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Transport in Technicolor: Mapping ATP-Binding Cassette

Transporters in Sea Urchin Embryos
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SUMMARY

One quarter of eukaryotic genes encode membrane proteins. These include nearly
1,000 transporters that translocate nutrients, signaling molecules, and xenobiotics
across membranes. While it is well appreciated that membrane transport s critical for
development, the specific roles of many transporters have remained cryptic, in part
because of their abundance and the diversity of their substrates. Multidrug resistance
ATP-binding cassette (ABC) efflux transporters are one example of cryptic mem-
brane proteins. Although most organisms utilize these ABC transporters during
embryonic development, many of these transporters have broad substrate specificity,
and their developmental functions remain incompletely understood. Here, we review
advances in our understanding of ABC transporters in sea urchin embryos, and
methods developed to spatially and temporally map these proteins. These studies
reveal that multifunctional transporters are required for signaling, homeostasis, and
protection of the embryo, and shed light on how they are integrated into ancestral
developmental pathways recapitulated in disease.
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“[Multidrug resistance
transporters| can be thought of
as being more like Swiss army
knives than vegetable peelers,
with functions dictated by the
cellular context in which they
are expressed.”
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INTRODUCTION

ATP-Binding Cassette Transporters In
Development and Disease

Although plasma membrane proteins comprise one
quarter of all genes (Almén et al., 2009; Babcock and
Li, 2014), our understanding of their functions during
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development remains limited. This is of interest because
the category of plasma membrane proteins includes nearly
1,000 transporters that govern embryo-environment

Abbreviations: ABC, ATP-binding cassette; CAM, calcein-acetoxymethyl
ester; CMFDA, chloromethyl fluorescein diacetate; MDR, multidrug resistance;
MRP, multidrug-resistance associated protein; SLC, solute carrier.



interactions and intercellular communication within the
embryo. Among them are “active” transporters that trans-
locate diverse molecules across membranes using power
liberated by the direct hydrolysis of ATP. In eukaryotes, the
largest group of active transporters is the ATP-binding
cassette (ABC) family (Borst and Elferink, 2002); in
humans, these include 49 genes divided among seven
subfamilies, designated ABC A-G (Dean et al., 2001).

Multidrug resistance (MDR) transporters are a subset of
ABC transporters that efflux endogenous and exogenous
hydrophobic small molecules (Sharom, 2008). These
include three subfamilies, the ABCB proteins, including
ABCB1/permeabilty-glycoprotein/MDR1 and ABCB4/
MDR3; the ABCC/multidrug resistance-associated pro-
teins (MRP), including ABCC1/MRP1, ABCC2/MRP2
and ABCC3/MRP3; and the ABCG proteins, including
ABCG2. These transporters can have a dramatic impact
on drug disposition (Giacomini et al., 2010) and are often
up-regulated in metastatic cancer, leading to chemothera-
peutic resistance (Gottesman et al., 2002). Accordingly,
these B-, C-, and G- proteins, and several other members of
these families, are often designated MDR transporters.

Although MDR transporters have primarily been studied
in the context of drug disposition, itis becoming increasingly
appreciated that they are also widely expressed in embryos
and stem cells (Barbet et al., 2012; Shipp and Hamdoun,
2012; Erdei et al., 2014). By analogy to their drug disposi-
tion in adults, one critical function in embryonic cells is
presumably protection from xenobiotics. MDR transporters
often have large, polyspecific binding sites that accommo-
date many structurally diverse substrates (Gutmann et al.,
2010), including both xenobiotics and signaling molecules.
Examples of signaling molecule substrates are platelet-
activating factor (Raggers et al., 2001), leukotrienes
(Deeley and Cole, 2006), prostaglandins (Russel et al.,
2008), and cyclic nucleotides (Cheepala et al., 2013).
These signaling molecules have been implicated in many
processes of development, but the mechanisms governing
their translocation and accumulation are often poorly
understood.

Transporter-mediated signaling is emerging as a caus-
ative agent in the progression of diseases where trans-
porters are overexpressed (Fletcher et al.,, 2010). In
neuroblastoma, for example, ABCC1 expression is nega-
tively correlated with clinical outcome, even in patients who
do not receive chemotherapy, presumably by altering the
distribution and/or abundance of endogenous substrates
that control cell motility (Fletcher et al., 2010). These
observations might suggest that MDR transporters have
ancestral functions during development that are related to
cell motility and migration, and that these functions become
reactivated in disease.

Developmental functions of transporters are further
suggested by the observation that pathways common
to development and disease, such as the epithelial-
mesenchymal transition, can regulate MDR transporters.
During embryonic development of triploblastic animals,
epithelial cells become mesenchymal through morphologi-
cal changes, including loss of tight junctions, apical-basal
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polarity, and cell adhesion; such changes enable individual
cells to dissociate from the epithelial layer in which they
originate (Thiery et al., 2009). Similarly during metastasis,
many types of cancer cells shed epithelial characters,
detach from the primary tumor through the epithelial-
mesenchymal transition, and become motile (Yang and
Weinberg, 2008). These epithelial-mesenchymal transi-
tions can also upregulate MDR-transporter phenotypes
in metastatic cancer cells (Arumugam et al., 2009; Saxena
et al., 2011). Collectively, such observations suggest that
an understanding of the function and regulation of MDR
transporters in development would inform our understand-
ing of their behavior in cancer.

ABC Transporters and MDR Transporter Activity
In Sea Urchins

MDR transporters are expressed in oocytes, embryos,
and stem cells of a variety of model systems, and the list
of related plasma membrane proteins found in embryos
continues to expand, currently including ABCB4, ABCBS5,
ABCB11,ABCC2, ABCC3, ABCC4, ABCC5,and ABCC10.
Homologs of ABC transporters and MDR-transporter-like
efflux activities have been reported in many embryos,
perhaps most extensively studied in sea urchins (Good
and Kuspa, 2000; Hamdoun et al., 2004; Yabe et al., 2005;
Ricardo and Lehmann, 2009; Long et al., 2011; Gokirmak
etal., 2012; Fischeretal., 2013; Miranda etal., 2013). While
both developmental and protective functions have been
proposed for these transporters, relatively few studies
have systematically mapped the MDR transporter reper-
toire of an embryo. Studies on these transporters during the
early development of sea urchin embryos, first described
nearly a decade ago (Hamdoun et al., 2004), have started
to provide insight into the diversity of transporters involved.

Given that marine embryos are exposed to a variety of
natural toxins and anthropogenic contaminants (Epel et al.,
2008), one function of sea urchin MDR transporter activity
appears to be protecting embryos from xenobiotics. This
was suggested by the fact that inhibitors of MDR trans-
porters sensitize embryos to environmental toxicants
(Bosnjak et al., 2009) as well as chemotherapy drugs
such as vinblastine (Hamdoun et al., 2004; De Souza
et al, 2010; Anselmo et al., 2012) and etoposide
(Epel et al., 2006). Pollutants such as mercuric chloride
(Bosnjak et al., 2009) and antifouling agents (Bosnjak et al.,
2011; Xu et al., 2011) were also shown to be substrates of
MDR transporters. In addition to protecting embryos from
chemical insults, transporters protect against ultraviolet
radiation, albeit the mechanism remains unknown (Leite
et al., 2014).

Additional insights into the functions of sea urchin MDR
transporters come from genomics. The purple sea urchin
(Strongylocentrotus purpuratus) genome currently has 82
reliable ABC transporter gene annotations (EchinoBase.
org; Goldstone et al., 2006; Sodergren et al., 2006). At least
75 of the 82 genes are expressed in early larval stages,
highlighting their importance by development. The expan-
sion in sea urchin ABC genes, as compared to humans
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(Vasiliou et al., 2009), is primarily in the MDR transporter
families B, C, and G —including 13 ABCB genes, 31 ABCC
genes, and 9 ABCG genes. At least 20 B, C, and G genes
are expressed by gastrulation (Shipp and Hamdoun, 2012)
and the corresponding proteins encoded by these 20 genes
are predicted to function in diverse processes including
cell signaling, lysosomal and mitochondrial homeostasis,
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potassium channel regulation, pigmentation, and protec-
tion from xenobiotics (Shipp and Hamdoun, 2012).
Insights into the regulation and developmental signifi-
cance of these proteins have come from studies revealing
that B- and C-type efflux transport is dynamic in early
development (Fig. 1A). For example, there is an 80-fold
increase in MDR transporter activity that occurs 25 min
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Figure 1. Transitions in MDR transporter activity during development. A: Schematic illustration of switches in MDR transporter activity during sea
urchin development. Efflux activity increases 25 min after fertilization (cell color transitioning from dark to light green) and later decreases in small
micromeres of 60-cell embryos (light to dark green), as demonstrated by changes in calcein accumulation. B: Confocal micrographs show
differences in calcein accumulation (green) after the egg-to-embryo and soma-to-germ line (a.k.a. micromere-to-small micromere) transition.
C: Confocal maximum intensity projections (MIP) and cross-sections showing calcein accumulation after treatment with 10 .M PSC833 (MDR-
transporter inhibitor) or 10 M MK-571 (MRP inhibitor) in 16-hour-old blastulae. All embryos were imaged and displayed with the same settings, but
brightness of control embryos was increased in this figure to make them apparent. D: Schematic of a calcein-AM efflux assay in polarized epithelial
cells of the blastula. (1) Calcein-AM passes into/through the plasma membrane where it is (2) recognized and effluxed by an ABC transporter or (3)
cleaved into the fluorescent product, calcein, by intracellular esterases. Calcein is fluorescent and membrane impermeable, and can therefore
accumulate in the cytoplasm.
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after fertilization (Fig. 1B). This increase in activity does not
require de novo gene expression, but is instead mediated
by actin-dependent translocation of transporters stored in
the unfertilized eggs to the tips of microvilli in zygotes, via
a Rab11-dependent mechanism (Hamdoun et al., 2004;
Whalen et al., 2012). Such regulation of transporter activity
is analogous to that reported in mammalian adult hepato-
cytes, where bile acid secretion is regulated by serine/
threonine kinases (LKB1 and AMPK1) (Fu et al., 2011;
Homolya et al., 2014) and trafficking of ABCB11 from
Rab11 and myosin Vb-positive vesicles to the apical
surface (Wakabayashi et al., 2006).

Of interest is whether the LKB1-AMPK1 pathway, or
other kinase signaling pathways, might also control trans-
porter activity in embryos. LKB1-AMPK1 signaling is
involved in developmental programs and in various
disease phenotypes. For instance, in Lkb1-knockout
mouse embryos, neural tube closure, somitogenesis,
and vascular development are defective (Ylikorkala et al.,
2001; Londesborough et al., 2008). In disease, LKB1 is a
tumor repressor and LKB1 knockdown causes epithelial-
mesenchymal transition in lung carcinogenesis (Roy
et al., 2010), suggesting that the LKB1-AMPK1 signaling
pathway may be involved in epithelial-mesenchymal-
transition-induced multidrug resistance.

In sea urchin embryos, MDR transporter activity remains
high in early development, but is down-regulated only in
small micromeres, the presumptive germ-line progenitors
(Fig. 1B and C). This is unexpected given that high transport
activity is seen is some stem cells, although a likely possi-
bility is that modulation of transporter activity is necessary
for primordial-germ-cell functions such as migration
(Campanale and Hamdoun, 2012; Campanale et al.,
2014). Another developmentally regulated ABC transporter
is ABCC5a, which is expressed only transiently during
development (Shipp and Hamdoun, 2012). Though the
precise developmental function of ABCC5 remains un-
known, a recent report suggested that ABCC5 has a
conserved role in heme homeostasis and hematopoiesis
(Korolnek et al., 2014). Interestingly, sea urchin ABCC5a is
spatially restricted to newly forming secondary mesen-
chyme, the precursors of larval immunocytes (Shipp and
Hamdoun, 2012; Solek et al., 2013).

Given the diversity of transporters utilized by embryos,
the proposed roles for ABC transporters are clearly the
“tip of the iceberg”. Here, we summarize approaches for
mapping MDR transporters in sea urchin embryos, and the
implications of these studies for understanding transporter
function. We review methods for measuring efflux activities
using fluorescent substrates, expression of recombinant
proteins, and mapping of transporter localization. Although
we focus on MDR transporters, which we define as plasma
membrane proteins in the B, C, and G families, the techni-
ques are also applicable to the study of other types of
membrane proteins, such as solute carrier (SLC) trans-
porters (Wu et al., 2011b) and amino acid transporters
(Meyer and Manahan, 2009), and they provide a road map
for the study of membrane transporters in other embryo
models (Fischer et al., 2013).
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FROM GENE TO FUNCTION: EFFLUX
ASSAYS, EXPRESSION OF RECOMBINANT
TRANSPORTERS, AND MAPPING TRANSPORT
WITHIN THE EMBRYO

Use of Efflux Assays to Study MDR Transporter
Function

Efflux assays with fluorescent substrates were first
developed to assess MDR transporter function in drug-
resistant cancer cells (Homolya et al., 1993; Homolya et al.,
1996). Since then, they have been adapted for applications
ranging from drug discovery (Polli et al., 2001; Tegos et al.,
2014) to pollutant testing (Hamdoun et al., 2002; Smital
et al.,, 2004; Bosnjak et al., 2009; Xu et al., 2011) to
developmental studies (Hamdoun et al., 2004; Campanale
and Hamdoun, 2012; Whalen et al., 2012). MDR transport-
er activity is assessed by measuring the accumulation of
fluorescent transporter substrates (Table 1). If transporter
activity is high, fluorescent substrates are effluxed and
intracellular fluorescence is low; conversely, low transpo-
rter activity allows fluorescent substrates to accumulate,
leading to high intracellular fluorescence (Figure 1).

Fluorescent efflux assays can be performed with differ-
ent detection tools, such as a spectrofluorometer (Cole
et al., 2013) or microscope (Campanale and Hamdoun,
2012; Gokirmak et al., 2012). Our group has favored the
use of confocal microscopy since this method can be used
for quantitative and/or qualitative measurement of trans-
port. As compared to spectrophotometry of homogenates
or widefield microscopy, confocal microscopy further en-
ables the measurement of differences in efflux between cell
types of the embryo (Campanale and Hamdoun, 2012).

Fluorescent Substrates of MDR Transporters

Due to their polyspecificity, MDR transporters can efflux
a wide variety of structurally diverse compounds. Conve-
niently, these include many fluorescent small molecules
(<1000 Da), which can be readily visualized in efflux as-
says (Litman et al., 2000; Lebedeva et al., 2011; Strouse
etal., 2013). Interactions between mammalian MDR trans-
porters and fluorescent substrates are well characterized,
allowing the use of this approach to understand the efflux
functions of embryo transporters. Functional characteriza-
tion of sea urchin MDR transporters with these molecules,
showed that they have similar efflux activities to their
closest human homologs (Gokirmak et al., 2012).

Fluorescent substrates can be grouped into four major
categories (Table 1). The first category contains the fluo-
rone-based synthetic compounds, including rhodamines
(e.g. rhodamine 123, rhodamine B, and rhodamine 6G);
calcein-acetoxymethyl ester (CAM); 2/, 7'-bis-(2-Carbox-
yethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester
(BCECF-AM); Fluo3-AM; fluorescein diacetate (FDA);
and chloromethyl fluorescein diacetate (CMFDA). Among
them, CAM has been the probe most commonly used in
echinoderm eggs and embryos (Hamdoun et al., 2004;
Roepke et al.,, 2006; Campanale and Hamdoun, 2012;
Gokirmak et al., 2012). CAM is a neutral, non-fluorescent,
membrane-permeable substrate of ABCB- and ABCC-type
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TABLE 1. Fluorescent Substrates of MDR Transporters

Target MDR Transporter

Dye Class Fluorescent Dye ABCB1 ABCCA1 ABCG2 References

Fluorone Rhodamine 123 + — + Litman et al. (2000); Szakacs et al. (2008)
Calcein-AM/calcein + + - Litman et al. (2000); Gokirmak et al. (2012)
BCECF-AM/BCECF +2 +2 - Draper et al. (1997); Homolya et al. (1993)
Fluo3-AM N/D + N/D Keppler et al. (1999)
CMFDA +2 +2 N/D Weiss et al. (2007)
FDA +2 +2 N/D McAleer et al. (1999)

Bodipy Vinblastine + + - Litman et al. (2000); Gokirmak et al. (2012)
Verapamil + — - Litman et al. (2000); Gokirmak et al. (2012)
Paclitaxel + — - Litman et al. (2000)
Prazosin + — + Litman et al. (2000)

Cyanine JC-1 + + + Strouse et al. (2013)
Mitotracker Green +2 + — Marques-Santos et al. (2003); Strouse et al. (2013)
SYTO stains + + - Strouse et al. (2013)

Anthracene Doxorubicin + + + Litman et al. (2000); Szakécs et al. (2006)
Daunorubicin + + + Litman et al. (2000); Szakacs et al. (2006)
Bisantrene + - + Zhang et al. (1994); Litman et al. (2000)
Epirubicin + + + Szakacs et al. (2006)
Mitoxantrone +/— + + Litman et al. (2000); Gokirmak et al. (2012)

+ verified substrate; — absence of transporter-substrate interaction; +/— interactions differ among species; N/D, not determined.

@Unpublished observation in sea urchin embryos.

transporters in mammals and sea urchins. CAM passively
diffuses across the cell membrane, and is converted to
membrane-impermeable green fluorescent calcein after
the cleavage of the acetoxymethyl ester (-AM) moiety by
intracellular esterases (Fig. 1D) (Essodaigui et al., 1998).
Therefore, cells with high ABCB and ABCC MDR ftrans-
porter activity accumulate less calcein and exhibit lower
fluorescence compared to cells with less activity. While
fluorone-based dyes are typically not effective substrates
of ABCG transporters, a related class of xanthene-
based dyes are alternative substrates for these proteins
(Lebedeva et al., 2011).

The second major group of fluorescent compounds
includes the bodipy conjugates of MDR transporter sub-
strates, including vinblastine, verapamil, paclitaxel, and
prazosin (Litman et al., 2000). These substrates have no
inherent fluorescence, but bodipy is strongly fluorescent
and does not require esterase activity for activation. Bodipy
is relatively nonpolar and neutral, which limits, but does not
eliminate, effects on the substrates to which it is conjugated
— thus, an important consideration when using these sub-
strates as tracers in that the bodipy moiety can slightly alter
the characteristics of the substrate to which it is attached.
For example, bodipy-verapamil is more effectively trans-
ported by ABCB1 than unconjugated verapamil, and is also
a less effective inhibitor (Lelong et al., 1991). Regarding
specificity, bodipy conjugates of vinblastine and verapamil
are well-characterized substrates for mammalian ABCB
transporters (Litman et al., 2000; Crivellato et al., 2002;
Kimchi-Sarfaty et al., 2002), and both are effluxed by sea
urchin permeability-glycoprotein-type transporters such
as ABCB1a and ABCB4a (Gokirmak et al., 2012). These
observations illustrate the conservation of substrates
between species.
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The third class of fluorescent substrates includes
cyanine-based fluorescent compounds such as JC-1 (a
mitochondrial membrane potential probe), MitoTracker
Green FM (a mitochondrial stain), and the SYTO series
of nucleic acid stains. JC-1 is effluxed by all three major
MDR transporters, and has been used in combination with
niclosamide to probe ABCG2 activity (Strouse et al., 2013).
MitoTracker Green FMis a substrate of both human and sea
urchin ABCB type transporters (Marques-Santos et al.,
2003; unpublished observations).

Finally, the fourth class of fluorescent MDR-transporter
substrates contains the anthracene-derived antitumor
drugs. These include doxorubicin, daunorubicin, bisan-
trene, epirubicin, and mitoxantrone (Litman et al., 2000).
As they are inherently fluorescent, these drugs can be used
as tools for studying efflux functions of MDR transporters in
intact cells, but their cytotoxicity and comparatively low
fluorescence make them difficult to use at optimal concen-
trations. In some cases, they remain the best available
option. For example, mitoxantrone is effluxed by human
ABCG2, and it is also a weak substrate for human ABCB1
(Litman et al., 2000; Sharom, 2008). In sea urchins, mitox-
antrone is also effluxed by ABCG2a, but we were unable
to detect significant efflux of this substrate by ABCB1a
or ABCB4a (Gokirmak et al., 2012).

When using fluorescent-efflux assays to characterize
MDR transporters, one limitation is the inability to resolve
activities of individual transporters, as many MDR
transporters display overlapping substrate specificity. For
example, in humans, CMFDA can be effluxed by ABCC1,
ABCC2, ABCC3, and ABCCS5 transporters (McAleer et al.,
1999; Weiss etal., 2007). In addition, some of the dyes used
as substrates of MDR transporters are also substrates of
SLC transporters. For example, Fluo-3 is transported both

Mol. Reprod. Dev. 81:778-793 (2014)
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TABLE 2. Inhibitors of MDR Transporters

Target MDR Transporter

Inhibitor Class Inhibitor Primary Secondary References
First Generation Verapamil ABCB1 ABCC1/ABCG2 Tsuruo et al. (1981); Germann et al. (1997);
Anselmo et al. (2012) @
Cyclosporin A ABCB1 ABCC1/ABCG2 Qadir et al. (2005); Matsson et al. (2009);
Hamdoun et al. (2004) @
Amiodarone ABCB1 ABCG2 Ford and Hait (1990); Matsson et al. (2009)
Quinidine ABCB1 ABCC1 Robert and Jarry (2003); Hamilton et al.
(2001); Matsson et al. (2009)
Nifedipine ABCB1 ABCG2 Philip et al. (1992); Zhang et al. (2005)
Second and R-Verapamil ABCB1/ABCCH1 Perrotton et al. (2007)
third Generation
PSC 833 ABCB1 ABCCH1 Twentyman (1992); Leier et al. (1994);
Campanale and Hamdoun (2012) @
Elacridar ABCB1/ABCG2 Hyafil et al. (1993); de Bruin et al. (1999);
Oostendorp et al. (2009)
Tariquidar ABCB1 ABCG2 Martin et al. (1999); Robey et al. (2004);
Kannan et al. (2011)
LY465803 ABCCA1 ABCB1 Dantzig et al. (2004); Norman et al. (2005)
LY475776 ABCC1 ABCB1 Dantzig et al. (2004)
Fourth Generation  Fumitremorgin C  ABCG2 Rabindran et al. (2000); Matsson et al.
(2007); Matsson et al. (2009)
Ko143 ABCG2 ABCB1 Allen et al. (2002); Matsson et al. (2009)
Curcumin ABCB1/ABCC1/ABCG2 Wu et al. (2011a); Limtrakul et al. (2007)
Others MK-571 ABCC1 ABCB1/ABCG2 Leier et al. (1994); Matsson et al. (2009);
Fischer et al. (2013) @
BAY u9773 ABCC1 Maeno et al. (2009)

®References that show validation in embryos.

by inwardly directed SLC and outwardly directed ABC
transporters (Sai and Tsuji, 2004; Baldes et al., 2006).
One solution to this problem can be found by combining
the use of fluorescent dyes with specific inhibitors. Indeed,
arecent screen of 121 fluorescent compounds in multidrug-
resistant human cell lines identified 31 substrates, which
can be used in combination with inhibitors to specifically
probe ABCB1, ABCC1, and ABCG2 transporter activities
(Strouse et al., 2013).

Inhibitors of MDR Transporters

The efflux activity measured in embryos can occur
from the action of multiple, redundant transporters. In
sea urchins, for example, CAM is a substrate of ABCB1a,
ABCB4a, and ABCC1pB, a splice variant of ABCC1
(Gokirmak et al., 2012; unpublished observations). Identi-
fying the proportional contributions of individual transport-
ers to the global efflux thus requires specific ABC
transporter inhibitors. MDR-transporter inhibitors are often
small molecules that were initially generated to improve
drug retention in tumor cells. Attempts to discover such
molecules have resulted in the development of preclinical
and clinical drugs, some of which are useful for character-
izing the efflux functions and structures of MDR trans-
porters in vivo and in vitro. Most inhibitors target the
major MDR transporters —such as ABCB1, ABCC1,
ABCC2, and ABCG2— although, it is important to note
that many of these compounds also inhibit other ABC
transporters at higher concentrations (Table 2).
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There have been four “generations” of MDR transporter
inhibitors, each with successively greater levels of specific-
ity for MDR transporters. First-generation inhibitors were
derived from compounds with known biological functions,
such as channel blockers (e.g. verapamil and nifedipine),
immunosuppressants (e.g. cyclosporine), and cardiovas-
cular drugs (e.g. amiodarone and quinidine). Since MDR
transporters are often not the only targets of these com-
pounds, they yielded limited clinical success due to their
undesirable toxicity. For instance, verapamil, an L-type
calcium channel blocker, sensitizes multidrug-resistant leu-
kemia cells (Tsuruo et al., 1981) and later was shown to be
a competitive inhibitor of ABCB1 (Yusa and Tsuruo, 1989);
however, verapamil is cardiotoxic at the concentration that
inhibits ABCB1 (Krishna and Mayer, 2000). In echinoderm
embryos, verapamil and cyclosporine A were used to char-
acterize ABCB activity (Hamdoun et al., 2004; De Souza
et al., 2010; Anselmo et al., 2012). As with mammalian
systems, the inhibition of sea urchin MDR transporters
requires low micromolar concentrations of both com-
pounds, whereas relatively high concentrations of verapa-
mil are required to inhibit calcium channels (Kazazoglou
et al., 1985).

Second- and third-generation MDR-transporter inhibi-
tors were designed to address some of these targeting
problems. Compounds of these generations include
PSC833 (a non-immunosuppressant cyclosporine D ana-
log), the R-enantiomer of verapamil (a lower affinity calcium
channel antagonist), and anthranilic acid derivatives such
as tariquidar and elacridar, which are potent inhibitors of
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ABCB1 and ABCG2 transporters (Hyafil et al., 1993; de
Bruin et al., 1999; Martin et al., 1999; Robey et al., 2004).
Recently, a fluorophore conjugate of a tetrazole-containing
analog of tariquidar, HM30181, was developed for real-time
imaging of MDR transporter-inhibitor interactions (Sprach-
man et al., 2014). Among second- and third-generation
inhibitors, PSC833 has been used in sea urchin embryos to
study ABCB-type transporters (Fig. 1C; Table 2), although
one of its limitations is poor solubility at high concentrations
(>10 pM).

Fourth-generation MDR-transporter inhibitors include
compounds discovered through screens from natural prod-
ucts extracted from plants, fungi, and marine organisms.
This family of inhibitors consists of structurally diverse
compounds that can be used as scaffolds for de novo
synthesis and the design of new inhibitors (Wu et al.,
2011a). For example, fumitromorgin C (FTC) is a highly
specific ABCG2 inhibitor isolated from fungi (Rabindran
et al., 2000), but its undesirable neurotoxicity leaves it
unusable in medicine. Ko143, a structural analog of FTC,
on the other hand, is not neurotoxic and is highly specific
to ABCG2 (Allen et al., 2002).

Finally, although most of the initial efforts to reverse
MDR transporter phenotypes focused on ABCB1, several
compounds were found to specifically inhibit ABCC1 and
ABCC2 (Table 2). Among those, MK-571, a leukotriene (LT)
D4 analog, is commonly used (Cole, 2014). Although it
was originally developed to inhibit cysteinyl leukotriene
receptor 1 (CysLTR1) (Young, 1991), later reports show
that it competitively inhibits ABCC1-mediated efflux of LTC,
(Leier et al., 1994) and proved to be non-selective among
MRP homologs, including ABCC2, ABCC3, ABCC4, and
ABCC5 (Haimeur et al., 2004). Furthermore MK-571 can
inhibit organic anion transporters at high concentrations
(Keppler, 2011).

Other CysLTR1 antagonists, including ONO-1078,
LY171883, and the dual CysLTR1/2 antagonist BAY
u9773, were shown to competitively inhibit ABCC1 trans-
porter activity, but the cross-inhibition of MRP homologs by
these compounds still remains an issue (Cole, 2014). To
overcome specificity issues, cyclohexyl-linked tricyclic iso-
xasole inhibitors were developed for ABCC1 transporters.
LY465803 and its photoactive analog LY475776 are very
potent competitive inhibitors of ABCC1 (IC5q ~50 nM), and
unlike MK-571, they do not inhibit the closely related trans-
porter ABCC2 or other MRP homologs (Dantzig et al.,
2004; Norman et al., 2005). Among these MRP inhibitors,
only MK-571 (Fig. 1C) has been used in sea urchin embryos
to date (Hamdoun et al., 2004; Epel et al., 2006; Bosnjak
et al., 2009). Within sea urchins, it has proven to be an
effective inhibitor of CAM efflux, although this could be
due to its action on multiple transporters; therefore, it will
be important to determine if alternative ABCC inhibitors
are also effective and specific in sea urchins.

Linking Transporters to Substrates through the
Expression of Recombinant Proteins

Efflux assays often fall short of linking a specific
transporter to an observed activity due to the overlap in
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substrates among transporters. In sea urchins, a simple
method to address this is the expression of a recombinant
transporter encoded by an exogenous mRNA that is in-
jected into the one-cell embryo. Exogenous mRNA expres-
sion is a routine procedure used to study gene function
in sea urchins (Cheers and Ettensohn, 2004), frogs
(Churamani et al., 2012), zebrafish (Postel et al., 2011),
amphioxus (Holland and Yu, 2004), starlet sea anemones
(Layden et al., 2013), and fruit flies (Beumer et al., 2008).
We recently adapted such methods for fluorescent protein
tagging and expression of ABC transporters in sea urchins
(Gokirmak et al., 2012).

Given the sensitivity of transporters to the location of
fluorescent protein tags, we generated pCS2 variants,
termed pCS2 + 8, that facilitate the construction of un-
tagged, as well as N- and C-terminal transporter fusions
in a common vector backbone (Fig. 2) (Addgene.org;
Gokirmak et al., 2012). The resulting mRNAs are injected
into a one-cell embryo, which is then cultured to allow
sufficient time for expression. We often assess efflux on
early blastulae (12—20 hr post-fertilization) (Fig. 2) since
the embryos are stillimmobile at this stage, and consist of a
single layer of polarized cells (Itza and Mozingo, 2005). By
this time, more than 90% of the observed efflux activity can
come from the recombinant protein, thus providing a sys-
tem in which to test subtle differences in functions of
homologs, paralogs, mutants or splice variants. For exam-
ple, we found that two amino acids in transmembrane helix
(TMH) 6 are responsible for differences in stereoselectivity
of sea urchin versus mouse ABCB1a (Gokirmak et al.,
2012).

Recombinant protein expression informs also provides
information regarding the subcellular localization of a spe-
cific transporter. For example, Figure 3 shows recombinant
versions of 12 ABC transporters representing B-, C-, and G-
subfamilies. Of these, five, —~ABCB1a, ABCB4a, ABCC1B
(a splice variant of ABCC1), ABCC5a, and ABCG2a—are
plasma membrane transporters with a clear efflux activity
for fluorescent substrates (Table 1) (Gokirmak et al., 2012).
Conversely, two basolateral transporters, ABCB1b and
ABCC4, and an apical transporter, ABCG2c, do not appear
to have activity against any of the substrates we have tested
to date. Four half transporters —~ABCB6, ABCB7, ABCBS,
and ABCC9a (SUR2 homolog)— have organellar mem-
brane localizations (Fig. 3), consistent with the residence
of their closest mammalian homologs.

Modeling Transporter Location Within the
Embryo

Merging physiological studies with developmental
“mapping” approaches (quantitative PCR and in situ
hybridization) can further refine our membrane localiza-
tion models in sea urchins (Fig. 4), which implicate spatial
and temporal restriction of transporters with specific
morphogenetic or protective functions. For example, we
found that the predicted xenobiotic transporter ABCB1a
is expressed at high levels and is present in most cells of
the embryo throughout the first three days of development.
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In contrast, ABCC5a, which is similar to a human homolog
implicated in signaling, is expressed in a spatially
and temporally restricted fashion that is consistent
with a function in developmental signaling (Shipp and
Hamdoun, 2012). Activity and localization assays indicat-
ed that ABCB1a is a polyspecific, apical transporter (i.e.
facing the environment), whereas ABCC5a is basolateral
(facing neighboring cells and the blastocoel) and has
minimal xenobiotic efflux activity (Gokirmak et al., 2012;
Shipp and Hamdoun, 2012). Together, these recombinant
protein and gene expression studies can be used to
model plasma membrane protein localization during
development (Fig. 4).

Future Approaches to Link Specific Substrates to
Developmentally Relevant Transporters

One future direction will be to connect what we are
learning about the spatial and temporal distribution of
transporters in embryos to an understanding of their
substrates. While MDR transporters efflux many signal-
ing molecules important for reproduction and develop-
ment, few fluorescent analogs of these compounds are
available. Vesicular transport studies with overexpressed
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proteins are an important alternative approach for
studying the translocation of such transporters (Horio
et al.,, 1988). Indeed, several membrane systems
—including insect cells (Bakos et al., 1998; Fischer
etal., 2013), transfected or selected mammalian cell lines
(Zeng et al., 2000), artificial membrane vesicles (Sharom
et al., 1999), or monolayer transport assays (Polli et al.,
2001)—have previously been used to directly measure
the translocation of a radioactively labeled substrate
across a cell membrane. Since active transport of sub-
strates across cell membranes by ABC transporters re-
quires hydrolysis of ATP molecules and the release of
inorganic phosphate (P;) and ADP, ATPase assays with
purified transporters can also be used to measure the
rate of P; liberation after stimulation with a presumed
developmental substrate (Baykov et al., 1988; Henkel
et al., 1988). It is generally accepted that compounds
that stimulate ATPase activity are substrates, while
those that inhibit ATPase activity are inhibitors (Al-Shawi
etal., 2003). Additionally, vesicular transport assays have
recently been combined with liquid chromatography/
mass spectrometry (LC/MS)-based metabolomics to
identify physiological MDR transporter substrates (Krum-
pochova et al., 2012).
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Figure 3. Subcellular localization of mCherry-tagged sea urchin ABC transporters (Sp-ABC) in blastulae. ABC-B1a, B4a, G2a, and G2c localize to
apical membranes in S. purpuratus embryos. ABC-B1b, C1, C4, and C5a localize to basolateral membranes. ABC-B6, B7, B8, and C9a localize
into internal/organellar membranes. Scale bar, 20 um.
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CONCLUSIONS

Despite the significance of membrane transport, our
understanding of plasma membrane transporters in em-
bryos remains rudimentary. While membrane transport has
long been studied in adult cells, such as hepatocytes or in
cancer cells, there are several challenges to applying this
existing information to embryos. First, unlike membrane
transport in differentiated cell models, such as adipocytes,
neurons, hepatocytes, or renal cells, the surfaces of em-
bryonic cells are dynamic, and transporter composition
changes rapidly with differentiation. Second, the number
of transporters is large, and transport is often mediated by
the simultaneous action of multiple, overlapping/redundant
transporters (Giacomini et al., 2010). Finally, unlike most
enzymes, membrane transporters are polyspecific, i.e.,
have multiple substrates. Thus, MDR transporters can
be thought of as being more like Swiss army knives than
vegetable peelers, with functions dictated by the cellular
context in which they are expressed.

Mol. Reprod. Dev. 81:778-793 (2014)

Nonetheless, the challenges underlying the identifica-
tion of embryonic membrane transporter function are
essential to tackle for several reasons. The first is simply
that the functions of many membrane transporters are
incompletely understood in any system. As illustrated
here, understanding how these proteins are regulated
in space and time in an embryo can be an important
tool for generating hypotheses about their potential func-
tions. This is especially relevant given that the expression
of membrane transporters in diseases such as cancer
can itself result from recapitulation of developmental
pathways, including the epithelial-to-mesenchymal trans-
formation pathways. Further, as alluded to above, the
actual function of those transporters in disease can be
analogous to their developmental roles, such as control-
ling cell motility. Thus, coming to grips with the diversity
of functions and regulatory pathways that these Swiss
army knives participate in may require insight from
embryos.
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