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Abstract—The technology-push of die stacking and application-
pull of Big Data machine learning analytics (BMLA) have created
a unique opportunity for processing-near-memory (PNM). This
paper makes four contributions: (1) While previous PNM work
explores general MapReduce workloads, we identify three appli-
cation characteristics of most BMLAs: (a) irregular-and-compute-
light (i.e., perform only a few operations per input word which
include data-dependent branches and indirect memory accesses);
(b) compact (i.e., the relevant portion of the input data and the
intermediate live data for each thread are small); and (c) memory-
row-dense (i.e., process the input data without skipping over
many bytes). These characteristics, except for irregularity, are
necessary for bandwidth- and energy-efficient PNM, irrespective
of the architecture. (2) Based on these characteristics, we propose
memory optimizations for a “sea of simple MIMD cores (SSMC)”
PNM architecture, called Millipede, which (pre)fetches and op-
erates on entire memory rows to exploit BMLAs’ row-density.
Instead of this row-oriented access and compute-schedule, tra-
ditional multicores opportunistically improve row locality while
fetching and operating on cache blocks. (3) Millipede employs
well-known MIMD execution to handle BMLAs’ irregularity,
and sequential prefetch of input data to hide memory latency.
In Millipede, however, one corelet prefetches a row for all the
corelets which may stray far from each other due to their MIMD
execution. Consequently, a leading corelet may prematurely evict
the prefetched data before a lagging corelet has consumed the
data. Millipede employs cross-corelet flow-control to prevent such
eviction. (4) Millipede further exploits its flow-controlled prefetch
for frequency scaling based on coarse-grain compute-memory rate-
matching which decreases (increases) the processor clock speed
when the prefetch buffers are empty (full). Using simulations,
we compare PNM architectures to show that Millipede improves
performance and energy, by 135% and 27% over a GPGPU with
prefetch, and by 35% and 36% over SSMC with prefetch, when
all three PNM architectures use the same resources (i.e., number
of cores and on-processor-die memory) and identical die-stacking.

I. INTRODUCTION

The technology-push of die stacking and the application-

pull of Big Data have created a unique opportunity for

processing-near-memory (PNM). Die stacking (e.g., Hybrid

Memory Cube [1], High Bandwidth Memory [2]) provides

unprecedented high-bandwidth connection between memory

and processor dies. At the same time, prevalent Big Data

machine learning analytics (BMLA) applications process vast

amounts of data, are abundantly parallel, and require mas-

sive memory bandwidths (e.g., clustering, classification, di-

mensionality reduction, anomaly detection, and aggregation

statistics). BMLAs are important for many industries such as

telecommunications, healthcare, banking, insurance, and social

media [3], [4]. BMLAs are for unstructured Big Data whereas

traditional database analytics are for structured data. This

paper identifies and exploits BMLAs’ characteristics through

memory optimizations to fully utilize die-stacking bandwidth

while remaining energy-efficient.

While processing-in-memory (PIM) has been around for

decades [5], [6], [7], [8], [9], [10], [11], [12], [13], there

have been three problems. The first is the mismatch between

DRAM and logic processes, which some past proposals have

addressed by advocating PIM with SRAM [14], whereas die

stacking offers a higher-density solution. The second, more

fundamental, problem is that two-input-one-output operations

with more than one large operand pose the difficulty that the

processor can be near only one of the operands, requiring

massive data movement for the other operand(s) like non-PNM

architectures and thereby losing PNM’s bandwidth advantage.

We show that only one of the input operands is large in most

BMLAs. The third problem is the lack of applications with

the right characteristics which BMLAs have.

We identify three key characteristics, which most BMLAs

either naturally have or can be transformed to have, that

fit PNM: irregular-and-light-compute, compact, and memory-
row-dense. First, BMLAs often perform data-dependent com-

putation to differentiate among the input data which is funda-

mental to learning. Such computation involves data-dependent

branches and/or irregular memory access to intermediate pro-

gram state but not the input data (e.g., counter[label]
for 100 randomly-occurring labels). Further, BMLAs perform

only a few operations per input data word (e.g., under 10)

requiring low compute bandwidth, so that simple, energy-

efficient pipelines suffice. Conversely, compute-heavy appli-

cations would be compute-bound and not benefit much from

PNM’s bandwidth, irrespective of the architecture. Second,

BMLAs perform an acute data reduction via summarization so

that the output is much smaller than the input (e.g., calculating

the cluster centroids through kmeans). Consequently, BMLAs

access, at a time, often just one input record and a small

amount of intermediate program state, the partially-reduced

output, which fits in a small local memory (e.g., 8 KB per

core). This compact nature avoids PIM’s second problem

above. Finally, BMLAs process almost all the input data

without skipping over bytes, resulting in dense accesses to the

memory rows holding the data. This density implies efficiency

of memory bandwidth which is PNM’s key advantage. General

spatial locality (of Map [13], [11]) does not necessarily imply

the lack of gaps which is key for bandwidth efficiency.
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Fig. 1. Millipede Architecture

Except for irregularity, these characteristics are necessary
for bandwidth- and energy-efficient PNM, irrespective of the
architecture (Section III-D). Traditional database analytics

(e.g., [15]) do not share all these characteristics (Section III).

Following widespread practice for programmability reasons,

we use MapReduce [16] (or Spark [17]) to implement BMLAs.

While recent PNM work (e.g.,[11], [10]) considers general

MapReduce workloads with a broad set of characteristics

(Section II), we identify the specific characteristics that fit

PNM, which is our first contribution.

Exploiting the high bandwidth of die stacking via PNM

architectures based on vector (SIMD), GPGPU (SIMT), or

conventional multicore faces difficulties. BMLAs’ irregularity

makes SIMD and SIMT execution inefficient. While conven-

tional multicore’s MIMD execution can handle irregularity,

the cores stray far from each other in execution, interleave

accesses to many memory rows, degrade row locality, and

squander die-stacking bandwidth. Accordingly, we propose

memory optimizations for a “sea of simple MIMD cores

(SSMC)” PNM architecture, called Millipede, targeting BM-

LAs’ characteristics. While conventional multicores employ

power-hungry superscalar cores and deep, coherent cache

hierarchies, SSMC uses simple cores and no data caches. We

envision Millipede to augment the host processor (Figure 1).

Before describing Millipede’s novel features, we list the

well-known features in its SSMC skeleton: For each (or a

few) memory array, there is a Millipede processor comprising

a wide set of cores, called corelets, to exploit BMLAs’

parallelism. Millipede employs MIMD execution for BMLAs’

irregularity. BMLAs’ light-compute nature affords simple

corelets, To hide memory latency of input data, Millipede

employs sequential prefetch which exploits BMLAs’ row-

dense nature; MapReduce’s automatic data partitioning obvi-

ates cache hierarchies and coherence.

Millipede’s novelty stems from memory-row-orientedness
where a processor’s corelets collectively but asynchronously

(pre)fetch and operate on entire rows of die-stacked memory

before moving on to the next row (i.e., row-centric access

and compute-schedule). This row-orientedness, our second

contribution, exploits BMLAs’ row density to achieve Mil-

lipede’s goal of utilizing the full die-stacking bandwidth.

Such deliberate access-schedule coupling differs from best-

effort row locality in conventional multicores which fetch

and operate on cache blocks. Recent PNM work does not

target row-orientedness, except for considering row locality in

joins [18] which are fundamentally not compact as we discuss

in Section III-D. Millipede implements row prefetching using

simple full-empty bits for the prefetch buffers.

Millipede’s MIMD execution also incurs the straying prob-

lem of conventional multicores and plain SSMC. Because one

corelet prefetches for all the other corelets in a Millipede

processor, a leading corelet may prematurely re-allocate a

prefetch buffer to a new memory row while some lagging

corelets have not yet fully consumed the previous memory

row. Millipede employs cross-corelet flow control, our third

contribution, to prevent such premature re-allocation and thus

preserves prefetch efficiency despite MIMD. While prefetch-

ing is well-studied, the main concerns have been accuracy

and timeliness but not premature re-allocation in either self

prefetching (i.e., each core prefetches for itself) or cross-

core prefetching [19], [20], [21]. Addressing accuracy and

timeliness are easy in BMLAs due to sequential input data

accesses and loops that can overlap the next row prefetch

with the current row computation. While the flow control

imposes a global barrier across the corelets, such a barrier

occurs only when the prefetch buffers overflow and not at

every instruction as in SIMT. Millipede implements the flow

control using simple counters for prefetch buffers.

Finally, BMLAs, being compute-light, are memory-bound

whose energy can be reduced. To that end, we leverage

the prefetch flow control to rate-match the Millipede pro-

cessor and die-stacked memory via frequency scaling, our

fourth contribution. The rate-matching increases (decreases)

the processor clock speed whenever a leading corelet finds

the prefetch buffers to be full (empty). While the corelets may

diverge from each other at fine time granularity, they perform

statistically similar amount of work over the full application

execution (e.g., 10 billion records). Further, because the same

computation is repeated for billions of records, BMLAs’

behavior does not change during execution. Accordingly, We

employ rate-matching at the coarse granularity (in space) of

the processor and not the individual corelets, and (in time) of

the full application and not smaller code sections. While rate-

matching is well-known, we perform coarse-grained compute-

memory rate-matching. Previous work explores rate-matching

in hardware at the fine granularity of pipeline sub-components

(space) and program phases (time) [22], [23], in the com-

piler [24], or by trading off accuracy [25]. Our rate-matching

needs only a simple incrementer to adjust the clock speed.

To summarize, the key contributions of this paper are:

• identifying irregular-and-light-compute, compact, and

row-dense as key application characteristics that fit PNM;

• row-orientedness for SSMC-based PNM architecture;

• flow-controlled cross-corelet row prefetching; and

• coarse-grain compute-memory rate-matching.

Using software simulations running BMLAs, we compare

PNM architectures to show that Millipede improves perfor-
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mance and energy by 135% and 27% (198% energy-delay)

over a GPGPU with prefetch, and by 35% and 36% (84%

energy-delay) over SSMC with prefetch when all three PNM

architectures use the same resources (i.e., number of cores and

on-processor-die memory) and identical die-stacking.

The rest of the paper is organized as follows. We contrast

Millipede to related work in Section II. Section III discusses

application characteristics. Section IV describes Millipede’s

architecture. Section V describes our evaluation methodology.

In Section VI, we present our experimental results. Finally,

we conclude in Section VII.
II. RELATED WORK

We discuss previous work related to our key contributions.

Application characteristics: As discussed in Section I,

previous work [11] explores general workloads, including

MapReduce, which include applications without and with

inter-thread communication (which inhibits parallelism) or row

locality (which degrades memory bandwidth efficiency). In

contrast, we identify the key characteristics that fit PNM.

Row-orientedness: Past PNM architecture papers have

explored vectors [6], VLIW [8], GPGPUs [26], uniproces-

sors [7], multicores [6], [9], [27] and SSMC [10], [11]. How-

ever, vectors (SIMD), GPGPUs (SIMT), and VLIW perform

poorly in the face of data-dependent branches and irregular

memory accesses. GPUs employ heavy multithreading to

tolerate the latency of unpredictable memory accesses, but the

interleaving of numerous contexts degrades cache locality [28]

and row locality. While GPGPU’s multithreading degree can

be lowered (e.g., fewer warps per SM) and supplemented

with prefetching for the predictable BMLAs, even 100%-

accurate cache-block prefetching does not address GPGPU’s

difficulty with control-flow irregularity. While conventional

multicores’ MIMD execution can handle branches, the cores

stray from each other due to the unavoidable variability in

the record-processing work (as do Millipede corelets without

flow-controlled prefetch), interleaving accesses to different

rows and degrading row locality. Again, 100%-accurate cache-

block prefetching does not address conventional multicores’

poor row locality. DIVA [9] targets irregular applications by

supporting address translation and coherence. Centip3de [27]

exploits die-stacking using a conventional multicore. None

of these architectures nor the NDP workshop 2014-2015

papers [29] address row-orientedness (i.e., row-centric access

and compute-schedule).

There are several recently-proposed PNM accelerators for

various computational patterns. NDA [13] maps dataflow

programs to coarse-grain reconfigurable architecture (CGRA)

MIMD nodes connected by a network. BMLAs have abun-

dant parallelism and little communication and do not need

a general network. Further, NDA is not row-oriented. AC-

DIMM [30], based on STT-MRAM, combines ternary as-

sociative search with PNM by co-locating key-value pairs

in a TCAM. Millipede (a) captures inter-record parallelism

whereas AC-DIMM exploits intra-record bit parallelism, and

(b) exploits row-orientedness instead of just co-location. While

accelerating data reorganization for die-stacked memory [31]

is orthogonal to our work, Millipede can leverage this work

for the interleaved layout (Section III-B). While Tesseract [12]

targets graph workloads via MIMD and inter-core communi-

cation, such workloads are not row-dense or compact. Further,

Tesseract is not row-oriented and would incur straying similar

to conventional multicores and plain SSMC. Other work [32]

offloads work to PNM cores upon cache misses. Because

BMLA datasets are much larger than caches, PNM execution

would be unavoidable.

Accelerators in other compute-intensive domains are spe-

cialized for their specific purpose (e.g., [33], [34], [35],

[36], [37]). While these accelerators target compute-intensive

applications, Millipede targets data-intensive applications.

Flow-controlled cross-corelet row prefetching: While

prefetching accuracy and timeliness are well-studied, we focus

on cross-core prefetching where one core prefetches for others,

as do our corelets, using helper threads [19], in GPUs [38],

and in conventional multicores [20], [21]. All but the last paper

focus on accuracy or timeliness whereas our concern is cross-

core coordination to avoid premature eviction of prefetched

data. The last paper regulates each core’s prefetches into a

shared LLC to ensure equitable sharing of the cache capacity.

In contrast, Millipede’s flow control ensures cross-core use of

prefetched data.

Coarse-grain compute-memory rate-matching: Millipede

achieves dynamic compute-memory rate-matching in hard-

ware. While rate-matching is well-known, we target the

coarse granularities of entire cores (space) and full applica-

tions (time). Previous work has proposed compute-compute

rate-matching in hardware in globally-synchronous, locally-

asynchronous (GALS) designs [22], [23]. These papers rate-

match fine-grained pipeline sub-components running typi-

cal sequential programs with fine-grained program phases

of variable instruction-level parallelism. Other work em-

ploys the compiler and profiling for static, compute-compute

rate-matching in streaming applications [24]. Finally, work

on compute-pin-I/O rate-matching for multimedia workloads

(e.g., h.264) trades-off accuracy for energy by using appli-

cation hints [25] or heterogeneous cores with varying power,

performance, or reliability [39]. In contrast, Millipede saves

energy without affecting accuracy.

III. BMLA CHARACTERISTICS

BMLAs are written commonly as MapReductions [40].

A. MapReduce programming model
BMLA MapReductions process a stream of records. Each

Map task sequentially processes a series of records and par-

tially reduces each record’s Map output into a local intermedi-

ate state. This partial Reduce typically reduces only the records

processed by a Map task. In some cases due to local memory

limitation, the intermediate state is partially-reduced across a

subset of Map tasks that are local to a corelet. Like other

MapReductions, BMLA input data is sharded across a cluster

(or datacenter) where each node performs its Map and partial

Reduce. The data is assumed to be resident in the die-stacked

memory, similar to Spark [17], as explained in Section IV-E.
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TABLE I
WALK-THROUGH EXAMPLE OF NAIVE BAYES

Pseudocode (Comments in gray)
// Single N-dimensional record with associated year
typedef struct {

int year;
int X[NUM_DIMENSIONS];

} bayes-struct;

// Dataset – Large collection of records
bayes-struct bayes-struct-array[100000000]

// Live state – Aggregated conditional probabilities (Cprob) of the two
classes
int Cprob[NUM_DIMENSIONS][K][2]
int classCount[2]
const int threshold

// PNM code – Map task and combine/partial-reduce
for each record in bayes-struct-array {

int class
if (record.year > threshold) class = 1;
else class = 0;
for each dim in NUM_DIMENSIONS {

Cprob[dim][record.X[dim]][class] ++
}
classCount[class]++;

}
// Host code – Final reduction
Sum classCount arrays of all corelets.
Sum Cprob matrix of all corelets.

The per-node Reduce (using within-node Shuffle) reduces the

corelets’ partially-reduced outputs. The final Reduce (using

cross-cluster Shuffle) reduces the nodes’ Reduce outputs to

compute the final result.

While the above description holds for any MapReduction

in general, our contribution is in identifying the characteristics

of irregular-and-compute-light, compact, and row-dense to be

suited for PNM architectures. The Map and partial Reduce

functions require only a few operations per word but involve

data-dependent branches and memory accesses making BM-

LAs’ compute irregular-and-light. Only the input data, and

not any other computed data, is large in most BMLAs. The

input data access is naturally, or as we show below can be

made to be, row-dense and compact. As discussed in Section I,

BMLAs naturally accomplish the severe reduction of the huge

input data, and therefore, maintain only small amounts of

intermediate program state. This small state is in contrast to

datacenter-scale MapReductions’ intermediate state which can

be so large as to spill to the disk (i.e., before being shuffled

to the reduce tasks). BMLAs’ intermediate state includes

any constant data and each Map’s partially-reduced output

accumulated at any point in execution.

Table I shows the memory organization, the local state and

the map/reduce operations needed for Naive Bayes, a promi-

nent supervised classification BMLA (despite being named

“naive”). The code assumes n-dimensional records with an

additional year field. Each record is logically in one of two

classes depending on whether its associated year exceeds a

threshold. The key computation is the counting of conditional

probabilities depending on the class of each record. The

computation makes row-dense and compact accesses to each

record’s coordinates in each dimension and its related year

(nested loops in PNM code). The computation per dimension

is light-weight (single increment of conditional probabilities

per dimension and a single increment of record label frequency

per record). The computation is irregular because of (1) the

branch to identify the records of interest and (2) the indirect

data-dependent access of the conditional probability matrix.

(Alternately, replacing the indirect accesses with if-then-else

constructs, to increment the appropriate counters, would lead

to more control-flow irregularity.) Accumulating the counts

into a small local state effectively acts as a partial reduction.

Finally, the Shuffle and reduction across all corelets and PNM

processors occurs at the host processor [10], [13].

B. Layout issues

Because BMLAs’ parallelism is primarily inter-record, a

“row-major”-like or an “array of structs” layout in memory

cannot efficiently capture inter-record parallelism. In this lay-

out, parallel accesses to consecutive records, which would

likely fall in different memory rows, would destroy row local-

ity. This layout issue is common to all the PNM applications

and architectures. A better option is the well-known “column

major”-like interleaved “array of structs of arrays” layout,

where each record is striped across rows and the same field

of consecutive records fall in the same row. However, because

the words in a row typically outnumber the cores, each core

has to process many records. Fortunately, the live state of the

records processed by a core can be partially-reduced to prevent

state expansion. Nevertheless, because this layout implies that

a core (a GPGPU lane, or a Millipede corelet) processes full

records, the state needs to fit in the core’s resources (else

some die-stacking bandwidth is spent on spilling the state to

the DRAM). Fortunately, this state can fit in 4-8 KB of local

memory for most BMLAs. Because the interleaved layout is

well-known, our evaluation uses this layout for all three PNM

architectures we compare – GPGPUs, SSMC, and Millipede.

C. BMLAs

Table II summarizes the BMLAs we consider. We show

that these BMLAs are irregular-and-compute-light, compact,

and row-dense. While all applications are light (i.e., no super-

linear compute complexity), PCA and GDA have relatively

more compute than the others. Recall our stipulation that the

applications are naturally or, with some modifications, can be

made compact and row-dense. Some of these BMLAs are

naturally compact and row-dense. For example, kmeans in-

volves computing the distance from each datapoint in a multi-

dimensional space to a set of centroids. Because each datapoint

is a simple set of coordinates, the computation is inherently

compact. Because every coordinate is used in the distance

computation, the computation is dense. The centroids are part

of the live state that persists across datapoints and do not

affect the computation density or the compactness. However,

the distance computation from each of the k centroids may

require proportional effort and not constant effort like most of

the other applications (i.e., O(k) instead of O(1)).
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TABLE II
SUMMARY OF APPLICATION BEHAVIOR

Application Input
record

Per-node
live state

Operations
per byte

Count Movie
rating

Bin Count O(1)

Sample Selection Movie
rating

(count,
elements)
per bin

O(1)

Statistics – variance Movie
rating

Bin count
Bin sum of
squares

O(1)

Supervised classification (dis-
crete) - Naive Bayes (NB)

N-dim.
point +
Bin-id

Conditional
probability
per bin

O(1)

Supervised classification via
Euclidean distance

N-dim.
point

N-dim.
centroids

O(1)- new
centroid,
O(k)- nearest
centroid

Unsupervised clustering via
Kmeans (1-iteration)
Dimensionality reduction via
Principal Components Analy-
sis (PCA)

N-dim.
point

Mean and
covariance

O(1)- mean,
O(N)-
covariance

Supervised classification
(continuous) via Gaussian
Determinant Analysis (GDA)

N-dim.
point +
Bin-id

Per-bin
mean, co-
variance

Other BMLAs can be made compact with appropriate

data layout. For example, NB and GDA (Table II) typically

process a training set that includes: (1) the coordinates of

each datapoint in a multidimensional space, and (2) the

bin/class to which the datapoint belongs. Maintaining two

separate arrays, one each for data-points and classification,

would lead to non-compact, discontiguous accesses. Instead,

an array of structs, in which the coordinates of each datapoint

and its classification are contiguous, enables acceleration.

Subsequently, the applications’ compact computation includes

partial mean/covariance (for GDA) and partial conditional

probabilities (for NB) depending on the bin to which each

data-point belongs. PCA, which computes the mean and the

covariance matrix, is inherently row-dense and compact.

While Deep Neural Networks (DNNs) are important for im-

age processing and have received much attention recently from

computer architects, the BMLAs are commercially-important

analytics [3], [4], as discussed in Section I, and do not include

DNNs. Further, traditional database analytics (e.g., [15]) do

not share BMLAs’ characteristics. For example, scan is regular

and join is not compact for unstructured, unindexed data (as

is common in BMLAs as opposed to databases). Such a join

requires pairwise comparisons of all the records in two large

tables, which cannot be made compact because while one

of the tables can be tiled and streamed in, multiple passes

are needed over the other table. As such, both tables are

accessed at high rates. (Databases may employ hash-joins

on previously-indexed data, but the hashing incurs its own

problem of lack of row locality especially in PNM [18].)

While poor row locality would mean poor performance [18],

our point is that even with good row locality, joins are not

compact and therefore would underutilize PNM’s bandwidth

(Section III-D). Finally, many of the BMLAs are full applica-
tions which produce final results (e.g., unsupervised clustering
via kmeans clusters data for a market segmentation analysis).

D. Implications of BMLA characteristics

Absence of the characteristics identified by us have strong

implications. (1) Regular computation would mean that vector

or GPGPUs may suffice. (2) Compute-heavy would imply

compute-boundedness weakening PNM’s bandwidth advan-

tage. (3) Not compact (despite transformation) would mean

that some data other than one input is large (the old PIM

problem, as discussed in Section I). Because the processor can

be near only one large data, the other data may be bottlenecked

by traditional, non-die-stacked channels and networks, again,

weakening PNM’s bandwidth advantage (e.g., join). While

the problem does not occur if the second data is needed

at low rates, such a case degenerates to a computation that

predominantly uses only one large data (i.e., is compact). Such

data movement is discussed in [11] but not the implication

of compactness. (4) Not row-dense (despite transformation)

would mean memory bandwidth inefficiency and degradation

of PNM’s advantage.

Except for irregularity, these characteristics are necessary

for efficient PNM, irrespective of the architecture. As such,

all but the first implication expose the fundamental limits of

PNM, irrespective of the architecture. While PNM’s advantage

is diminished for applications that violate these characteristics,

this limitation is not specific to Millipede but applies to any

PNM architecture. On the positive side, we have identified

BMLAs, which are prevalent in the real world today, to fit

within PNM’s constraints.

E. Application-architecture match

We briefly consider mapping Naive Bayes (Table I) to a

GPGPU, plain SSMC, and Millipede. The mapping for the

other applications is similar. The indirect access would cause

uncoalesced accesses to the L1 D-cache in a GPGPU. Instead,

the per-thread live state can be allocated in the GPGPU Shared

Memory and striped across its banks (i.e., ith thread’s state in

the ith bank). Because Shared Memory has as many banks

as lanes with word-level interleaving, the indirect access in

each thread can access any word within its bank in parallel

with the other threads. The input data is prefetched in cache

blocks from the die-stacked DRAM to the L1 D-cache. In

plain SSMC, both the live state and the input data are placed

in the L1 D-cache to which both cache-block prefetches and

demand accesses occur. In Millipede, the live state is in the

per-corelet local memory, and the input-data row-prefetches

and demand accesses go to the prefetch buffer.

Despite these good mappings, GPGPUs and plain SSMC

incur problems which Millipede solves. As discussed in Sec-

tion II, GPGPUs SIMT incurs performance loss due to data-

dependent branches; our results show that GPGPU schemes for

branches [41] do not help. While plain SSMC’s MIMD can

avoid these SIMT penalties, the cores stray from each other

due to work variability, interleave accesses to multiple rows,

and destroy row locality (as explained in Section II). Syn-

chronizing the cores at each record would push SSMC closer

to SIMT and its overheads. As discussed in Section II, even

100%-accurate cache-block prefetches do not help GPGPUs
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and plain SSMC (row locality is a bandwidth problem whereas

prefetching improves latency but not bandwidth). To avoid

the SIMT problems, Millipede also employs MIMD. Unlike

plain SSMC, however, the row-oriented Millipede prefetches

entire rows and employs flow-control to limit the corelets’

straying from each other and avoid premature eviction of

prefetched data. Thus, Millipede utilizes the full bandwidth

while enjoying MIMD’s benefits.

Nevertheless, two key advantages of SIMT over MIMD

are (1) wide access to registers, caches, and memory greatly

amortizes the bandwidth and energy cost of each access, and

(2) the amortization of instruction processing costs over mul-

tiple threads. However, the branch and memory irregularity in

BMLAs impede SIMT execution and renders these advantages

less effective. As such, we carefully model these differences

between SIMT and MIMD in our experiments.

IV. MILLIPEDE

Recall from Section I that there is a Millipede processor for

each memory array (or a few arrays), as shown in Figure 1.

Like SSMC, each Millipede processor comprises a wide set

of simple cores, called corelets, which employ some well-

known ideas. The key novel ideas are: row-orientedness, flow-

controlled, cross-corelet, row prefetching, and coarse-grained

compute-memory rate-matching.

A. Corelets (well-known ideas)

To handle our irregular data-dependent branches and mem-

ory accesses to the intermediate program state (input data is

row-dense and sequential), Millipede employs MIMD execu-

tion where each corelet has its own instruction cache. Because

BMLA code size is small (e.g., under 4 KB), we broadcast

the code once at the beginning of execution. Because the

applications are compact, each corelet has a small register

file and local memory (similar to the Cell [42]). Recall

from Section III-B that the live state fits in the local memory

without spilling to the DRAM. Due to MapReduce’s automatic

data partitioning, BMLA MapReduce code can be compiled to

allocate the intermediate state in the local memory, obviating

the need for hardware-managed, deep cache hierarchies and

coherence.

Because the applications are compute-light, the corelets’

pipeline is simple and energy-efficient. Because memory la-

tency is hidden by prefetching, the local memory is small and

fast, and the pipeline is shallow, the pipeline hazards are short.

Therefore, instead of complex register bypassing and branch

prediction, we employ small-scale hardware multithreading

like GPGPUs to tolerate the short hazards (e.g., 4 contexts).

Each context needs its own registers which are only a few;

hence, the register file remains small. The local memory

holds the partially-reduced live state which is shared among

the contexts and therefore need not be replicated. In our

evaluation, we assume that GPGPUs and plain SSMC can also

employ such small-scale hardware multithreading to tolerate

their pipeline hazards.

B. Row-orientedness

A Millipede processor’s corelets collectively but asynchro-

nously fetch and operate on entire rows before moving on to

the next row (i.e., row-centric access and compute-schedule).

Millipede employs simple row prefetching to exploit die-

stacking’s full bandwidth for the memory-row-dense BMLAs.

Each corelet works on a slab of the input data brought into

the prefetch buffer (e.g., 64 B). Thus, this deliberate access-

schedule coupling preserves full row bandwidth. Recall from

Section III-B that in the interleaved layout each slab holds

the same field(s) of one or more records whose Map tasks

are completely independent of each other. Each corelet runs

the Map for each of its records which successively update

the partially-reduced intermediate state held in the corelet’s

local memory. The host CPU runs the per-node Reduce to

combine this state from all the processors, as discussed later

in Section IV-D.

C. Flow-controlled cross-corelet prefetch

The next row prefetch occurs before the current row pro-

cessing starts. This simple prefetch could be in hardware

or software because the processing of a record is easily

identifiable in MapReduce. Each slab is large enough that its

processing is enough to hide the next row access latency, else

we can prefetch one more row ahead. Our hardware scheme

can take hints from software about how far ahead to prefetch

(not needed for the BMLAs we evaluate). The prefetch buffer

is organized as a circular queue where each entry has an

address tag. Because all the corelets execute the same Map

code, there may be multiple prefetches to the same row. The

first demand access to an entry, identified by a full-empty bit

called prefetch-trigger (PFT) bit in the entry, allocates a new

entry, and triggers the next prefetch. The PFT bit prevents later

demand accesses from triggering redundant prefetches, similar

to traditional MSHRs.

A central issue is that the corelet’s MIMD execution im-

poses a need for flow control in the prefetch buffer. A leading

corelet may surge past the other corelets and issue prefetches

for all the free buffer entries, wrapping around to the head

entry and later entries which have not been consumed fully

yet. A crucial detail, best explained by an example, increases

the chances of such premature re-allocation. Assuming 2-

KB memory row, 32 cores, lanes, or corelets per processor

in SSMC, GPGPU, or Millipede, and 4-way multithreading,

there are 512 records per row in our interleaved layout (4

bytes per word) and 128 concurrent threads each of which

processes only 4 records per row, irrespective of the PNM

architecture. This low number implies high work variability

across the threads increasing the chances of the premature re-

allocation; a higher number would have the variation-reducing

effect of statistical smoothing.

Accordingly, Millipede smooths out the variability across

the threads by processing more records per thread resulting

in the concurrent processing of more rows (e.g., 16 rows).

To prevent this concurrency from degrading row locality,

Millipede enforces loose synchronization via a per-prefetch-
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Fig. 2. Flow control operation

buffer entry demand-fetch (DF) counter which is incremented

upon every demand fetch. A prefetch buffer entry is re-

allocated only after the DF counter saturates at the corelet

count, indicating that the entry has been consumed fully. The

DF counter is reset upon re-allocation and subsequent prefetch

fill. Unlike the PFT bit, the DF counter cannot just be a full-

empty bit because we do not know which corelet would be the

last consumer and hence we must count. Normally, the next

entry would be consumed fully (i.e., its DF counter would

be saturated) and can be re-allocated for the next prefetch

(i.e., the circular queue is not full). When the queue is full,

however, the DF counter of the next entry (the head entry)

would be unsaturated (‘First demand access’ in the timeline

in Figure 2). Then, the leading corelet does not trigger a

prefetch upon a demand fetch to the tail entry even if the tail

entry’s PFT bit is set (implying the first demand access to the

entry). A later access to the head entry causes the entry’s DF

counter to saturate (‘Last demand access’ in Figure 2). The

next demand fetch to the tail entry issues the next prefetch and

clears the PFT bit (‘Later demand access’ in Figure 2). As

BMLAs access rows sequentially, the head entry’s DF counter

is guaranteed to saturate before the last demand fetch to the

tail entry, ensuring that the next prefetch is not missed.

Because of their MIMD execution, the corelets access the

prefetch buffers at different times. For full bandwidth to all

the corelets, we break up each prefetch buffer entry into as

many slabs as corelets so that a slab is accessed by only one

corelet. Thus, each corelet’s access goes only to a small slab-

wide slice of the prefetch buffer entries (e.g., 64-byte slabs and

16 entries means 1-KB prefetch buffer slice). By using fixed-

size slabs, the interconnection between the prefetch buffer and

the corelets remains simple (see Figure 1). In our interleaved

layout, a slab contains either words each from a contiguous

set of records (word-interleaving), or n contiguous words

of a record (slab-interleaving). The latter has many choices

for n such that ‘n ∗ coreletCount ∗ multithreadingDegree =
row size’ for typical values. Thus, each corelet can flexibly

process one or more records. While GPGPUs must use word-

size columns to achieve coalesceable accesses (wider columns

would mean the lanes’ accesses span multiple cache blocks),

Millipede can use wider columns for layout flexibility.

The full-row prefetch and the flow control are fundamental

for Millipede but not the prefetch buffers. The prefetches can

bring the data into the local memory instead of the prefetch

buffers. The slabs from a prefetched row would go to their

respective corelets. Then, the PFT bits and DF counters would

exist without the accompanying buffers. However, such an

implementation would need address tags in the local memory

to detect prefetch data whereas the above implementation

needs tags only in the prefetch buffers.

We make a few observations: First, while more prefetch

buffer entries achieve more statistical smoothing across the

threads, some variability remains although the probability

is lower. Thus, our flow control incurs less, but non-zero,

waiting. Second, without flow control, this variability still

causes premature prefetch buffer evictions, as shown by our

results (Section VI-A). Further, once a premature eviction

occurs (non-zero probability), the lagging corelets miss in

the prefetch buffer and are exposed to die-stacked memory

latency which widens the lag for long periods of time (i.e.,

left to chance, there is little self-correction). Our results show

that this lag is worse for performance than our flow control’s

short waiting. Finally, software barriers across Map tasks

could prevent premature evictions instead of our hardware

flow control. A barrier after all the entries are consumed

would incur the barrier cost only once for all the entries.

However, the Map tasks operate on record granularity while

the prefetch buffer holds arbitrary number of bytes. Hence,

the barrier may fall in the middle of records which would

break MapReduce’s task granularity and not be expressible.

Generic thread-based application programming, instead of

MapReduce, would work but would severely degrade data-

center/cluster programmability. Our results show that placing

software barriers at record granularity within MapReduce does

not help. Because the full records far exceed the prefetch buffer

entries (many tens to a few hundreds of rows in our interleaved

layout versus 16-32 entries), the barriers are not invoked

when needed. Instead, Millipede employs simple hardware to

maintain programmability.

D. Final Reduce

The per-node Reduce and global final Reduce (Sec-

tion III-A) are much smaller than the Map and partial Reduce

but require data from all the processors within a node and all

the nodes, respectively. Therefore, providing communication

support for these Reduce phases may not be worth it. Instead,

the host CPU performs the per-node Reduce, as observed

in [10], [13]. The global final Reduce uses the cluster network

like other MapReductions. For example, Map and partial

Reduce of tens of millions of records in each node take

a few seconds versus per-node Reduce across 32 Millipede

processors of a node takes hundreds of microseconds and the

global final Reduce across 5000 nodes of a cluster takes tens

of milliseconds.
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E. Memory Interface

For simplicity, Millipede assumes a discrete GPU-like mem-

ory interface where the host CPU copies the input data into

the die-stacked memory before processing and copies out the

output data in the corelets’ local memories after processing.

The die-stacked memory and local memories are not part of

the host CPU’s physical memory address space. The corelets

do not support virtual memory or coherence with the host,

which we leave for future work.

Loading the input data into the die-stacked memory for

every run would fundamentally make BMLAs, or any ap-

plication, host-memory-bound (or disk-bound, if the data is

spilled to the disk), rendering die-stacking bandwidth irrele-

vant for any PNM architecture – GPGPU, SSMC, or Millipede.

Instead, the input data resides in the interleaved layout in

the datacenter/cluster’s die-stacked memory like Spark, Web-

Search’s memory-resident Web Index, or memory-resident

databases, and unlike generic MapReduce ( Section III-A).

Further, to amortize the disk and layout costs, numerous

MapReductions (chained or not) reuse the data similar to Web-

Search/memory-resident database queries.

F. Compute-memory rate-matching

Being compute-light, most BMLAs are memory-bandwidth-

bound. Our rate-matching eliminates the idling energy incurred

when the corelets wait for memory, To that end, we leverage

our flow-controlled prefetch to rate-match the Millipede pro-

cessor and die-stacked DRAM via dynamic frequency scaling

(DFS). Our evaluation conservatively assumes that voltage

scaling is impossible; otherwise, our energy savings would

be higher. While the corelets may diverge from each other

at fine time granularities, they perform statistically similar

amount of work over the full BMLA execution (e.g., billions

of records). Further, because the same computation is repeated

for billions of records, BMLA behavior does not change across

code sections. Accordingly, our rate-matching is at the coarse

granularity (in space) of the processor and not the individual

corelets, and (in time) of the full application execution and

not smaller code sections.

Because of the coarse application-level granularity, we em-

ploy a simple, one-dimensional hill-climbing control algorithm

that decreases (increases) the processor clock speed in small

steps (e.g., 5%) via frequency scaling whenever a leading

corelet (defined in Section IV-C) finds the prefetch buffers

to be empty (full), signifying a memory-bandwidth-bound

(compute-bound) application. The small steps suffice due to

the application-level granularity where the algorithm needs

to converge just once at the start of the application whose

compute-work behavior does not change later. For instance,

small 5% steps, a large 4x required change in the clock speed,

and 200 cycles of computation per DRAM row (typical for

BMLAs) imply convergence in 16,000 cycles compared to a

few billions of cycles of execution time. Any oscillations after

convergence would be within a band of the size of the small

step, resulting in acceptable inefficiency.

TABLE III
HARDWARE PARAMETERS

#Millipede processors
# GPGPU SMs
# SSMC processors

1 of 32

Compute clock 700 MHz
# Corelets/lanes/cores
per processor/SM/SSMC

32

# Multithreading contexts
per processor/SM/SSMC

4

# Registers per corelet/lane/core 32
L1 I-cache per
corelet/SM(not lane)/core

4 KB, 128B line,

Local memory per corelet 4 KB
Prefetch buffer per corelet 16 x 64B
L1 D-cache per SM 32 KB, 128B line
Shared memory per SM 128 KB, 4B interleaving
L1 D-cache per core 5 KB, 128B line

Die-stacked DRAM capacity 4 GB
# Die stack layers 4
# Memory channels 1 of 32
Channel clock 1.2 GHz
Channel width 128 bits
DRAM tCAS-tRP-tRCD-tRAS 9-9-9-27
DRAM row size, banks/channel 2 KB, 4
Memory Controller FR-FCFS (16 deep)

DRAM Access Energy 6pJ/bit [31]
Core Technology node 22nm

Overall, Millipede adds simple hardware – PFT bits, DF

counters, and adders (for the above 5% steps) – to SSMC.

V. METHODOLOGY

We modify GPGPUsim to implement Millipede. For com-

parison purposes, we use GPGPUsim to simulate PNM archi-

tectures based on a GPGPU, Variable Warp Sizing (VWS) [41]

which is currently the best branch-optimized GPGPU (for

BMLAs’ branches), and SSMC (representing previous mul-

ticores without row-orientedness [11], [10], [12]). This SSMC

matches Millipede in compute bandwidth, unlike conventional,

superscalar-core multicore which has large caches and far

fewer high-performance but power-hungry cores. Because

narrower GPGPU warps lose less performance in the pres-

ence of branch divergence and wider warps achieve lower

energy otherwise, VWS dynamically chooses between 4-wide

and 32-wide warps based on branch divergence. To capture

their MIMD execution, we simulate an SSMC processor

and Millipede processor each as an SM with only one lane

corresponding to a simple core or corelet. Our simulation

assumes that each PNM architecture (i.e., SSMC, GPGPU,

VWS, and Millipede) is on the logic die with stacked DRAM

and is separate from the host CPU. In addition, we ensure that

the number and pipeline of the cores and the on-processor-die

memory size are identical in all these PNM architectures. All

the architectures use the interleaved layout (Section III-B).

While Millipede uses sequential row prefetch, the GPGPU,

VWS, and SSMC use sequential cache-block prefetch. Thus,
our results isolate the benefits of Millipede’s novel features
while holding the effects of technology (on-die transistor count
and die-stacking), well-known architecture schemes (simple
cores, hardware multithreading, and sequential prefetch) and
software (interleaved layout) to be the same for all the PNM
architectures we compare.
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TABLE IV
BENCHMARK PARAMETERS AND CHARACTERISTICS
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count 7 0.14 0.253 544
sample 10 0.2 0.162 528
variance 12 0.08 0.351 581
nbayes 14 0.11 0.344 565
classify 40 0.05 0.393 625
kmeans 44 0.05 0.384 613
pca 150 0.02 0.489 644
gda 180 0.015 0.497 644

The hardware parameters are shown in Table III. We

simulate a 32-corelet Millipede processor, a 32-core SSMC,

and a 32-lane GPGPU SM. VWS varies the warp widths

on the same SM. All the PNM architectures use simple, in-

order-issue pipelines with 4-way hardware multithreading to

tolerate pipeline hazards. Each corelet has 4-KB local memory

and 1-KB prefetch buffer (total 160 KB per processor); each

SSMC core has 5-KB L1-D (160 KB per SSMC processor);

and each GPGPU SM has 32-KB L1-D and 128-KB Shared

Memory (total 160 KB per SM). Recall from Section III-B that

BMLAs’ compact nature implies that all of the intermediate

state and input prefetch data completely fit in the small local

memory (or L1 D-cache), obviating the need to experiment

with larger L1 D-caches. Each Millipede corelet and each

core in the SSMC has an L1 I-cache. The GPGPU SM has

an L1 I-cache shared among the lanes. We account for the

extra I-cache in Millipede and SSMC in the energy estimates.

The die-stacked DRAM’s parameters, shown in Table III, are

typical [31]. The bandwidth is similar to HBM’s specification

of 128-bits per bank, with 1 Gbps bandwidth per pin [2].

We implement the applications in Table II in CUDA. Ta-

ble IV shows the instruction count per input word, the branch

frequency, the row miss rate (row misses / row accesses) in

SSMC and Millipede’s rate-matched clock speed. To achieve

realistic simulation times, we limit the input data to 128MB

and run the benchmarks to completion on one processor. Being

repetitive, BMLAs behave identically for large-enough and

larger inputs. As such, the steady-state behavior (achieved well

before 128 MB), will not change with larger datasets or more

processors.

We use GPUWattch [43] to estimate energy (parameters

in Table III). Recall from Section III-E that BMLAs access the

input data (prefetches) and intermediate live state. In GPGPUs,

the live state is in the Shared Memory and the input data is

cache-block prefetched into the L1 D-cache. The live state

is not in the L1 D-cache because BMLAs’ indirect memory

accesses would cause uncoalesced accesses to the L1 D-cache

whereas the Shared Memory supports 32 uncoalesced word

accesses, one from each lane, by using 32-way banking and

a 32x32 switch. While the Shared Memory is power-hungry,

the GPGPU enjoys the energy benefits of wide accesses to

the register file and L1 D-cache, and shared access to the L1

I-cache whenever SIMT execution succeeds (Section III-E).

Fig. 3. Performance

However, such success is not often due to BMLAs’ control-

flow and memory irregularity (Section III-C). We ensure that

these benefits do not exist in Millipede and SSMC due to

their MIMD execution. In SSMC, the live data, input data

cache-block prefetches and demand accesses all go to the L1

D-cache. In Millipede, the live state is in the per-corelet local

memory, the input data is row-prefetched into the prefetch

buffers (Section IV-C). Both the local memory and prefetch

buffer are small and therefore dissipate low power. Each

architecture’s dynamic energy includes the components for the

core (which includes the pipeline energy, L1 I-cache, local

memory (or L1 D-cache, as appropriate) and idle dynamic

energy due to imperfect clock gating), the DRAM energy

dissipated in the stacked memory dies, and leakage energy

of the logic die.

VI. RESULTS

We start by comparing Millipede against PNM architectures

based on GPGPU and SSMC in terms of performance and en-

ergy. We isolate the impact of each of our contributions: mem-

ory row-orientedness, cross-core flow-controlled prefetching,

and coarse-grain compute-memory rate-matching (application

characteristics is covered in Section III-C). We then study

Millipede’s sensitivity to the system size and the number of

prefetch buffers.

A. Performance
We compare a 32-corelet Millipede processor against 32-

lane GPGPU and VWS SMs and a 32-core SSMC, all with

input data cache-block prefetch into their L1 D-caches. Fig-

ure 3 shows these architectures’ performance, on the Y axis,

normalized to that of GPGPU and the benchmarks on the X

axis in increasing order of the number of instructions per input

data word to show the trends clearly. The graph also shows

(1) Millipede without flow control (Millipede-no-flow-control)

to isolate the impact of flow control, and (2) VWS with row-

orientedness and flow control (VWS-row) to show Millipede’s

generality. Table IV shows the number of instructions per input

data word, the branch frequency, and the row miss rate in

SSMC. We discuss the rate-match clock in Section VI-B.

GPGPU (with prefetch) loses performance due to branches

impeding SIMT execution (Table IV) but not due to irregular

memory accesses which are handled by Shared Memory.

SSMC (with prefetch) performs better than GPGPU but loses

performance due to the cores straying from each other and
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degrading row locality (Table IV). In contrast, Millipede’s row-

oriented MIMD architecture avoids both problems. Millipede

performs, on average, 135% and 35% better than GPGPU

(with prefetch) and SSMC (with prefetch), respectively. VWS

(with prefetch) always chooses 4-wide warps for better branch

handling (8 4-wide concurrent warps), and hence performs

better than GPGPU. However, VWS still loses performance

due to (1) the remaining branch inefficiency, and (2) the

warps interleaving accesses to different rows and degrading

row locality. Branch inefficiency remains in VWS because

BMLAs’ data-dependent branches have 70-/30+ taken-or-not

split (unlike loop branches’ 90+/10-) resulting in under 25%

chance that a warp’s 4 threads are either all taken or all

not-taken. VWS-row performs better than VWS by curbing

VWS’s straying, confirming Millipede’s generality, but still

lags Millipede due to the remaining branch inefficiency.

The difference between Millipede and GPGPU highlights

the need for MIMD because both architectures enjoy row

locality whereas the difference between Millipede and SSMC

highlights the need for row-orientedness because both architec-

tures employ MIMD execution; the only differences between

Millipede and SSMC are row-orientedness and flow control.

GPGPU would not benefit from these Millipede features

because GPGPU already achieves row locality due to SIMT

which, however, incurs branch problems. These numbers iso-

late the impact of Millipede’s novel architectural features over

GPGPU and SSMC while holding technology (CMOS and die-

stacking) and software (layout) effects constant. Millipede’s

speedups are due solely to the architecture and extend beyond

the die-stacking benefits of 400-800% higher bandwidth over

pins. Moreover, Millipede achieves these speedups through

simple hardware additions.

Comparing Millipede-no-flow-control and SSMC isolates

the benefits of row-orientedness. The former includes row-

centric access and compute-schedule via full-row prefetching

(Section IV-B) but not flow control so that filling up of the

prefetch buffers can cause premature eviction of prefetched

data due to corelet straying (Section IV-C). However, such

eviction is not frequent with 16 buffers allowing Millipede-

no-flow-control to improve over SSMC. Adding flow con-

trol improves performance further by fully avoiding such

evictions (the Millipede bars). Thus, this graph isolates the

benefits of Millipede’s row-orientedness and flow-controlled

prefetch (our second and third contributions). Flow control

alone cannot be applied to Millipede’s SSMC skeleton without

row-orientedness because flow control is for preserving row-

orientedness in the face of the straying of the corelets. Using

software barriers at record granularity (Section IV-B performs

similarly to Millipede-no-flow-control because the barriers are

too infrequent to be effective (not shown). Millipede’s rate-

matching is an energy optimization analyzed next.

The benchmarks are roughly in the order of decreasing

branch frequency and increasing row miss rate in SSMC

from left to right in Figure 3 (top to bottom in Table IV).

Accordingly, Millipede’s MIMD advantage over GPGPUs

decreases from left to right causing Millipede’s speedups

Fig. 4. Energy

roughly to decrease. However, Millipede’s row-orientedness

advantage over SSMC increases from left to right causing

the gap between Millipede’s and SSMC’s speedups roughly

to increase barring for PCA and GDA whose heavy compute

breaks this trend.

B. Energy

We now compare the PNM architectures in terms of energy.

Figure 4 shows the architectures’ energy on the Y axis, nor-

malized to that of GPGPU. We show two variants of Millipede,

one with rate-matching and the other without rate-matching.

Each bar shows the breakdown between core energy (which

includes cores, caches and idle dynamic energy), DRAM

energy, and static leakage energy of the cores as stacked bars.

GPGPU incurs higher core energy than SSMC due to (1)

higher Shared Memory energy than SSMC’s L1 D-cache

(Section III-E), and (2) higher idle energy due to branches

(Section III-E). Further, while GPGPUs are more energy-

efficient than typical multicores using power-hungry, super-

scalar cores, the SSMC cores here are identical to the sim-

ple GPGPU lanes. However, GPGPU achieves lower DRAM

energy than SSMC because, unlike MIMD SSMC, GPGPU

does not degrade row locality. The net result of these factors

is that SSMC expends more total energy than GPGPU. Nev-

ertheless, BMLAs’ irregularity shrinks GPGPU’s energy (and

performance) advantages over SSMC as compared to typical,

regular GPGPU workloads. Comparing SSMC to Millipede-

no-rate-match, we see that the latter achieves similar core

energy as the former because both architectures avoid (1) the

crossbar energy of GPGPU’s Shared Memory via private, local

memories, and (2) GPGPU’s branch inefficiency via MIMD

execution. However, Millipede-no-rate-match achieves lower

memory energy due to its row-orientedness. By incurring

lower branch inefficiency but poorer row locality than GPGPU,

VWS lies between GPGPU and SSMC. VWS-row lowers

memory energy over VWS via better row locality due to

row-orientedness but still lags Millipede-no-rate-match in core

energy due to the remaining branch inefficiency.

Recall from Section IV-F that Millipede’s rate-matching

slows down the corelets when applications are memory-

bandwidth-bound. Figure 4 shows Millipede with rate-match

further reduces the core energy over Millipede without rate-

matching by 16%. While the nominal frequency is 700MHz

(Table III), Table IV (column 5) shows the clock speeds under

rate-matching which inversely correlate with the number of
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Fig. 5. Millipede versus conventional multicore

instructions per input word in Table IV (i.e., fewer instructions

implies more DRAM-bandwidth-bound and therefore slower

clock). These numbers isolate the impact of Millipede’s rate-

matching (our fourth contribution). While static power of the

cores and caches are comparable across the architectures ex-

cept for GPGPU’s lower I-cache power (Section V), Millipede

incurs the least static energy due to its shortest run time.

Overall, Millipede with rate-matching dissipates 27% and 36%

less energy than GPGPU and SSMC, respectively. Though

SSMC is closer to Millipede in performance for PCA and GDA
than the other benchmarks (Figure 3), SSMC incurs higher

energy than Millipede for these benchmarks (Figure 4) due

to numerous row misses (Table IV) which can be hidden in

execution time but not in energy.

C. Comparison to conventional multicore
To compare Millipede against a conventional multicore

(as opposed to SSMC), we simulate an 8-core Xeon-like

system with 4-wide, out-of-order issue, 4-way SMT pipelines

running at 3.6 GHz, multi-level cache hierarchies (64-KB

L1, 1-MB/core L2), and an off-chip memory (one-fourth

bandwidth of die-stacked memory). We assume 70 pJ per

bit for off-chip memory access [44]. Figure 5 shows Milli-

pede’s performance and energy improvements. The far fewer

compute threads in the multicore (32) compared to those

in Millipede (4096 in 32-processor Millipede) account for

most of the speedups. The multicore’s high clock speed and

off-chip memory access energy are the reasons for most of

the energy benefits. However, these large improvements (on

average, 125x better energy-delay) come with a caveat. Using

many, simple cores for abundantly data-parallel workloads,

where single-thread performance does not matter, is well-

known. In contrast, the multicore has fewer, complex cores for

single-thread performance (e.g., database transactions) where

simple cores would perform worse. Similarly, the performance

and energy benefits of die-stacked memory stem from die-

stacking technology and not the architecture. Instead, our

above comparison to GPGPU and SSMC isolate the true

benefits of Millipede’s novel features while holding all other

factors constant. Indeed, the above arguments apply to other

recent accelerator architectures and not only to Millipede,

and should be kept in mind when comparing Millipede’s

improvements against those architectures’ improvements.

D. Sensitivity to system size
We change the number of corelets, lanes, and cores per

Millipede processor, GPGPU SM, and SSMC processor, from

Fig. 6. Speedup versus system size

Fig. 7. Speedup versus prefetch buffer count

32 (default) to 64, and correspondingly double the memory

bandwidth. Figure 6 shows the performance of the three

PNM architectures normalized to that of a 32-lane GPGPU.

As the lane count increases, GPGPU’s branch inefficiency

increases compared to Millipede which can gainfully uti-

lize more corelets. Consequently, Millipede’s speedup over

GPGPU increases with more corelets. Similarly, as the core

count increases, the SSMC cores stray from each other more

disrupting row locality more. Therefore, Millipede’s speedup

over SSMC also increases with more cores.

E. Sensitivity to prefetch buffer count
Recall from Section IV-C that the prefetch buffers decouple

the corelets from each other by absorbing any temporary work

imbalance among the corelets. We vary the prefetch buffer

count as 2, 4, 8, 16 (default), and 32 in Figure 7. As expected,

more buffers improve performance by absorbing more imbal-

ance though the incremental improvement decreases as the

exposed imbalance decreases. Performance levels off around

32 buffers which amount to a reasonable 64 KB per Millipede

processor for 2-KB rows.

The record size is independent of the memory row size in

our interleaved layout where each record is laid out vertically

across the rows (Section III-B). Memory rows are long enough

in practice to keep 32-64 corelets busy (e.g., 2-4 KB). There-

fore, we do not study the sensitivity to record or row sizes.

VII. CONCLUSION

This paper matched Big Data machine learning analytics

(BMLA) applications with die-stacking via processing-near-

memory (PNM). BMLAs are: (a) irregular-and-compute-light
(i.e., perform only a few operations per input word which in-

clude data-dependent branches and indirect memory accesses);

(b) compact (i.e., the relevant portion of the input data and

the intermediate live data for each thread are small); and

(c) memory-row-dense (i.e., process the input data without

skipping over many bytes). These characteristics are not all
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shared by traditional database analytics, and except for irregu-

larity, are necessary for bandwidth- and energy-efficient PNM,

irrespective of the architecture.

Based on these characteristics, we proposed memory opti-

mizations for a “sea of simple MIMD cores (SSMC)” PNM

architecture, called Millipede, which exploits BMLAs’ row-

density by (pre)fetching and operating on entire memory rows.

Instead of this deliberate row-oriented access and compute-

schedule, conventional multicores opportunistically improve

row locality while fetching and operating on cache blocks.

Millipede handles BMLAs’ irregularity and memory latency

by employing MIMD execution and sequential prefetch of

input data. However, because Millipede’s MIMD corelets

may stray far from each other, a leading corelet may pre-

maturely evict the prefetched data before consumption by

lagging corelets. Millipede employs cross-corelet flow-control
to prevent such eviction. Millipede further exploits this flow

control for frequency scaling based on coarse-grain compute-
memory rate-matching. Using simulations, we compared PNM

architectures to show that Millipede improves performance

and energy, by 135% and 27% (198% energy-delay) over a

GPGPU with prefetch, and by 35% and 36% (84% energy-

delay) over SSMC with prefetch, when all three architectures

use the same resources (i.e., number of cores and on-processor-

die memory) and identical die-stacking. Millipede achieves

these improvements by adding simple full-empty bits, coun-

ters, and incrementers to an SSMC-based PNM skeleton. As

such, its performance, energy, and simplicity make Millipede

an attractive PNM architecture for BMLAs.
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