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Abstract

We explore the use of a knowledge graphs, that capture
general or commonsense knowledge, to augment the infor-
mation extracted from images by the state-of-the-art meth-
ods for image captioning. We compare the performance of
image captioning systems that as measured by CIDEr-D, a
performance measure that is explicitly designed for evalu-
ating image captioning systems, on several benchmark data
sets such as MS COCO. The results of our experiments show
that the variants of the state-of-the-art methods for image
captioning that make use of the information extracted from
knowledge graphs can substantially outperform those that
rely solely on the information extracted from images.

1. Introduction

Advances in digital technologies have made it possible
to acquire and share vast amounts of data of all kinds, in-
cluding in particular, images. The availability of such data,
together with recent advances in machine learning, has re-
sulted in robust and practical machine learning based so-
lutions to object recognition, e.g., Inception[1], vggl6[2],
ResNet[3].

Recent years have witnessed a growing interest in de-
scribing visual scenes, a task that is remarkably easy for
humans yet remains difficult for machines [4]. Of particu-
lar interest in this context is the image captioning problem,
which requires analyzing the visual content of an image,
and generating a caption, i.e., a textual description that sum-
marizes the most salient aspects of the image. Just as ques-
tion answering presents challenges beyond text processing,
image captioning presents several challenges beyond image
processing. Effective image captions need to provide in-
formation that is not explicit in the image, e.g., "People
gathered to watch a volleyball match” when describing a
crowd seated around a volleyball court, even if the image
shows no players on the field (perhaps because the game is
yet to begin), or ”An impressionist painting of a garden by
Claude Monet”, even if the image makes no explicit men-
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tion of Monet or impressionism. Generating such captions
calls for incorporating background knowledge with infor-
mation that is available in the image. However, existing
methods for image captioning (See [5] for a review) fail to
take advantage of readily available general or commonsense
knowledge about the world, e.g., in the form of knowledge
graphs.

Inspired by the success of information retrieval and ques-
tion answering systems that leverage background knowl-
edge [6], we explore an approach to image captioning that
uses information encoded in knowledge graphs. Specifi-
cally, we augment the neural image caption (NIC) method
introduced in [7, 8] where a convolutional neural network
(CNN) [9] trained to encodes an image into a fixed length
vector space representation or embedding and uses the em-
bedding to specify the initial state of a recurrent neural net-
work (RNN) that is trained to produce sentences describing
the image in two important aspects: In addition to a CNN
trained to generate vector space embedding of image fea-
tures, we use an object recognition module that given an
image as input, produces as output, a collection of terms
that correspond to objects in the scene We use an external
knowledge graph, specifically, ConceptNet [10, 11], a la-
beled graph which connects words and phrases of natural
language connected by edges that denote commonsense re-
lationships between them, to infer a set of terms directly
or indirectly related to the words that describe the objects
found in the scene by the object recognition module. Vector
space embeddings of the terms as well as the image features
are then used to specify the initial state of an LSTM-based
RNN that is trained to produce the caption for the input im-
age. We call the resulting image captioning system Con-
ceptNet enhanced neural image captioning system (CNet-
NIC). The results of our experiments on the MS COCO
captions benchmark dataset [12] show that CNet-NIC is
competitive with or outperforms the state-of-the-art image
captioning systems on several of the commonly used per-
formance measures (BLEU [13] , METEOR[14], ROUGE-
L[15], all of which are measures designed originally for
evaluating machine translation systems as opposed to image



captioning systems). More importantly, CNet-NIC substan-
tially outperforming the competing methods on CIDEr-D,
a variant of the CIDEr [16], the only measure that is de-
signed explicitly for evaluating image captioning systems.
Because CIDEr-D measures the similarity of a candidate
image caption to a collection of human generated reference
captions, our results suggest that the incorporation of back-
ground knowledge from ConceptNet enables CNet-NIC to
produce captions that are more similar to those generated by
humans than those produced by methods that do not lever-
age such background knowledge.

The rest of the paper is organized as follows. Section 2
summarizes the related work on image captioning that sets
the stage for our work on CNet-NIC. Section 3 the design
and implementation of CNet-NIC. Section 4 describes our
experimental setup and the results of our experiments as-
sessing the performance of CNet-NIC on the MS COCO im-
age captioning benchmark dataset along with comparisons
with the competing state-of-the-art methods using the stan-
dard performance measures (BLEU@N (N € 1,2,3,4),
METEOR, ROUGE-L, and CIDEr-D) as well as a qualita-
tive analysis of a representative sample of the captions pro-
duced by CNet-NIC. Section 5 concludes with a summary
and an outline of some directions for further research.

2. Related Work

Existing image captioning methods can be broadly
grouped into the following (not necessarily disjoint) cate-
gories: (i) Template-based methods e.g., [17, 18, 19, 20]
which rely on (often hand-coded) templates. Such methods
typically detect the object types, their attributes, scene types
(e.g., indoor versus outdoor), etc., based on a set of visual
features, and generate image captions by populating a tem-
plate with the information extracted from the image. (ii)
Retrieval-based methods which can be further subdivided
into two groups: (ii.a) Image similarity based methods e.g.,
[21, 18, 22, 23, 24] which retrieve captioned images that are
visually most similar to the target image and transfer their
captions to the target image; and (ii.b) Multimodal similar-
ity based methods that use features of images as well as the
associated captions to retrieve or synthesize the caption for
the target image [25, 26, 27, 28, 29, 30, 7]; (iii)) Embedding-
based methods, including those that use recurrent, convolu-
tional, or deep neural networks [7, 31, 32, 8, 33, 34, 35, 36]
that make use of the learned low-dimensional embeddings
of images to train caption generators.

However, none of the existing methods take advantage
of the readily available background knowledge about the
world (e.g., in the form of knowledge graphs. Such back-
ground knowledge has been shown to be useful in a broad
range of applications ranging from information retrieval
to question answering [6], including most recently, visual
question answering (VQA) from images [37]. We hypoth-
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esize that such background knowledge can address an im-
portant drawback of existing image captioning methods, by
enriching captions with information that is not explicit in
the image.

Unlike the state-of-the-art image captioning systems,
CNet-NIC is specifically designed to take advantage of
background knowledge to augment the information ex-
tracted from the image (image features, objects) to improve
machine-produced captions or image descriptions. Unlike
VQA [37], which uses a knowledge graph to extract better
image features and hence better answer questions about the
image, CNet-NIC first detects objects (not just image fea-
tures) in the image and uses the detected objects to identify
related terms or concepts which are then used to produce
better image captions.

3. CNet-NIC: ConceptNet-Enhanced Neural
Image Captioning

We proceed to describe our design for an image caption-
ing system that takes advantage of background knowledge
in the form of a knowledge graph.

3.1. CNet-NIC Architecture

Fig. 1 shows a schematic of the CNet-NIC system.
CNet-NIC uses YOLO9000[38], a state-of-the-art general-
purpose real-time object recognition module that is trained
to recognize 9000 object categories. YOLO9000 takes an
image as input and produces as output, a collection of terms
that refer to objects in the scene. CNet-NIC use an exter-
nal knowledge graph, specifically, ConceptNet [10, 11], a
labeled graph which connects words and phrases of natural
language connected by edges that denote commonsense re-
lationships between them, to infer two sets of terms related
to the words that describe the objects found in the scene by
the object recognition module. The first set of terms are re-
trieved based on the individual objects in the scene. The
second set of terms are retrieved based on the entire collec-
tion of objects in the scene. The resulting terms are then
provided to a pre-trained RNN to obtain the corresponding
vector space embedding of the terms. A CNN is used to
obtain vector space embedding of the image features. The
two resulting vector space embeddings are used to specify
the initial state of an LSTM-based RNN which is trained to
produce the caption for the input image.

We proceed to describe each key element of the CNet-
NIC system in detail.

3.2. Improving Image Captioning by Incorporating
Background Knowledge

To test our hypothesis, we use the ConceptNet[10, 11],
a kind of knowledge graph, specifically, one that connects
words and phrases of natural language connected by edges
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Figure 1. Our model architecture by inviting common sense from external resources

that denote commonsense relationships between them. Con-
ceptNet integrates information from resources provided by
experts as well as through crowd-sourcing. It encodes gen-
eral knowledge that is of use in natural language under-
standing, and has been shown to enrich the semantic in-
formation associated with words, beyond that supplied by
distributional semantics [11].

3.3. Generating Semantic Representations from
ConceptNet

ConceptNet can be used to learn word embeddings using
a variant of “retrofitting” [39]. Let V = {wy,...,w,} be
a vocabulary, i.e., the set of word types, and () be an ontol-
ogy encoding semantic relations between words in V. € is
represented as an undirected graph (V, E) with one vertex
for each word type and edges (w;, w;) € E C V xV
indicating a semantic relationship of interest.

Let Q be the collection of vectors §; € R for each w; €
V that is learned using a standard data-driven method where
d is the length of word vectors. The objective is to learn
the matrix @ = (g1, - . -, g ) such that the columns are both
close to their counterparts in Q and to adjacent vertices in Q2
where closeness is measured using an appropriate distance
measure, e.g., the Euclidean distance. This is achieved by
minimizing the following objective function:

n
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where « and 3 are parameters that control the the rela-
tive strengths of associations. The procedure is called retro-
fitting because the word vectors are first trained indepen-
dent of the information in the semantic lexicons and are
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then retro-fitted by optimizing the objective function spec-
ified above. Because ¥ is convex in (), the solution of the
resulting optimization problem is straightforward. ) can be
initialized to Q and iteratively updated using the following
update equation:

o > jiGer Pt + idi
Zj:(i,j)eE Bij + o;

3.4. Simple Recurrent Neural Network Image Cap-
tion Generator

2)

We use a simple recurrent neural network image caption
generator based on LSTM introduced in [7] where a CNN is
used to extract image features; and vector space embedding
of the extracted features is used by an LSTM-based RNN to
generate the caption text. The architecture of this model is
shown in Fig. 2.

Let X be an input image and S = (Sp, ..., Sy) the cor-
responding caption sentence. Let
x_1 = CNN(X) 3

ZL‘t:WeSt, tE{ON—l} (4)

where S, is the one-hot vector representation of the word
with a size of the dictionary, Sy a special start word, and S
a special end word.

pir1 = LSTM (z), t€{0 ... N—1} (5
The loss function is given by:
N

L(I,8) == logp (S) 6)
t=1
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Figure 2. The architecture of the simple recurrent neural network image caption generator

The loss function is minimized with respect to the pa-
rameters of the LSTM, CNN and W..

3.5. Identifying Semantically Related Words

Given set of input words W = {w; - w,}, and their
associated weights u; - - - u,, (e.g., based on their frequency
distribution), a target word w can be scored based on its se-
mantic relatedness to the input words, as measured by the
weighted distance (e.g., cosine distance) between the se-
mantic vector representation of the query word with each
of the target words. Let s,, and s,,, denote the semantic
vector representations of words w and w; (¢ € {1,---n};
and d(a, b) denote the (cosine) distance between vectors a
and b.

zn:uid(sw, Sw,)
i=1

D i Ui
Fig. 3 Identifying Semantically Related Words. Blue
rectangular nodes denote the input words (concepts). Red
ovals denote the words that are most closely related to the
input words, whereas the green ovals the next most closely
related, and light blue ovals the next most closely related.

3.6. CNet-NIC

Let X be an input image, and O a set of terms cor-
responding to the objects detected in the image I by
the YOLO9000 object recognition system. Thus, O =
YOLO (X). Foreach o € O, let r, = ConceptNet (o) be
the set of terms related to o in the ConceptNet knowledge
graph; and Ro = ConceptNet (O) the set of terms related
to the entire set O of terms referring to all of the objects de-
tected in the image X by the YOLO9000 object recognition
system. Let D = |J, .7, U {0} denote the set of terms

score(W,w) =

(N

0€O
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directly related to individual objects in X. Loosely speak-
ing, Ro provides terms that are descriptive of the scene
as a whole, whereas I provides terms that are descriptive
of some or all of the objects depicted in the image. Thus,
I = Ro — D denote a set of terms that are indirectly related
to objects in X. Letd = RNNp (D) and i = RN N (I)
denote the vector space embeddings of D and I produced
by the pre-trained RNNs RN Np and RN Nj respectively.
Let a = CNN (X) be an embedding of the image features
of X produced by a pre-trained CNN. The image captions
are produced by an LSTM-based RNN whose state is ini-
tialized as follows:

x_1 = ald]i 3)
where || denotes the concatenation operation.
Ty = WeSt, tE{O N—l} ©)]

where S; denotes the one-hot vector representation of
the word with a size of the dictionary, and Sy a special start
word, and Sy a special end word.

P41 = LSTM (z), t€{0 ... N—-1} (10)
The cost function is given by:
N
C'=— logp (Si) + X 10]3 (11)

t=1

where 6 represents the model parameters and Ap - HGH%
is a regularization term.

The only trainable parameters are within the LSTM and
W.. The pre-trained RNN network is shown in Fig. 4. Let
r; be the ith word embedding.
ie{i ... L-1}

x; = Wpry, (12)
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Figure 3. An example of relevant words generated by ConceptNet
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Figure 4. The pre-trained RNN network architecture

a=CNN (X) (13)

a represents the image attribute embedding from CNN.

y—1 = concatenate (a, Tr_1) (14)
a=CNN (X) (15)
Y = WeSt, t e {0, .. N — ].} (16)
The cost function to be minimized is given by:
N
C=—> logp (S) (18)
t=1

Note that the only parameters to be trained are those
associated with LSTM1, LSTM2 and W,.. The trained
LSTM1 is used in the model in Fig. 3 to extract interme-
diate state of the related terms.
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4. Experiments
4.1. Data
We used the Microsoft COCO captioning data

set(COCO)[12], the most widely used image caption-
ing benchmark data set in our evaluations. The data set
includes 82,783 images for training and 40,504 images
for validation. For each image, the data set includes 5 or
6 descriptions or captions provided by human annotators.
In our experiments, from the training and validation set
provided, we used 117,211 images for training, 2,026
images for validation and 4050 images for testing.

4.2. Experimental Setup

Details of the experimental setup are summarized below:

e Data Preprocessing: Following [28], we convert all of
the image captions in training set to lower case and dis-
card rare words which occur less than 4 times, result-
ing in the final vocabulary with 11,519 unique words
in COCO data set. Each word in the sentence is repre-
sented as “one-hot” vector.

Attribute Extraction: To extract the image attributes,
we use the output of inception v3[40] network image
recognition model pre-trained on the ILSVRC-2012-
CLS[41] image classification data set.



e Object Detection: We use the YOLO9000 object de-
tection network (with 23 layers) and 544 x 544 resolu-
tion. YOLO9000 is able to detect 9419 object classes.

Leveraging Background Knowledge: Because
YOLO9000 object detection system is inherently im-
perfect, in identifying related terms using ConceptNet,
we limit ourselves to only the objects detected with
high confidence. Based on preliminary experiments,
we set 30% as the detection threshold.

Training the model: Our model is implemented on
the TensorFlow platform in Python language. The size
of LSTM for each embedding(attributes, related terms)
is set to 512. Initial learning rate is set to 2.0 with an
exponential decay schedule. Batch size is set to 32.
Along the training, the learning rate is shrunk by 5 for
three or four times. The number of iterations is set to
500,000.

Testing the model: Two approaches can be utilized for
sentence generation during the testing stage. One ap-
proach is to select the word with maximum probability
at each time step and set it as LSTM input for next time
step until the end sign word is emitted or the maximum
length of sentence is reached. Another approach is to
conduct a beam search that selects the top-k best sen-
tences at each time step and use them as the candidates
to generate the top-k best sentences at the next time
step. We adopt the second approach and set the beam
size k empirically to 3.

Evaluation Metrics: To evaluate CNet-NIC, we use
4 metrics: BLEU@N[13], METEOR[14], ROUGE-
E[15], and CIDEr-D[16]. All the metrics are computed
by using the codes released by [42].

4.3. Performance Comparison

We compare the performance of CNet-NIC with that of
several state-of-the-art image captioning methods (as re-
ported in the respective papers):

e Neural Image Caption (NIC)[7], which uses a vector
space representation of image features produced by a
CNN to initialize an LSTM-based RNN trained to gen-
erate image captions from vector space representation
of image features.

Hard and Soft Attention[31], which combines two
attention-based image captioning mechanisms under
an encoder-decoder framework: a soft determinis-
tic attention mechanism trainable by standard back-
propagation methods and 2) a hard stochastic attention
mechanism that is trained using reinforcement learn-
ing.
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LRCNJ[36] which combines CNN with LSTMs to per-
form visual recognition and image captioning.

ATT[8] which combines top-down and bottom-up at-
tention models to extract image features that are used
to train an RNN to produce image captions.

Sentence-Condition[43] which uses a fext-
conditional attention mechanism for focusing the
caption generator on specific image features that
should inform the caption given the already generated
caption text.

LSTM-A[44] which extends the basic LSTM model
with image attributes model by rearranging image and
attributes input in different positions and time to boost
the accuracy of image captioning.

Table 1 shows the performance of each method on MS
COCO image captioning data set. Bold represents the best
in that metric and italic represents the second best. Over-
all the performance of CNet-NIC is comparable to or bet-
ter than all other models on all measures, especially with
respect to CIDEr-D, the only measure that is explicitly de-
signed for the purpose of evaluating image captions.

4.4. CNet-NIC Ablation Study Results

We report results of an ablation study of CNet-NIC,
where we examine the relative contributions of the differ-
ent components of the CNet-NIC architecture.

From the results summarized in Table 2, we see that
detected objects and directly related terms contribute to
greater improvements in performance as compared to indi-
rectly related terms. We conjecture that the detected objects
and directly related terms provide more information about
the individual objects in an image whereas the indirectly re-
lated terms provide information about the scene as a whole.
This perhaps explains why only adding indirectly related
terms to image embedding improves performance as mea-
sured by METEOR, ROUGE-L and CIDEr-D, albeit at the
cost of a slight decrease in BLEU. We further note that the
indirectly related terms contribute to increases in CIDEr-D,
even when no image features are available. Overall, we find
that CNet-NIC which combines the background knowledge
(ConceptNet derived terms) related to the detected objects
and the scene in generating image captions outperforms all
other methods that do not make use of such background
knowledge.

4.5. Qualitative Analysis of Captions

Table 3 presents several representative examples of cap-
tions produced by CNet-NIC. Here we take a qualitative
look at the captions to explore the role played by the com-
monsense or background knowledge provided by the Con-



Table 1. Performance of our proposed models and other state-of-the-art methods on MS COCO dataset, where B@ N, M, R, and C are
short for BLEU@ N, METEOR, ROUGE-L, and CIDEr-D scores. Except CIDEr-D, all values are reported as percentage(%).

Model B@l | B@2 | B@3 | B@4 M R C

NIC[7] 66.6 45.1 30.4 20.3 - - -

LRCNJ[36] 62.8 44.2 30.4 21 - - -

Soft Attention[31] 70.7 49.2 34.4 24.3 23.9 - -

Hard Attention[31] 71.8 50.4 35.7 25 23 - -

ATT[8] 70.9 53.7 40.2 30.4 24.3 - -
Sentence Condition[43] 72 54.6 40.4 29.8 24.5 - 95.9
LSTM-A[44] 73 56.5 | 42.9 | 32.5 25.1 53.8 98.6

CNet-NIC 73.1 54.9 40.5 29.9 25.6 53.9 107.2

Table 2. Performance of variants of CNet-NIC on MS COCO dataset, where B@ N, M, R, and C are short for BLEU@ N, METEOR,
ROUGE-L, and CIDEr-D scores. Except CIDEr-D, all values are reported as percentage(%).

Input of Model B@l | B@2 | B@3 | B@4 M R C
none(only seqs input) 48.4 | 24.7 | 10.2 3.9 11 34.2 8.6
image embedding 70.3 | 52.9 | 38.3 | 27.5 | 24.3 | 51.8 | 99.5
detected objects and directly related terms 63.3 43.4 29.1 20 19.8 | 46.1 74.3
indirectly related terms 47.6 27 15.7 10.2 | 13.7 | 36.6 31.8
detected objects and directly related terms + image embed- | 70.9 53.3 38.7 28 24.8 | 52.4 | 103.2
ding

indirectly related terms + image embedding 70.1 52.8 38.2 27.7 | 24.5 52 100.5
detected objects and directly related terms + indirectly re- | 72.1 54.2 38.9 28.5 | 24.8 | 52.9 | 103.6
lated terms + image embedding

detected objects and directly related terms + indirectly re- | 73.1 54.7 | 40.5 29.9 | 25.6 | 53.9 | 107.2
lated terms + image embedding + fine tune CNN

ceptNet knowledge graph. In the first example, the Con-
ceptNet derived terms such as “upholstered”, “found in
house”, etc. appear to yield more accurate captions. In the
third example, the standard model and the model without
indirectly related terms completely ignore the large furni-
ture such as tables and chairs while the model that incor-
porates indirectly related terms such as “’item of furniture”,
“reupholstery”, “end table”, etc. leads to what appear to be
better captions. For the fourth example, the indirectly re-
lated terms appear to yield a more accurate caption model,
e.g., one that mentions the book rack. For the sixth image
listed, only the model with indirectly related terms as “dairy
farm”, “feed lot”, etc. from the knowledge graph correctly
recognizes that the scene is occurring in a “barn”. In the
seventh example, the model with indirectly related terms
correctly deduces that most people in the image are travelers
and conclude that they are in a baggage claim area. These
examples offer further qualitative evidence that shows the
utility and effectiveness of background knowledge supplied
by knowledge graphs to improve the quality of image cap-
tions.

5. Summary and Discussion

The focus of this paper is on the image captioning prob-
lem, which requires analyzing the visual content of an im-
age, and generating a caption, i.e., a textual description
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that summarizes the most salient aspects of the image. Im-
age captioning presents several challenges beyond those ad-
dressed by object recognition, e.g., inferring information
that is not explicitly depicted in the image. However, ex-
isting methods for image captioning (See [5] for a review)
fail to take advantage of readily available general or com-
monsense knowledge about the world.

In this paper, we have presented CNet-NIC, an approach
to image captioning that incorporates background knowl-
edge available in the form of knowledge graphs to augment
the information extracted from images. We have compared
the performance of image captioning systems that as mea-
sured by CIDEr-D, a performance measure that is explicitly
designed for evaluating image captioning systems, on sev-
eral benchmark data sets such as MS COCO. The results
of our experiments show that the variants of the state-of-
the-art methods for image captioning that make use of the
information extracted from knowledge graphs can substan-
tially outperform those that rely solely on the information
extracted from images.

Some promising directions for future work include: vari-
ants and extensions of CNet-NIC, including those that sub-
stantially improve the quality of captions, provide justifica-
tions for the captions that they produce, tailor captions for
visual question answering, tailoring captions to different au-
diences and contexts, etc. by bringing to bear on such tasks,
all available background knowledge.



Table 3. Image example of model showing "Common Sense” from external resource.

Image Detected Indirectly Sentences Generated by | Sentences Generated by | Standard Model
Related Model with Indirectly | Model without Indirectly
Related Related
Winsor  chair, | item of furniture, | 0)a dining room with a table | 0)a table with a vase of flow- | (0) a table with a vase of flow-
deck chair, | upholstered, and chairs ers on it ers on it

furnishing, pot

found in house,
chairs

1) a dining room with a table,
chairs and a table

2) a dining room with a table
and chairs and a fireplace

1) a dining room with a table
and chairs

2) a table with a vase of flow-
ers on it

1) a table with a vase of flow-
ers on it
2) a table with a vase of flow-
ers on it

fishmonger, ce-
real bowl, phial,
banana, waiter

food storage jar,
canaree, storing
food, fruit bowl,
food can

0) a chef preparing food in a
kitchen on a counter

1) a chef preparing food in a
kitchen on a table

2) a man in a kitchen prepar-
ing food for a customer

0) a man and a woman
preparing food in a kitchen
1) a man and a woman
preparing food in a kitchen
2) a chef preparing food in a
kitchen next to a woman

0) a group of people in a
kitchen preparing food

1) a group of people standing
around a kitchen

preparing food 2) a group of
people in a kitchen preparing
food

2) a group of cows standing
in a barn

2) a group of cows that are
standing in a pen

straight ~ chair, | item of furni- | 0)akitchen filled with appli- | 0) a kitchen with a stove a | 0) a kitchen with a stove a
furnishing ture, reuphol- | ances and lots of clutter sink and a counter sink and a stove
stery, end table 1) a kitchen filled with ap- | 1) a kitchen with a stove a | 1) a kitchen with a stove a
pliances and lots of counter | sink and a window sink and a refrigerator
space 2) a kitchen with a stove top | 2) a kitchen with a stove a
2) a kitchen with a table and | oven next to a sink sink and a counter
chairs
book(s), toilet | bookrack, 0) a bathroom with a toilet | 0) a white toilet sitting in a | 0) a kitchen with a stove a
seat bookshelving, and a book shelf bathroom next to a wall sink and a stove
bookrest 1) a bathroom with a toilet | 1)awhite toiletsittingnextto | 1) a kitchen with a stove a
and a book shelf a book shelf sink and a refrigerator
2) a bathroom with a toilet | 2) a white toilet sitting in a | 2) a kitchen with a stove a
and a sink bathroom next to a shelf sink and a counter
trolleybus(es), tram stop, bus | 0) a couple of buses that are | 0) a double decker bus driv- | 0) a double decker bus driv-
park bench, | rapid transit sitting in the street ing down a street ing down a street
commuter 1) a couple of buses that are | 1) a double decker bus driv- | 1) a double decker bus driv-
parked next to each other ing down the street ing down a city street
2) a couple of buses driving | 2)adouble decker busisdriv- | 2) a double decker bus driv-
down a street next to a tall | ing down the street ing down the street
building
Friesian(s), dairy farm, | 0) a group of cows standing | 0) a group of cows that are | 0)a group of cows are stand-
Brown  Swiss, | cows, feed lot next to each other standing in the dirt ing in a pen
private, settler 1) a group of cows that are | 1) a group of cows that are | 1) a group of cows standing
standing in the dirt standing in the grass in a pen

2) a group of cows are stand-
ing in a field

overnighter(s), wayfaring, 0) a group of people standing | 0) a group of people standing | 0) a group of people standing
pilgrim(s), day  tripper, | around with luggage. around a luggage carousel. around a luggage carousel.
square  dancer, | journeyer, 1) a group of people standing | 1) a group of people standing | 1) a group of people standing
general, peddler, | excursionist, around a luggage carousel. around a luggage cart. around a luggage cart.
hand  luggage, | traveller 2) a group of standing around | 2) a group of people standing | 2) a group of people standing
backpack a baggage claim area. next to a luggage cart. next to each other.
horse wran- | found onranch | 0) a man standing next to a | 0)acouple of people standing | (0) a group of people standing
gler(s), Ten- brown horse. next to a horse. next to a horse.
nessee  walker, 1) aman is standing nexttoa | 1) a woman standing next to | 1) a group of people standing
wild horse horse a brown horse. next to a brown horse.
2) a man standing next a | 2)acoupleof peoplestanding | 2) a group of men standing
brown horse in a stable. next to a brown horse. next to a brown horse.
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