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Abstract

We explore the use of a knowledge graphs, that capture
general or commonsense knowledge, to augment the infor-
mation extracted from images by the state-of-the-art meth-
ods for image captioning. We compare the performance of
image captioning systems that as measured by CIDEr-D, a
performance measure that is explicitly designed for evalu-
ating image captioning systems, on several benchmark data
sets such as MS COCO. The results of our experiments show
that the variants of the state-of-the-art methods for image
captioning that make use of the information extracted from
knowledge graphs can substantially outperform those that
rely solely on the information extracted from images.

1. Introduction
Advances in digital technologies have made it possible

to acquire and share vast amounts of data of all kinds, in-

cluding in particular, images. The availability of such data,

together with recent advances in machine learning, has re-

sulted in robust and practical machine learning based so-

lutions to object recognition, e.g., Inception[1], vgg16[2],

ResNet[3].

Recent years have witnessed a growing interest in de-

scribing visual scenes, a task that is remarkably easy for

humans yet remains difficult for machines [4]. Of particu-

lar interest in this context is the image captioning problem,

which requires analyzing the visual content of an image,

and generating a caption, i.e., a textual description that sum-

marizes the most salient aspects of the image. Just as ques-

tion answering presents challenges beyond text processing,

image captioning presents several challenges beyond image

processing. Effective image captions need to provide in-

formation that is not explicit in the image, e.g., ”People

gathered to watch a volleyball match” when describing a

crowd seated around a volleyball court, even if the image

shows no players on the field (perhaps because the game is

yet to begin), or ”An impressionist painting of a garden by

Claude Monet”, even if the image makes no explicit men-

tion of Monet or impressionism. Generating such captions

calls for incorporating background knowledge with infor-

mation that is available in the image. However, existing

methods for image captioning (See [5] for a review) fail to

take advantage of readily available general or commonsense

knowledge about the world, e.g., in the form of knowledge
graphs.

Inspired by the success of information retrieval and ques-

tion answering systems that leverage background knowl-

edge [6], we explore an approach to image captioning that

uses information encoded in knowledge graphs. Specifi-

cally, we augment the neural image caption (NIC) method

introduced in [7, 8] where a convolutional neural network

(CNN) [9] trained to encodes an image into a fixed length

vector space representation or embedding and uses the em-

bedding to specify the initial state of a recurrent neural net-

work (RNN) that is trained to produce sentences describing

the image in two important aspects: In addition to a CNN

trained to generate vector space embedding of image fea-

tures, we use an object recognition module that given an

image as input, produces as output, a collection of terms

that correspond to objects in the scene We use an external

knowledge graph, specifically, ConceptNet [10, 11], a la-

beled graph which connects words and phrases of natural

language connected by edges that denote commonsense re-

lationships between them, to infer a set of terms directly

or indirectly related to the words that describe the objects

found in the scene by the object recognition module. Vector

space embeddings of the terms as well as the image features

are then used to specify the initial state of an LSTM-based

RNN that is trained to produce the caption for the input im-

age. We call the resulting image captioning system Con-

ceptNet enhanced neural image captioning system (CNet-

NIC). The results of our experiments on the MS COCO

captions benchmark dataset [12] show that CNet-NIC is

competitive with or outperforms the state-of-the-art image

captioning systems on several of the commonly used per-

formance measures (BLEU [13] , METEOR[14], ROUGE-

L[15], all of which are measures designed originally for

evaluating machine translation systems as opposed to image
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captioning systems). More importantly, CNet-NIC substan-

tially outperforming the competing methods on CIDEr-D,

a variant of the CIDEr [16], the only measure that is de-

signed explicitly for evaluating image captioning systems.

Because CIDEr-D measures the similarity of a candidate

image caption to a collection of human generated reference

captions, our results suggest that the incorporation of back-

ground knowledge from ConceptNet enables CNet-NIC to

produce captions that are more similar to those generated by

humans than those produced by methods that do not lever-

age such background knowledge.

The rest of the paper is organized as follows. Section 2

summarizes the related work on image captioning that sets

the stage for our work on CNet-NIC. Section 3 the design

and implementation of CNet-NIC. Section 4 describes our

experimental setup and the results of our experiments as-

sessing the performance of CNet-NIC on the MS COCO im-

age captioning benchmark dataset along with comparisons

with the competing state-of-the-art methods using the stan-

dard performance measures (BLEU@N (N ∈ 1, 2, 3, 4),

METEOR, ROUGE-L, and CIDEr-D) as well as a qualita-

tive analysis of a representative sample of the captions pro-

duced by CNet-NIC. Section 5 concludes with a summary

and an outline of some directions for further research.

2. Related Work
Existing image captioning methods can be broadly

grouped into the following (not necessarily disjoint) cate-

gories: (i) Template-based methods e.g., [17, 18, 19, 20]

which rely on (often hand-coded) templates. Such methods

typically detect the object types, their attributes, scene types

(e.g., indoor versus outdoor), etc., based on a set of visual

features, and generate image captions by populating a tem-

plate with the information extracted from the image. (ii)

Retrieval-based methods which can be further subdivided

into two groups: (ii.a) Image similarity based methods e.g.,

[21, 18, 22, 23, 24] which retrieve captioned images that are

visually most similar to the target image and transfer their

captions to the target image; and (ii.b) Multimodal similar-

ity based methods that use features of images as well as the

associated captions to retrieve or synthesize the caption for

the target image [25, 26, 27, 28, 29, 30, 7]; (iii) Embedding-

based methods, including those that use recurrent, convolu-

tional, or deep neural networks [7, 31, 32, 8, 33, 34, 35, 36]

that make use of the learned low-dimensional embeddings

of images to train caption generators.

However, none of the existing methods take advantage

of the readily available background knowledge about the

world (e.g., in the form of knowledge graphs. Such back-

ground knowledge has been shown to be useful in a broad

range of applications ranging from information retrieval

to question answering [6], including most recently, visual

question answering (VQA) from images [37]. We hypoth-

esize that such background knowledge can address an im-

portant drawback of existing image captioning methods, by

enriching captions with information that is not explicit in

the image.

Unlike the state-of-the-art image captioning systems,

CNet-NIC is specifically designed to take advantage of

background knowledge to augment the information ex-

tracted from the image (image features, objects) to improve

machine-produced captions or image descriptions. Unlike

VQA [37], which uses a knowledge graph to extract better

image features and hence better answer questions about the

image, CNet-NIC first detects objects (not just image fea-

tures) in the image and uses the detected objects to identify

related terms or concepts which are then used to produce

better image captions.

3. CNet-NIC: ConceptNet-Enhanced Neural
Image Captioning

We proceed to describe our design for an image caption-

ing system that takes advantage of background knowledge

in the form of a knowledge graph.

3.1. CNet-NIC Architecture

Fig. 1 shows a schematic of the CNet-NIC system.

CNet-NIC uses YOLO9000[38], a state-of-the-art general-

purpose real-time object recognition module that is trained

to recognize 9000 object categories. YOLO9000 takes an

image as input and produces as output, a collection of terms

that refer to objects in the scene. CNet-NIC use an exter-

nal knowledge graph, specifically, ConceptNet [10, 11], a

labeled graph which connects words and phrases of natural

language connected by edges that denote commonsense re-

lationships between them, to infer two sets of terms related

to the words that describe the objects found in the scene by

the object recognition module. The first set of terms are re-

trieved based on the individual objects in the scene. The

second set of terms are retrieved based on the entire collec-

tion of objects in the scene. The resulting terms are then

provided to a pre-trained RNN to obtain the corresponding

vector space embedding of the terms. A CNN is used to

obtain vector space embedding of the image features. The

two resulting vector space embeddings are used to specify

the initial state of an LSTM-based RNN which is trained to

produce the caption for the input image.

We proceed to describe each key element of the CNet-

NIC system in detail.

3.2. Improving Image Captioning by Incorporating
Background Knowledge

To test our hypothesis, we use the ConceptNet[10, 11],

a kind of knowledge graph, specifically, one that connects

words and phrases of natural language connected by edges
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Figure 1. Our model architecture by inviting common sense from external resources

that denote commonsense relationships between them. Con-

ceptNet integrates information from resources provided by

experts as well as through crowd-sourcing. It encodes gen-

eral knowledge that is of use in natural language under-

standing, and has been shown to enrich the semantic in-

formation associated with words, beyond that supplied by

distributional semantics [11].

3.3. Generating Semantic Representations from
ConceptNet

ConceptNet can be used to learn word embeddings using

a variant of ”retrofitting” [39]. Let V = {w1, . . . , wn} be

a vocabulary, i.e., the set of word types, and Ω be an ontol-

ogy encoding semantic relations between words in V . Ω is

represented as an undirected graph (V,E) with one vertex

for each word type and edges (wi, wj) ∈ E ⊆ V × V
indicating a semantic relationship of interest.

Let Q̂ be the collection of vectors q̂i ∈ R
d for each wi ∈

V that is learned using a standard data-driven method where

d is the length of word vectors. The objective is to learn

the matrix Q = (q1, . . . , qn) such that the columns are both

close to their counterparts in Q̂ and to adjacent vertices in Ω
where closeness is measured using an appropriate distance

measure, e.g., the Euclidean distance. This is achieved by

minimizing the following objective function:

Ψ(Q) =

n∑
i=1

⎡
⎣αi ‖qi − q̂i‖2 +

∑
(i,j)∈E

βij ‖qi − qj‖2
⎤
⎦

(1)

where α and β are parameters that control the the rela-

tive strengths of associations. The procedure is called retro-

fitting because the word vectors are first trained indepen-

dent of the information in the semantic lexicons and are

then retro-fitted by optimizing the objective function spec-

ified above. Because Ψ is convex in Q, the solution of the

resulting optimization problem is straightforward. Q can be

initialized to Q̂ and iteratively updated using the following

update equation:

qi =

∑
j:(i,j)∈E βijqj + αiq̂i∑

j:(i,j)∈E βij + αi
(2)

3.4. Simple Recurrent Neural Network Image Cap-
tion Generator

We use a simple recurrent neural network image caption

generator based on LSTM introduced in [7] where a CNN is

used to extract image features; and vector space embedding

of the extracted features is used by an LSTM-based RNN to

generate the caption text. The architecture of this model is

shown in Fig. 2.

Let X be an input image and S = (S0, . . . , SN ) the cor-

responding caption sentence. Let

x−1 = CNN (X) (3)

xt = WeSt, t ∈ {0 . . . N − 1} (4)

where St is the one-hot vector representation of the word

with a size of the dictionary, S0 a special start word, and SN

a special end word.

pt+1 = LSTM (xt) , t ∈ {0 . . . N − 1} (5)

The loss function is given by:

L (I, S) = −
N∑
t=1

log pt (St) (6)
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Figure 2. The architecture of the simple recurrent neural network image caption generator

The loss function is minimized with respect to the pa-

rameters of the LSTM, CNN and We.

3.5. Identifying Semantically Related Words

Given set of input words W = {w1 · · ·wn}, and their

associated weights u1 · · ·un (e.g., based on their frequency

distribution), a target word w can be scored based on its se-

mantic relatedness to the input words, as measured by the

weighted distance (e.g., cosine distance) between the se-

mantic vector representation of the query word with each

of the target words. Let sw and swi
denote the semantic

vector representations of words w and wi (i ∈ {1, · · ·n};

and d(a, b) denote the (cosine) distance between vectors a
and b.

score(W,w) =

n∑
i=1

uid(sw, swi)

∑n
i=1 ui

(7)

Fig. 3 Identifying Semantically Related Words. Blue

rectangular nodes denote the input words (concepts). Red

ovals denote the words that are most closely related to the

input words, whereas the green ovals the next most closely

related, and light blue ovals the next most closely related.

3.6. CNet-NIC

Let X be an input image, and O a set of terms cor-

responding to the objects detected in the image I by

the YOLO9000 object recognition system. Thus, O =
Y OLO (X). For each o ∈ O, let ro = ConceptNet (o) be

the set of terms related to o in the ConceptNet knowledge

graph; and RO = ConceptNet (O) the set of terms related

to the entire set O of terms referring to all of the objects de-

tected in the image X by the YOLO9000 object recognition

system. Let D =
⋃

o∈O ro ∪ {o} denote the set of terms

directly related to individual objects in X . Loosely speak-

ing, RO provides terms that are descriptive of the scene

as a whole, whereas I provides terms that are descriptive

of some or all of the objects depicted in the image. Thus,

I = RO−D denote a set of terms that are indirectly related

to objects in X . Let d = RNND (D) and i = RNNI (I)
denote the vector space embeddings of D and I produced

by the pre-trained RNNs RNND and RNNI respectively.

Let a = CNN (X) be an embedding of the image features

of X produced by a pre-trained CNN. The image captions

are produced by an LSTM-based RNN whose state is ini-

tialized as follows:

x−1 = a ‖ d ‖ i (8)

where ‖ denotes the concatenation operation.

xt = WeSt, t ∈ {0 . . . N − 1} (9)

where St denotes the one-hot vector representation of

the word with a size of the dictionary, and S0 a special start

word, and SN a special end word.

pt+1 = LSTM (xt) , t ∈ {0 . . . N − 1} (10)

The cost function is given by:

C = −
N∑
t=1

log pt (St) + λθ · ‖θ‖22 (11)

where θ represents the model parameters and λθ · ‖θ‖22
is a regularization term.

The only trainable parameters are within the LSTM and

We. The pre-trained RNN network is shown in Fig. 4. Let

ri be the ith word embedding.

xi = Wrri, i ∈ {i, . . . L− 1} (12)
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Figure 3. An example of relevant words generated by ConceptNet

Figure 4. The pre-trained RNN network architecture

a = CNN (X) (13)

a represents the image attribute embedding from CNN.

y−1 = concatenate (a, xL−1) (14)

a = CNN (X) (15)

yt = WeSt, t ∈ {0, ... N − 1} (16)

pt+1 = LSTM (xt) , t ∈ {0 . . . N − 1} (17)

The cost function to be minimized is given by:

C = −
N∑
t=1

log pt (St) (18)

Note that the only parameters to be trained are those

associated with LSTM1, LSTM2 and We. The trained

LSTM1 is used in the model in Fig. 3 to extract interme-

diate state of the related terms.

4. Experiments
4.1. Data

We used the Microsoft COCO captioning data

set(COCO)[12], the most widely used image caption-

ing benchmark data set in our evaluations. The data set

includes 82,783 images for training and 40,504 images

for validation. For each image, the data set includes 5 or

6 descriptions or captions provided by human annotators.

In our experiments, from the training and validation set

provided, we used 117,211 images for training, 2,026

images for validation and 4050 images for testing.

4.2. Experimental Setup

Details of the experimental setup are summarized below:

• Data Preprocessing: Following [28], we convert all of

the image captions in training set to lower case and dis-

card rare words which occur less than 4 times, result-

ing in the final vocabulary with 11,519 unique words

in COCO data set. Each word in the sentence is repre-

sented as ”one-hot” vector.

• Attribute Extraction: To extract the image attributes,

we use the output of inception v3[40] network image

recognition model pre-trained on the ILSVRC-2012-

CLS[41] image classification data set.
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• Object Detection: We use the YOLO9000 object de-

tection network (with 23 layers) and 544×544 resolu-

tion. YOLO9000 is able to detect 9419 object classes.

• Leveraging Background Knowledge: Because

YOLO9000 object detection system is inherently im-

perfect, in identifying related terms using ConceptNet,

we limit ourselves to only the objects detected with

high confidence. Based on preliminary experiments,

we set 30% as the detection threshold.

• Training the model: Our model is implemented on

the TensorFlow platform in Python language. The size

of LSTM for each embedding(attributes, related terms)

is set to 512. Initial learning rate is set to 2.0 with an

exponential decay schedule. Batch size is set to 32.

Along the training, the learning rate is shrunk by 5 for

three or four times. The number of iterations is set to

500,000.

• Testing the model: Two approaches can be utilized for

sentence generation during the testing stage. One ap-

proach is to select the word with maximum probability

at each time step and set it as LSTM input for next time

step until the end sign word is emitted or the maximum

length of sentence is reached. Another approach is to

conduct a beam search that selects the top-k best sen-

tences at each time step and use them as the candidates

to generate the top-k best sentences at the next time

step. We adopt the second approach and set the beam

size k empirically to 3.

• Evaluation Metrics: To evaluate CNet-NIC, we use

4 metrics: BLEU@N [13], METEOR[14], ROUGE-

E[15], and CIDEr-D[16]. All the metrics are computed

by using the codes released by [42].

4.3. Performance Comparison

We compare the performance of CNet-NIC with that of

several state-of-the-art image captioning methods (as re-

ported in the respective papers):

• Neural Image Caption (NIC)[7], which uses a vector

space representation of image features produced by a

CNN to initialize an LSTM-based RNN trained to gen-

erate image captions from vector space representation

of image features.

• Hard and Soft Attention[31], which combines two

attention-based image captioning mechanisms under

an encoder-decoder framework: a soft determinis-

tic attention mechanism trainable by standard back-

propagation methods and 2) a hard stochastic attention

mechanism that is trained using reinforcement learn-

ing.

• LRCN[36] which combines CNN with LSTMs to per-

form visual recognition and image captioning.

• ATT[8] which combines top-down and bottom-up at-

tention models to extract image features that are used

to train an RNN to produce image captions.

• Sentence-Condition[43] which uses a text-
conditional attention mechanism for focusing the

caption generator on specific image features that

should inform the caption given the already generated

caption text.

• LSTM-A[44] which extends the basic LSTM model

with image attributes model by rearranging image and

attributes input in different positions and time to boost

the accuracy of image captioning.

Table 1 shows the performance of each method on MS

COCO image captioning data set. Bold represents the best

in that metric and italic represents the second best. Over-

all the performance of CNet-NIC is comparable to or bet-

ter than all other models on all measures, especially with

respect to CIDEr-D, the only measure that is explicitly de-

signed for the purpose of evaluating image captions.

4.4. CNet-NIC Ablation Study Results

We report results of an ablation study of CNet-NIC,

where we examine the relative contributions of the differ-

ent components of the CNet-NIC architecture.

From the results summarized in Table 2, we see that

detected objects and directly related terms contribute to

greater improvements in performance as compared to indi-

rectly related terms. We conjecture that the detected objects

and directly related terms provide more information about

the individual objects in an image whereas the indirectly re-

lated terms provide information about the scene as a whole.

This perhaps explains why only adding indirectly related

terms to image embedding improves performance as mea-

sured by METEOR, ROUGE-L and CIDEr-D, albeit at the

cost of a slight decrease in BLEU. We further note that the

indirectly related terms contribute to increases in CIDEr-D,

even when no image features are available. Overall, we find

that CNet-NIC which combines the background knowledge

(ConceptNet derived terms) related to the detected objects

and the scene in generating image captions outperforms all

other methods that do not make use of such background

knowledge.

4.5. Qualitative Analysis of Captions

Table 3 presents several representative examples of cap-

tions produced by CNet-NIC. Here we take a qualitative

look at the captions to explore the role played by the com-

monsense or background knowledge provided by the Con-
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Table 1. Performance of our proposed models and other state-of-the-art methods on MS COCO dataset, where B@N , M, R, and C are

short for BLEU@N , METEOR, ROUGE-L, and CIDEr-D scores. Except CIDEr-D, all values are reported as percentage(%).

Model B@1 B@2 B@3 B@4 M R C
NIC[7] 66.6 45.1 30.4 20.3 - - -

LRCN[36] 62.8 44.2 30.4 21 - - -

Soft Attention[31] 70.7 49.2 34.4 24.3 23.9 - -

Hard Attention[31] 71.8 50.4 35.7 25 23 - -

ATT[8] 70.9 53.7 40.2 30.4 24.3 - -

Sentence Condition[43] 72 54.6 40.4 29.8 24.5 - 95.9
LSTM-A[44] 73 56.5 42.9 32.5 25.1 53.8 98.6

CNet-NIC 73.1 54.9 40.5 29.9 25.6 53.9 107.2

Table 2. Performance of variants of CNet-NIC on MS COCO dataset, where B@N , M, R, and C are short for BLEU@N , METEOR,

ROUGE-L, and CIDEr-D scores. Except CIDEr-D, all values are reported as percentage(%).

Input of Model B@1 B@2 B@3 B@4 M R C
none(only seqs input) 48.4 24.7 10.2 3.9 11 34.2 8.6
image embedding 70.3 52.9 38.3 27.5 24.3 51.8 99.5
detected objects and directly related terms 63.3 43.4 29.1 20 19.8 46.1 74.3
indirectly related terms 47.6 27 15.7 10.2 13.7 36.6 31.8
detected objects and directly related terms + image embed-
ding

70.9 53.3 38.7 28 24.8 52.4 103.2

indirectly related terms + image embedding 70.1 52.8 38.2 27.7 24.5 52 100.5
detected objects and directly related terms + indirectly re-
lated terms + image embedding

72.1 54.2 38.9 28.5 24.8 52.9 103.6

detected objects and directly related terms + indirectly re-
lated terms + image embedding + fine tune CNN

73.1 54.7 40.5 29.9 25.6 53.9 107.2

ceptNet knowledge graph. In the first example, the Con-

ceptNet derived terms such as ”upholstered”, ”found in

house”, etc. appear to yield more accurate captions. In the

third example, the standard model and the model without

indirectly related terms completely ignore the large furni-

ture such as tables and chairs while the model that incor-

porates indirectly related terms such as ”item of furniture”,

”reupholstery”, ”end table”, etc. leads to what appear to be

better captions. For the fourth example, the indirectly re-

lated terms appear to yield a more accurate caption model,

e.g., one that mentions the book rack. For the sixth image

listed, only the model with indirectly related terms as ”dairy

farm”, ”feed lot”, etc. from the knowledge graph correctly

recognizes that the scene is occurring in a ”barn”. In the

seventh example, the model with indirectly related terms

correctly deduces that most people in the image are travelers

and conclude that they are in a baggage claim area. These

examples offer further qualitative evidence that shows the

utility and effectiveness of background knowledge supplied

by knowledge graphs to improve the quality of image cap-

tions.

5. Summary and Discussion
The focus of this paper is on the image captioning prob-

lem, which requires analyzing the visual content of an im-

age, and generating a caption, i.e., a textual description

that summarizes the most salient aspects of the image. Im-

age captioning presents several challenges beyond those ad-

dressed by object recognition, e.g., inferring information

that is not explicitly depicted in the image. However, ex-

isting methods for image captioning (See [5] for a review)

fail to take advantage of readily available general or com-

monsense knowledge about the world.

In this paper, we have presented CNet-NIC, an approach

to image captioning that incorporates background knowl-

edge available in the form of knowledge graphs to augment

the information extracted from images. We have compared

the performance of image captioning systems that as mea-

sured by CIDEr-D, a performance measure that is explicitly

designed for evaluating image captioning systems, on sev-

eral benchmark data sets such as MS COCO. The results

of our experiments show that the variants of the state-of-

the-art methods for image captioning that make use of the

information extracted from knowledge graphs can substan-

tially outperform those that rely solely on the information

extracted from images.

Some promising directions for future work include: vari-

ants and extensions of CNet-NIC, including those that sub-

stantially improve the quality of captions, provide justifica-

tions for the captions that they produce, tailor captions for

visual question answering, tailoring captions to different au-

diences and contexts, etc. by bringing to bear on such tasks,

all available background knowledge.
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Table 3. Image example of model showing ”Common Sense” from external resource.
Image Detected Indirectly

Related
Sentences Generated by
Model with Indirectly
Related

Sentences Generated by
Model without Indirectly
Related

Standard Model

Winsor chair,
deck chair,
furnishing, pot

item of furniture,
upholstered,
found in house,
chairs

0) a dining room with a table
and chairs
1) a dining room with a table,
chairs and a table
2) a dining room with a table
and chairs and a fireplace

0) a table with a vase of flow-
ers on it
1) a dining room with a table
and chairs
2) a table with a vase of flow-
ers on it

0) a table with a vase of flow-
ers on it
1) a table with a vase of flow-
ers on it
2) a table with a vase of flow-
ers on it

fishmonger, ce-
real bowl, phial,
banana, waiter

food storage jar,
canaree, storing
food, fruit bowl,
food can

0) a chef preparing food in a
kitchen on a counter
1) a chef preparing food in a
kitchen on a table
2) a man in a kitchen prepar-
ing food for a customer

0) a man and a woman
preparing food in a kitchen
1) a man and a woman
preparing food in a kitchen
2) a chef preparing food in a
kitchen next to a woman

0) a group of people in a
kitchen preparing food
1) a group of people standing
around a kitchen
preparing food 2) a group of
people in a kitchen preparing
food

straight chair,
furnishing

item of furni-
ture, reuphol-
stery, end table

0) a kitchen filled with appli-
ances and lots of clutter
1) a kitchen filled with ap-
pliances and lots of counter
space
2) a kitchen with a table and
chairs

0) a kitchen with a stove a
sink and a counter
1) a kitchen with a stove a
sink and a window
2) a kitchen with a stove top
oven next to a sink

0) a kitchen with a stove a
sink and a stove
1) a kitchen with a stove a
sink and a refrigerator
2) a kitchen with a stove a
sink and a counter

book(s), toilet
seat

bookrack,
bookshelving,
bookrest

0) a bathroom with a toilet
and a book shelf
1) a bathroom with a toilet
and a book shelf
2) a bathroom with a toilet
and a sink

0) a white toilet sitting in a
bathroom next to a wall
1) a white toilet sitting next to
a book shelf
2) a white toilet sitting in a
bathroom next to a shelf

0) a kitchen with a stove a
sink and a stove
1) a kitchen with a stove a
sink and a refrigerator
2) a kitchen with a stove a
sink and a counter

trolleybus(es),
park bench,
commuter

tram stop, bus
rapid transit

0) a couple of buses that are
sitting in the street
1) a couple of buses that are
parked next to each other
2) a couple of buses driving
down a street next to a tall
building

0) a double decker bus driv-
ing down a street
1) a double decker bus driv-
ing down the street
2) a double decker bus is driv-
ing down the street

0) a double decker bus driv-
ing down a street
1) a double decker bus driv-
ing down a city street
2) a double decker bus driv-
ing down the street

Friesian(s),
Brown Swiss,
private, settler

dairy farm,
cows, feed lot

0) a group of cows standing
next to each other
1) a group of cows that are
standing in the dirt
2) a group of cows standing
in a barn

0) a group of cows that are
standing in the dirt
1) a group of cows that are
standing in the grass
2) a group of cows that are
standing in a pen

0) a group of cows are stand-
ing in a pen
1) a group of cows standing
in a pen
2) a group of cows are stand-
ing in a field

overnighter(s),
pilgrim(s),
square dancer,
general, peddler,
hand luggage,
backpack

wayfaring,
day tripper,
journeyer,
excursionist,
traveller

0) a group of people standing
around with luggage.
1) a group of people standing
around a luggage carousel.
2) a group of standing around
a baggage claim area.

0) a group of people standing
around a luggage carousel.
1) a group of people standing
around a luggage cart.
2) a group of people standing
next to a luggage cart.

0) a group of people standing
around a luggage carousel.
1) a group of people standing
around a luggage cart.
2) a group of people standing
next to each other.

horse wran-
gler(s), Ten-
nessee walker,
wild horse

found on ranch 0) a man standing next to a
brown horse.
1) a man is standing next to a
horse
2) a man standing next a
brown horse in a stable.

0) a couple of people standing
next to a horse.
1) a woman standing next to
a brown horse.
2) a couple of people standing
next to a brown horse.

0) a group of people standing
next to a horse.
1) a group of people standing
next to a brown horse.
2) a group of men standing
next to a brown horse.
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