data. Finally, analyses of the
identified IBD biomarkers suggest promising candidates for

targeted experimental studies.
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2 Materials and Methods

2.1 Datasets

The OTU BIOM files and meta-data (including age, gender, race,
disease severity, behavior, and location) for a large cohort IBD
dataset [10] were downloaded from QIITA
(https://qiita.ucsd.edu/) database. The dataset consists of 1359
metagenomics samples including rectal tissue biopsy and fecal
samples. We filtered the dataset by discarding fecal samples and
samples corresponding to patients with age greater than 18 years.
Thus, our final dataset consists of 657 and 316 IBD and healthy
control metagenomic biopsy samples, respectively. We then
randomly split the final dataset into training and test datasets such
that the training data has 200 IBD and 200 healthy samples. Each
sample has 786 OTUs at the genus level that were extracted using
summarize_taxa.py QIIME script.

2.1 Network-based Biomarker Discovery
(NBBD) Framework

NBDD framework consists of two main customizable modules, a
network inference module and a node importance scoring module.
Fig. 1 provides an overview of the NBBD framework: Given a pair
of OTU tables (e.g., corresponding to IBD and healthy samples),
the network inference module constructs a microbial network
from each OTU table. In these networks, each node corresponds
to an OTU and each edge represents a relationship between two
nodes (e.g., co-occurrence). The node importance scoring module
compares the two networks and assigns a score to each node
based on the degree to which the topological properties of the
node differ across the two networks. We hypothesize that the
nodes that show the greatest difference across the two networks
should provide useful features for training a classifier to
discriminate between two populations of metagenomics samples.
Let G;(V;, E;) and G;(V}, Ej) represent two graphs (networks)
constructed from two groups (i, j) of metagenomics samples. We
score each node v € V; N V; with respect to a node property P as:
score” () = fp(v,6)) = fr(v, G|
where fp(v, G;) is the value of the property P for node v in G;. For
instance, fp(v, G;) could be the degree of v in G;.

2.3 Network Inference Methods

We experimented with five widely used microbial network
inference methods. We used the default parameters of each tool,
unless noted otherwise. In what follows, we briefly summarize
each of the methods.

SparCC: Sparse Correlations for Compositional data (SparCC) [8]
infers a network of associations between the microbial species
based on the linear Pearson correlation between the log-
transformed OTUs, under the assumption that the underlying
network is sparse. We used the implementation of SparCC
provide as part of SPIEC-EASI [17] tool.
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Figure 1: Overview of the NBBD framework. Training data in the form of two OTU tables corresponding to two groups of
metagenomics samples are first used to construct two networks. The node importance scoring modules compares topological
properties of shared nodes in the two graphs and outputs scores to prioritize the input features. Top selected features are

then used to train and evaluate a classifier.

Glasso: Graphical lasso (Glasso) [9] estimates a network of
associations between OTUs by estimating a sparse inverse of the
covariance matrix. Its advantages include speed and the reliance
on only one parameter to be tuned (the regularization parameter
which controls the sparsity of the learned network). We used the
Glasso implementation that is part of SPIEC-EASI [17].

MB: This method, due to Meinshausen and Biithlmann [20] (hence
the name MB method), estimates sparse networks by identifying
direct neighbors (for each node) as the smallest subset of nodes
such that the target node is conditionally independent of the rest
of the networks given the direct neighbors so identified. MB is
also implemented in SPIEC-EASI [17].

RMT: This method uses Pearson correlation coefficient to add an
edge between two OTUs if their correlation is higher than a
threshold that is optimized using a procedure based on the
Random Matrix Theory (RMT). The method is implemented in the
Molecular Ecological Network Analysis Pipeline [5]. We used the
default parameters except for the parameter controlling the
number of OTUs that build the network. An OTU was used if it is
expressed in at least 25% of the samples. The default setting of 50%
fails to construct a network.

CoNet: This method infers the association network by combining
two complementary approaches [7]: an ensemble method of
similarity or dissimilarity measures; and a novel permutation-
renormalization bootstrap method, ReBoot [7], to assess the

significance of the associations.

2.4 Node Topological Properties

Let G (V,E) be a network (or graph) where V and E denote the
sets of nodes and edges, respectively. We considered the following
node properties implemented in NetworkX [12]:

Betweenness Centrality (btw): Betweenness centrality of a

o(uwlv) where

node v is determined as fp1, (v, G) = Yuwev g

o(u,w) is the total number of shortest paths between u and w,
and o(u, w|v) is the number of shortest paths between u and w
passing through v.

Closeness Centrality (cls): Closeness centrality of a node v is
G) = n-1
fcls(v’ ) - ¥izld(u,w)

distance between u and v, and n is the number of nodes that can

where d(u,v) is the shortest path

reach v.

Average Neighbor Degree (and): The average neighborhood
degree of a node vis f,,q(v,G) = le)lzueN(v) k,, where N(v)
are the neighbors of node v and k,, is the degree of node u €
N(v) .

Clustering Coefficient (cc): For

coefficient of a

unweighted graphs,
fece(,G) =

where T(v) is the number of triangles that

the clustering node v s

2T(v)
deg (v)(deg(v)-1)
include node v and deg (v) is the degree of v.

Node Clique Number (ncn): The node clique number of a node
v is the size of the largest maximal clique containing v, where a
clique is a subset of nodes such that there is an edge between
every pair of distinct nodes.

Core Number (cn): The core number of a node v is the largest
value k of a k-core containing v, where k-core is a maximal
subgraph that contains nodes of degree k or more.

2.5 Machine Learning Classifiers and
Performance Evaluation

We used the training data to train Random Forest (RF) [3]
classifiers to discriminate between (positively labeled) IBD
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samples and (negatively labeled) healthy samples. We used the
implementation of RF algorithm provided in Scikit-learn [25] and
set the number of trees to 500. We evaluated the performance of
the resulting classifiers on the test set using a set of commonly
used performance measures: Accuracy (ACC), Sensitivity (Sn),
Specificity (Sp), Mathew's Correlation Coefficients (MCC), and
Area Under ROC Curve (AUC) [2].

3 Results and Discussion

3.1 Exploratory Analysis

We used PICRUSt [18] to examine the functional space in the IBD
and healthy microbiome samples. PICRUSt infers functional
activity by constructing ancestral gene content and then
estimating the abundance of gene families in the 16S rRNA. The
resultant functional gene count matrix was first normalized to
rescale counts per sample to lie in the interval [0,1] before
conducing follow-up analyses using Principal component analysis
(PCA) and Student's #-test. Fig. 2-a and 2-b show the visualization
of the first two principal components when PCA was applied to
functional and compositional profiles of our training data,
respectively. We did not see evidence of two distinct groups
corresponding to IBD and healthy data in PC space. This led us to
conjecture that non-linear classifiers (e.g., Random Forests [3])
will outperform linear models (e.g., Support Vector Machine [33]
with a linear kernel) on this data. The statistically significant (at a
p-value < 0.05) functional differences between IBD and healthy
samples are shown in Fig. 2-c. The results suggest that the IBD
group exhibits a decrease with respect to 15 KEGG metabolic
pathways, many of which have been reported in the literature. For
example, decreased level of Tryptophan in serum was shown to
be significantly lower in IBD patients [22], which is consistent
with the lower microbiome Tryptophan metabolism activity in
our IBD samples relative to the healthy samples. Medicherla et al.
[21] have shown that the oral administration of geraniol inhibit
pro-inflammatory cytokines in patients with murine colitis, which
is again consistent with what we observe in our samples. A lower
geraniol degradation activity in the IBD samples suggests lower
availability of geraniol.

The top 10 most differentially abundant OTUs between IBD
and healthy samples identified using the nonparametric Kruskal-
Wallis statistical test [14] are shown in Fig. 3. Surprisingly, only
six OTUs have significant (adjusted p-values < 0.05) differential
abundance with respect IBD and healthy groups. These OTUs
correspond to Clostridiaceae and Pasteurellaceae families and four
genera, Blautia, Coprococcus, Roseburia, and Ruminococcus.

3.2 Feature Selection Improves the Predictive
Performance of RF Classifiers

Table 1 compares the performance on the test set of a RF classifier
trained using all 786 OTUs and RF classifiers trained using top 30
OTUs determined from training data using the following
commonly used feature selection methods, RF feature importance
[3], Lasso [31], Information Gain (IG), and Min- Redundancy and
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Figure 2: Visualization of the first two Principal
components from the PCA analysis of (a) PICURSt
functional profiles and (b) normalized OTU counts. (c)
Functional differences, predicted using PICRUSt, of
statistically significant KEGG metabolic pathways.

CT T 101 sl el ls]e]
(a0 N -~ < o
Sl|lN||lw||l~]||®
o o o o o o o o o o
2 @
) 3 [} 3 @ N ©
© Q =
8 E é Rl 8 g’; Ko} g 2
gl S| 5]|8||El|l=||e]||8
211382l £|lellsl]|allt
g2 2||al|8||E||S||z|lS||E
<] a © o o =] 3] o © X
Soll&||od||ofle||le||<||x]|]|a]||=<
A A T
1.00 A (X )
[ ] Y ®
0.754 <
..
o ° 4 Groups
[ ]
= 0.501 . | Fd healthy
> * ° °
ol . Fe1 18D
° ° :
° @ |e
0.25 o ' L e
° ° °s s
Pers ° 8 ; s
[ ]
[
o_oo-ll F Yy ll ll L] [ ] li ‘l lz l
L L T

T T T T T v

Figure 3: Top 10 most differentially abundant OTUs
between IBD and healthy samples identified using the
nonparametric Kruskal-Wallis statistical test.
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Table 1: Performance of RF classifiers trained using all
features and top 30 features selected using different feature
selection methods.

ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

Table 2: Performance of top performing RF classifier (in

terms of AUC) for each network inference method in
NBBD.

Feature Selection | ACC (%) | Sn Sp MCC AUC Tool Property | ACC (%) | Sn Sp MCC | AUC
None 66 0.64 0.75 0.31 0.74 SparCC | btw 66 0.62 0.79 | 0.34 0.77
RF 66 0.64 0.77 0.33 0.78 Glasso btw 58 0.57 0.59 | 0.14 0.63
Lasso 41 0.34 0.68 0.02 0.52 MB cc 57 0.53 0.73 | 0.21 0.66
IG 65 0.61 0.81 0.34 0.75 RMT cn 66 0.63 0.78 | 0.33 0.77
MRMR 43 0.38 0.64 0.02 0.52 CoNet btw 63 0.60 0.78 | 0.30 0.74

Max-Relevance (MRMR) [26] using F-Statistic and Pearson's
correlation coefficient for assessing relevance of and redundancy
between features. Using all features, the performance (in terms of
AUC) of the RF classifier estimated using the test data is 0.74. On
the other hand, a RF classifier trained using top 30 features,
determined using feature importance of another trained RF
classifier, had AUC score of 0.78. Surprisingly, classifiers trained
using top 30 features determined using Lasso or MRMR methods
have very poor performance. One possible explanation of this
finding is that the basic Lasso method fits a linear model whereas
as suggested by our exploratory analyses, IBD and healthy
samples cannot be reliably discriminated using a linear model. In
the case of MRMR, our results seem to suggest that F-Statistic
and/or Pearson's Correlation Coefficient do not reliably estimate
the relevance and/or redundancy when the feature space is
extremely sparse.

3.3 Performance of Network-based Feature
Selection Methods

Table 2 reports the best performing classifier (in terms of AUC)
using NBBD feature selection for each choice of the network
inference methods. The highest AUC of 0.77 is obtained using
SparCC combined with node betweenness centrality (btw) for
determining node importance scores or RMT combined with core
number (cn) node property for computing node importance
scores. These results are especially noteworthy in light of a
recently published comparative study [35] which showed that
SparCC, RMT, and CoNet (among other correlation network
inference tools) suffer from extremely poor precision (i.e., below
0.2), and hence yield networks with a large number of false edges.
Our results show that even networks with a large fraction of
spurious edges can be used to reliably identify potential disease
markers from metagenomic data.

3.4 Analysis of Identified IBD Microbial
Markers

Tables 1 and 2 show that there exist three classifiers (each trained
using a subset of top 30 selected OTUs) with AUC scores in the
range 0.77-0.78. We named the corresponding feature subsets
according to the feature selection method used to identify them
(e.g., SparCC_btw, RMT cn, and RF). We noted that the
combination of these 90 OTUs resulted in 50 unique OTUs.
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Figure 4: Venn diagram of unique and shared features
selected using RF feature importance, network-based
feature selection applied to RMT (SparCC) networks and
using cn (btw) for node importance scoring,.

The Venn diagram of unique and shared OTUs among the three
subsets of features is given in Fig. 4. The number of unique OTUs
in each subset is 12, 6, and 4 for SparCC_btw, RMT_cn, and RF
sets, respectively. The network-based feature selection method
that shares the largest number (22) of OTUs in common with those
identified using RF feature importance method is RMT_cn. We
further observed that there were only 12 OTUs shared among the
three sets. To assess the significance of the difference between the
medians of relative abundance of these OTUs in IBD and healthy
populations, we applied the Mann-Whitney nonparametric test.
We found lower (but non statistically significant) abundance of
Faecalibacterium genus in IBD samples. We also found
significantly higher abundance of Gemellaceae and Sutterella in
the IBD samples relative to the healthy samples. In the case of the
OTUs Clostridiales,
Ruminococcus, Lachnospira,

remaining  nine (Parabacteroides,
Clostridiaceae,

Roseburia, Erysipelotrichaceae, Eubacterium), our results show

Coprococcus,

significantly lower abundances in IBD samples relative to the
healthy samples. Mechanistic understanding of the precise
reasons for these observed differences calls for controlled

experiments.
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4 Conclusions

We proposed a novel Network-Based Biomarker Discovery
(NBBD) framework for detecting disease biomarkers from
metagenomics data. NBBD consists of: a network inference
module, for inferring networks from the abundances of microbial
operational taxonomic units (OTUs); and a node importance
scoring module, for comparing the constructed networks for the
chosen phenotypes and assigning a score to each node based on
the degree to which the topological properties of the node differ
across constructed networks. Our results show that the NBBD
approach is able to reliably identify IBD biomarkers even when
the constructed networks have high rates of false positive edges.

ACKNOWLEDGMENTS

Research supported in part by the Center for Big Data Analytics
and Discovery Informatics at the Pennsylvania State University
and by the National Center for Advancing Translational Sciences,
National Institutes of Health, through Grant UL1 TR000127 and
TR002014. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the NIH.

REFERENCES

[1] Anders, S. and Huber, W., 2010. Differential expression analysis for
sequence count data. Genome biology 11, 10, R106.

[2] Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., and Nielsen, H., 2000.

Assessing the accuracy of prediction algorithms for classification: an
overview. Bioinformatics 16, 5, 412-424.

[3] Breiman, L., 2001. Random forests. Machine learning 45, 1, 5-32.

[4] Debelius, J.W., Vazquez-Baeza, Y., Mcdonald, D., Xu, Z., Wolfe, E., and
Knight, R., 2016. Turning participatory microbiome research into usable
data: lessons from the American Gut Project. Journal of microbiology
& biology education 17, 1, 46.

[5] Deng, Y., Jiang, Y.-H., Yang, Y., He, Z., Luo, F., and Zhou, J., 2012.
Molecular ecological network analyses. BMC bioinformatics 13,1, 113.

(6] Eck, A., De Groot, E., De Meij, T., Welling, M., Savelkoul, P., and
Budding, A., 2017. Robust microbiota-based diagnostics for
inflammatory bowel disease. Journal of clinical microbiology 55, 6,
1720-1732.

[7] Faust, K., Sathirapongsasuti, J.F., Izard, J., Segata, N., Gevers, D., Raes, J.,
and Huttenhower, C., 2012. Microbial co-occurrence relationships in the
human microbiome. PLoS computational biology 8,7, €1002606.

[8] Friedman, J. and Alm, EJ., 2012. Inferring correlation networks from
genomic survey data. PLoS computational biology 8, 9, €1002687.

[9] Friedman, J., Hastie, T., and Tibshirani, R., 2008. Sparse inverse
covariance estimation with the graphical lasso. Biostatistics 9, 3, 432-
441.

[10] Gevers, D., Kugathasan, S., Denson, L.A., Vazquez-Baeza, Y., Van

Treuren, W., Ren, B., Schwager, E., Knights, D., Song, S.J., and Yassour,
M., 2014. The treatment-naive microbiome in new-onset Crohn’s
disease. Cell host & microbe 15, 3, 382-392.

[11] Guyon, I. and Elisseeff, A., 2003. An introduction to variable and feature
selection. Journal of machine learning research 3, Mar, 1157-1182.
[12] Hagberg, A., Swart, P., and S Chult, D., 2008. Exploring network

structure, dynamics, and function using NetworkX. Los Alamos
National Lab.(LANL), Los Alamos, NM (United States).

[13] Halfvarson, J., Brislawn, CJ., Lamendella, R., Vazquez-Baeza, Y.,
Walters, W.A., Bramer, L.M., D'amato, M., Bonfiglio, F., Mcdonald, D.,
and Gonzalez, A., 2017. Dynamics of the human gut microbiome in
inflammatory bowel disease. Nature microbiology 2, 5, 17004.

[14] Hollander, M., Wolfe, D.A., and Chicken, E., 2013. Nonparametric
statistical methods. John Wiley & Sons.
[15] Kamada, N,, Seo, S.-U., Chen, G.Y., and Nuiiez, G., 2013. Role of the gut

microbiota in immunity and inflammatory disease. Nature Reviews
Immunology 13, 5, 321.

[16] Kostic, A.D., Xavier, RJ., and Gevers, D., 2014. The microbiome in
inflammatory bowel disease: current status and the future ahead.
Gastroenterology 146, 6, 1489-1499.

ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

[17] Kurtz, Z.D., Miiller, C.L., Miraldi, E.R., Littman, D.R., Blaser, M.J., and
Bonneau, R.A., 2015. Sparse and compositionally robust inference of
microbial ecological networks. PLoS computational biology 11, 5,
€1004226.

[18] Langille, M.G., Zaneveld, J., Caporaso, J.G., Mcdonald, D., Knights, D.,
Reyes, J.A., Clemente, ].C., Burkepile, D.E., Thurber, R.L.V., and Knight,
R., 2013. Predictive functional profiling of microbial communities using
16S rRNA marker gene sequences. Nature biotechnology 31, 9, 814.

[19] Mandal, S., Van Treuren, W., White, R.A., Eggesbe, M., Knight, R., and
Peddada, S.D., 2015. Analysis of composition of microbiomes: a novel
method for studying microbial composition. Microbial ecology in
health and disease 26, 1, 27663.

[20] Manichanh, C., Reeder, J., Gibert, P., Varela, E., Llopis, M., Antolin, M.,
Guigo, R., Knight, R.,, and Guarner, F., 2010. Reshaping the gut
microbiome with bacterial transplantation and antibiotic intake.
Genome research 20, 10, 1411-1419.

[21] Medicherla, K., Sahu, B.D., Kuncha, M., Kumar, ]J.M., Sudhakar, G., and
Sistla, R., 2015. Oral administration of geraniol ameliorates acute
experimental murine colitis by inhibiting pro-inflammatory cytokines
and NF-«B signaling. Food & function 6, 9, 2984-2995.

[22] Nikolaus, S., Schulte, B., Al-Massad, N., Thieme, F., Schulte, D.M.,
Bethge, J., Rehman, A., Tran, F., Aden, K., and Hésler, R., 2017. Increased
tryptophan metabolism is associated with activity of inflammatory
bowel diseases. Gastroenterology 153, 6, 1504-1516. e1502.

[23] Pascal, V., Pozuelo, M., Borruel, N., Casellas, F., Campos, D., Santiago,
A., Martinez, X., Varela, E., Sarrabayrouse, G., and Machiels, K., 2017. A
microbial signature for Crohn's disease. Gut, gutjnl-2016-313235.

[24] Paulson, J.N., Stine, O.C., Bravo, H.C., and Pop, M., 2013. Differential
abundance analysis for microbial marker-gene surveys. Nature
methods 10, 12, 1200.

[25] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V., 2011.
Scikit-learn: Machine learning in Python. Journal of machine
learning research 12, Oct, 2825-2830.

[26] Peng, H., Long, F., and Ding, C., 2005. Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on pattern analysis and machine
intelligence 27, 8, 1226-1238.

[27] Robinson, M.D., Mccarthy, DJ., and Smyth, G.K., 2010. edgeR: a
Bioconductor package for differential expression analysis of digital gene
expression data. Bioinformatics 26, 1, 139-140.

[28] Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett,
W.S., and Huttenhower, C., 2011. Metagenomic biomarker discovery
and explanation. Genome biology 12, 6, R60.

[29] Sommer, F., Rihlemann, M.C., Bang, C., Héppner, M., Rehman, A.,
Kaleta, C., Schmitt-Kopplin, P., Dempfle, A., Weidinger, S., and
Ellinghaus, E., 2017. Microbiomarkers in inflammatory bowel diseases:
caveats come with caviar. Gut, gutjnl-2016-313678.

[30] Stulberg, E., Fravel, D., Proctor, L.M., Murray, D.M., Lotempio, J.,
Chrisey, L., Garland, J., Goodwin, K., Graber, J., and Harris, M.C., 2016.
An assessment of US microbiome research. Nature microbiology 1, 1,
15015.

[31] Tibshirani, R., 1996. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological),
267-288.

[32] Turnbaugh, PJ., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R.,
and Gordon, J.I, 2007. The human microbiome project. Nature 449,
7164, 804.

[33] Vapnik, V., 2000. The nature of statistical learning theory. Springer-
Verlag New York, Inc., New York, NY, USA.

[34] Vazquez-Baeza, Y., Gonzalez, A., Xu, Z.Z., Washburne, A., Herfarth,
H.H., Sartor, R.B., and Knight, R., 2017. Guiding longitudinal sampling
in IBD cohorts. Gut, gutjnl-2017-315352.

[35] Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng,
Y., Xia, L.C.,, Xu, Z.Z., Ursell, L., and Alm, E.J., 2016. Correlation detection
strategies in microbial data sets vary widely in sensitivity and precision.
The ISME journal 10, 7, 1669.

[36] Weiss, S., Xu, Z.Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A.,
Lozupone, C., Zaneveld, JR., Vazquez-Baeza, Y., and Birmingham, A.,
2017. Normalization and microbial differential abundance strategies
depend upon data characteristics. Microbiome 5, 1, 27.

177





