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Abstract—The technology-push of die stacking and application-
pull of Big Data machine learning analytics (BMLA) have created
a unique opportunity for processing-near-memory (PNM). This
paper makes four contributions: (1) While previous PNM work
explores general MapReduce workloads, we identify three appli-
cation characteristics of most BMLAs: (a) irregular-and-compute-
light (i.e., perform only a few operations per input word which
include data-dependent branches and indirect memory accesses);
(b) compact (i.e., the relevant portion of the input data and the
intermediate live data for each thread are small); and (c) memory-
row-dense (i.e., process the input data without skipping over
many bytes). These characteristics, except for irregularity, are
necessary for bandwidth- and energy-efficient PNM, irrespective
of the architecture. (2) Based on these characteristics, we propose
memory optimizations for a “sea of simple MIMD cores (SSMC)”
PNM architecture, called Millipede, which (pre)fetches and op-
erates on entire memory rows to exploit BMLAs’ row-density.
Instead of this row-oriented access and compute-schedule, tra-
ditional multicores opportunistically improve row locality while
fetching and operating on cache blocks. (3) Millipede employs
well-known MIMD execution to handle BMLAs’ irregularity,
and sequential prefetch of input data to hide memory latency.
In Millipede, however, one corelet prefetches a row for all the
corelets which may stray far from each other due to their MIMD
execution. Consequently, a leading corelet may prematurely evict
the prefetched data before a lagging corelet has consumed the
data. Millipede employs cross-corelet flow-control to prevent such
eviction. (4) Millipede further exploits its flow-controlled prefetch
for frequency scaling based on coarse-grain compute-memory rate-
matching which decreases (increases) the processor clock speed
when the prefetch buffers are empty (full). Using simulations,
we compare PNM architectures to show that Millipede improves
performance and energy, by 135% and 27% over a GPGPU with
prefetch, and by 35% and 36% over SSMC with prefetch, when
all three PNM architectures use the same resources (i.e., number
of cores and on-processor-die memory) and identical die-stacking.

I. INTRODUCTION

The technology-push of die stacking and the application-
pull of Big Data have created a unique opportunity for
processing-near-memory (PNM). Die stacking (e.g., Hybrid
Memory Cube [1], High Bandwidth Memory [2]) provides
unprecedented high-bandwidth connection between memory
and processor dies. At the same time, prevalent Big Data
machine learning analytics (BMLA) applications process vast
amounts of data, are abundantly parallel, and require mas-
sive memory bandwidths (e.g., clustering, classification, di-
mensionality reduction, anomaly detection, and aggregation
statistics). BMLAs are important for many industries such as
telecommunications, healthcare, banking, insurance, and social
media [3], [4]. BMLAs are for unstructured Big Data whereas
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traditional database analytics are for structured data. This
paper identifies and exploits BMLASs’ characteristics through
memory optimizations to fully utilize die-stacking bandwidth
while remaining energy-efficient.

While processing-in-memory (PIM) has been around for
decades [5], [6], [7], [8], [9], [10], [11], [12], [13], there
have been three problems. The first is the mismatch between
DRAM and logic processes, which some past proposals have
addressed by advocating PIM with SRAM [14], whereas die
stacking offers a higher-density solution. The second, more
fundamental, problem is that two-input-one-output operations
with more than one large operand pose the difficulty that the
processor can be near only one of the operands, requiring
massive data movement for the other operand(s) like non-PNM
architectures and thereby losing PNM’s bandwidth advantage.
We show that only one of the input operands is large in most
BMLAs. The third problem is the lack of applications with
the right characteristics which BMLAs have.

We identify three key characteristics, which most BMLAs
either naturally have or can be transformed to have, that
fit PNM: irregular-and-light-compute, compact, and memory-
row-dense. First, BMLAs often perform data-dependent com-
putation to differentiate among the input data which is funda-
mental to learning. Such computation involves data-dependent
branches and/or irregular memory access to intermediate pro-
gram state but not the input data (e.g., counter[label]
for 100 randomly-occurring labels). Further, BMLAs perform
only a few operations per input data word (e.g., under 10)
requiring low compute bandwidth, so that simple, energy-
efficient pipelines suffice. Conversely, compute-heavy appli-
cations would be compute-bound and not benefit much from
PNM’s bandwidth, irrespective of the architecture. Second,
BMLASs perform an acute data reduction via summarization so
that the output is much smaller than the input (e.g., calculating
the cluster centroids through kmeans). Consequently, BMLAs
access, at a time, often just one input record and a small
amount of intermediate program state, the partially-reduced
output, which fits in a small local memory (e.g., 8 KB per
core). This compact nature avoids PIM’s second problem
above. Finally, BMLAs process almost all the input data
without skipping over bytes, resulting in dense accesses to the
memory rows holding the data. This density implies efficiency
of memory bandwidth which is PNM’s key advantage. General
spatial locality (of Map [13], [11]) does not necessarily imply
the lack of gaps which is key for bandwidth efficiency.
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Except for irregularity, these characteristics are necessary
for bandwidth- and energy-efficient PNM, irrespective of the
architecture (Section III-D). Traditional database analytics
(e.g., [15]) do not share all these characteristics (Section III).

Following widespread practice for programmability reasons,
we use MapReduce [16] (or Spark [17]) to implement BMLAs.
While recent PNM work (e.g.,[11], [10]) considers general
MapReduce workloads with a broad set of characteristics
(Section II), we identify the specific characteristics that fit
PNM, which is our first contribution.

Exploiting the high bandwidth of die stacking via PNM
architectures based on vector (SIMD), GPGPU (SIMT), or
conventional multicore faces difficulties. BMLAS’ irregularity
makes SIMD and SIMT execution inefficient. While conven-
tional multicore’s MIMD execution can handle irregularity,
the cores stray far from each other in execution, interleave
accesses to many memory rows, degrade row locality, and
squander die-stacking bandwidth. Accordingly, we propose
memory optimizations for a “sea of simple MIMD cores
(SSMC)” PNM architecture, called Millipede, targeting BM-
LAs’ characteristics. While conventional multicores employ
power-hungry superscalar cores and deep, coherent cache
hierarchies, SSMC uses simple cores and no data caches. We
envision Millipede to augment the host processor (Figure 1).

Before describing Millipede’s novel features, we list the
well-known features in its SSMC skeleton: For each (or a
few) memory array, there is a Millipede processor comprising
a wide set of cores, called corelets, to exploit BMLASs’
parallelism. Millipede employs MIMD execution for BMLAs’
irregularity. BMLAs’ light-compute nature affords simple
corelets, To hide memory latency of input data, Millipede
employs sequential prefetch which exploits BMLAs’ row-
dense nature; MapReduce’s automatic data partitioning obvi-
ates cache hierarchies and coherence.

Millipede’s novelty stems from memory-row-orientedness
where a processor’s corelets collectively but asynchronously
(pre)fetch and operate on entire rows of die-stacked memory
before moving on to the next row (i.e., row-centric access
and compute-schedule). This row-orientedness, our second
contribution, exploits BMLAs’ row density to achieve Mil-
lipede’s goal of utilizing the full die-stacking bandwidth.
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Such deliberate access-schedule coupling differs from best-
effort row locality in conventional multicores which fetch
and operate on cache blocks. Recent PNM work does not
target row-orientedness, except for considering row locality in
Jjoins [18] which are fundamentally not compact as we discuss
in Section III-D. Millipede implements row prefetching using
simple full-empty bits for the prefetch buffers.

Millipede’s MIMD execution also incurs the straying prob-
lem of conventional multicores and plain SSMC. Because one
corelet prefetches for all the other corelets in a Millipede
processor, a leading corelet may prematurely re-allocate a
prefetch buffer to a new memory row while some lagging
corelets have not yet fully consumed the previous memory
row. Millipede employs cross-corelet flow control, our third
contribution, to prevent such premature re-allocation and thus
preserves prefetch efficiency despite MIMD. While prefetch-
ing is well-studied, the main concerns have been accuracy
and timeliness but not premature re-allocation in either self
prefetching (i.e., each core prefetches for itself) or cross-
core prefetching [19], [20], [21]. Addressing accuracy and
timeliness are easy in BMLAs due to sequential input data
accesses and loops that can overlap the next row prefetch
with the current row computation. While the flow control
imposes a global barrier across the corelets, such a barrier
occurs only when the prefetch buffers overflow and not at
every instruction as in SIMT. Millipede implements the flow
control using simple counters for prefetch buffers.

Finally, BMLAs, being compute-light, are memory-bound
whose energy can be reduced. To that end, we leverage
the prefetch flow control to rate-match the Millipede pro-
cessor and die-stacked memory via frequency scaling, our
fourth contribution. The rate-matching increases (decreases)
the processor clock speed whenever a leading corelet finds
the prefetch buffers to be full (empty). While the corelets may
diverge from each other at fine time granularity, they perform
statistically similar amount of work over the full application
execution (e.g., 10 billion records). Further, because the same
computation is repeated for billions of records, BMLASs’
behavior does not change during execution. Accordingly, We
employ rate-matching at the coarse granularity (in space) of
the processor and not the individual corelets, and (in time) of
the full application and not smaller code sections. While rate-
matching is well-known, we perform coarse-grained compute-
memory rate-matching. Previous work explores rate-matching
in hardware at the fine granularity of pipeline sub-components
(space) and program phases (time) [22], [23], in the com-
piler [24], or by trading off accuracy [25]. Our rate-matching
needs only a simple incrementer to adjust the clock speed.

To summarize, the key contributions of this paper are:

e identifying irregular-and-light-compute, compact, and
row-dense as key application characteristics that fit PNM;

e row-orientedness for SSMC-based PNM architecture;

e flow-controlled cross-corelet row prefetching; and

e coarse-grain compute-memory rate-matching.

Using software simulations running BMLAs, we compare
PNM architectures to show that Millipede improves perfor-



mance and energy by 135% and 27% (198% energy-delay)
over a GPGPU with prefetch, and by 35% and 36% (84%
energy-delay) over SSMC with prefetch when all three PNM
architectures use the same resources (i.e., number of cores and
on-processor-die memory) and identical die-stacking.

The rest of the paper is organized as follows. We contrast
Millipede to related work in Section II. Section III discusses
application characteristics. Section IV describes Millipede’s
architecture. Section V describes our evaluation methodology.
In Section VI, we present our experimental results. Finally,
we conclude in Section VII.

II. RELATED WORK

We discuss previous work related to our key contributions.

Application characteristics: As discussed in Section I,
previous work [11] explores general workloads, including
MapReduce, which include applications without and with
inter-thread communication (which inhibits parallelism) or row
locality (which degrades memory bandwidth efficiency). In
contrast, we identify the key characteristics that fit PNM.

Row-orientedness: Past PNM architecture papers have
explored vectors [6], VLIW [8], GPGPUs [26], uniproces-
sors [7], multicores [6], [9], [27] and SSMC [10], [11]. How-
ever, vectors (SIMD), GPGPUs (SIMT), and VLIW perform
poorly in the face of data-dependent branches and irregular
memory accesses. GPUs employ heavy multithreading to
tolerate the latency of unpredictable memory accesses, but the
interleaving of numerous contexts degrades cache locality [28]
and row locality. While GPGPU’s multithreading degree can
be lowered (e.g., fewer warps per SM) and supplemented
with prefetching for the predictable BMLAs, even 100%-
accurate cache-block prefetching does not address GPGPU’s
difficulty with control-flow irregularity. While conventional
multicores” MIMD execution can handle branches, the cores
stray from each other due to the unavoidable variability in
the record-processing work (as do Millipede corelets without
flow-controlled prefetch), interleaving accesses to different
rows and degrading row locality. Again, 100%-accurate cache-
block prefetching does not address conventional multicores’
poor row locality. DIVA [9] targets irregular applications by
supporting address translation and coherence. Centip3de [27]
exploits die-stacking using a conventional multicore. None
of these architectures nor the NDP workshop 2014-2015
papers [29] address row-orientedness (i.e., row-centric access
and compute-schedule).

There are several recently-proposed PNM accelerators for
various computational patterns. NDA [13] maps dataflow
programs to coarse-grain reconfigurable architecture (CGRA)
MIMD nodes connected by a network. BMLAs have abun-
dant parallelism and little communication and do not need
a general network. Further, NDA is not row-oriented. AC-
DIMM [30], based on STT-MRAM, combines ternary as-
sociative search with PNM by co-locating key-value pairs
in a TCAM. Millipede (a) captures inter-record parallelism
whereas AC-DIMM exploits intra-record bit parallelism, and
(b) exploits row-orientedness instead of just co-location. While
accelerating data reorganization for die-stacked memory [31]
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is orthogonal to our work, Millipede can leverage this work
for the interleaved layout (Section III-B). While Tesseract [12]
targets graph workloads via MIMD and inter-core communi-
cation, such workloads are not row-dense or compact. Further,
Tesseract is not row-oriented and would incur straying similar
to conventional multicores and plain SSMC. Other work [32]
offloads work to PNM cores upon cache misses. Because
BMLA datasets are much larger than caches, PNM execution
would be unavoidable.

Accelerators in other compute-intensive domains are spe-
cialized for their specific purpose (e.g., [33], [34], [35],
[36], [37]). While these accelerators target compute-intensive
applications, Millipede targets data-intensive applications.

Flow-controlled cross-corelet row prefetching: While
prefetching accuracy and timeliness are well-studied, we focus
on cross-core prefetching where one core prefetches for others,
as do our corelets, using helper threads [19], in GPUs [38],
and in conventional multicores [20], [21]. All but the last paper
focus on accuracy or timeliness whereas our concern is cross-
core coordination to avoid premature eviction of prefetched
data. The last paper regulates each core’s prefetches into a
shared LLC to ensure equitable sharing of the cache capacity.
In contrast, Millipede’s flow control ensures cross-core use of
prefetched data.

Coarse-grain compute-memory rate-matching: Millipede
achieves dynamic compute-memory rate-matching in hard-
ware. While rate-matching is well-known, we target the
coarse granularities of entire cores (space) and full applica-
tions (time). Previous work has proposed compute-compute
rate-matching in hardware in globally-synchronous, locally-
asynchronous (GALS) designs [22], [23]. These papers rate-
match fine-grained pipeline sub-components running typi-
cal sequential programs with fine-grained program phases
of variable instruction-level parallelism. Other work em-
ploys the compiler and profiling for static, compute-compute
rate-matching in streaming applications [24]. Finally, work
on compute-pin-I/O rate-matching for multimedia workloads
(e.g., h.264) trades-off accuracy for energy by using appli-
cation hints [25] or heterogeneous cores with varying power,
performance, or reliability [39]. In contrast, Millipede saves
energy without affecting accuracy.

III. BMLA CHARACTERISTICS
BMLAs are written commonly as MapReductions [40].
A. MapReduce programming model

BMLA MapReductions process a stream of records. Each
Map task sequentially processes a series of records and par-
tially reduces each record’s Map output into a local intermedi-
ate state. This partial Reduce typically reduces only the records
processed by a Map task. In some cases due to local memory
limitation, the intermediate state is partially-reduced across a
subset of Map tasks that are local to a corelet. Like other
MapReductions, BMLA input data is sharded across a cluster
(or datacenter) where each node performs its Map and partial
Reduce. The data is assumed to be resident in the die-stacked
memory, similar to Spark [17], as explained in Section IV-E.



TABLE I
WALK-THROUGH EXAMPLE OF NAIVE BAYES

| Pseudocode (Comments in gray) |

/I Single N-dimensional record with associated year
typedef struct {

int year;

int X[NUM_DIMENSIONS];
} bayes-struct;

// Dataset — Large collection of records
bayes-struct bayes-struct-array[100000000]

/I Live state — Aggregated conditional probabilities (Cprob) of the two
classes

int Cprob[NUM_DIMENSIONS] [K] [2]

int classCount[2]

const int threshold

/I PNM code — Map task and combine/partial-reduce
for each record in bayes-struct-array {
int class
if (record.year > threshold)
else class = 0;
for each dim in NUM_DIMENSIONS {
Cprob[dim] [record.X[dim]] [class]

class = 1;

++

classCount [class]++;

}

// Host code — Final reduction
Sum classCount arrays of all corelets.
Sum Cprob matrix of all corelets.

The per-node Reduce (using within-node Shuffle) reduces the
corelets’ partially-reduced outputs. The final Reduce (using
cross-cluster Shuffle) reduces the nodes’ Reduce outputs to
compute the final result.

While the above description holds for any MapReduction
in general, our contribution is in identifying the characteristics
of irregular-and-compute-light, compact, and row-dense to be
suited for PNM architectures. The Map and partial Reduce
functions require only a few operations per word but involve
data-dependent branches and memory accesses making BM-
LAs’ compute irregular-and-light. Only the input data, and
not any other computed data, is large in most BMLAs. The
input data access is naturally, or as we show below can be
made to be, row-dense and compact. As discussed in Section I,
BMLAS naturally accomplish the severe reduction of the huge
input data, and therefore, maintain only small amounts of
intermediate program state. This small state is in contrast to
datacenter-scale MapReductions’ intermediate state which can
be so large as to spill to the disk (i.e., before being shuffled
to the reduce tasks). BMLAs’ intermediate state includes
any constant data and each Map’s partially-reduced output
accumulated at any point in execution.

Table I shows the memory organization, the local state and
the map/reduce operations needed for Naive Bayes, a promi-
nent supervised classification BMLA (despite being named
“naive”). The code assumes n-dimensional records with an
additional year field. Each record is logically in one of two
classes depending on whether its associated year exceeds a
threshold. The key computation is the counting of conditional
probabilities depending on the class of each record. The
computation makes row-dense and compact accesses to each
record’s coordinates in each dimension and its related year
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(nested loops in PNM code). The computation per dimension
is light-weight (single increment of conditional probabilities
per dimension and a single increment of record label frequency
per record). The computation is irregular because of (1) the
branch to identify the records of interest and (2) the indirect
data-dependent access of the conditional probability matrix.
(Alternately, replacing the indirect accesses with if-then-else
constructs, to increment the appropriate counters, would lead
to more control-flow irregularity.) Accumulating the counts
into a small local state effectively acts as a partial reduction.
Finally, the Shuffle and reduction across all corelets and PNM
processors occurs at the host processor [10], [13].

B. Layout issues

Because BMLAs’ parallelism is primarily inter-record, a
“row-major”’-like or an “array of structs” layout in memory
cannot efficiently capture inter-record parallelism. In this lay-
out, parallel accesses to consecutive records, which would
likely fall in different memory rows, would destroy row local-
ity. This layout issue is common to all the PNM applications
and architectures. A better option is the well-known “column
major’-like interleaved “array of structs of arrays” layout,
where each record is striped across rows and the same field
of consecutive records fall in the same row. However, because
the words in a row typically outnumber the cores, each core
has to process many records. Fortunately, the live state of the
records processed by a core can be partially-reduced to prevent
state expansion. Nevertheless, because this layout implies that
a core (a GPGPU lane, or a Millipede corelet) processes full
records, the state needs to fit in the core’s resources (else
some die-stacking bandwidth is spent on spilling the state to
the DRAM). Fortunately, this state can fit in 4-8 KB of local
memory for most BMLAs. Because the interleaved layout is
well-known, our evaluation uses this layout for all three PNM
architectures we compare — GPGPUs, SSMC, and Millipede.

C. BMLAs

Table II summarizes the BMLAs we consider. We show
that these BMLAs are irregular-and-compute-light, compact,
and row-dense. While all applications are light (i.e., no super-
linear compute complexity), PCA and GDA have relatively
more compute than the others. Recall our stipulation that the
applications are naturally or, with some modifications, can be
made compact and row-dense. Some of these BMLAs are
naturally compact and row-dense. For example, kmeans in-
volves computing the distance from each datapoint in a multi-
dimensional space to a set of centroids. Because each datapoint
is a simple set of coordinates, the computation is inherently
compact. Because every coordinate is used in the distance
computation, the computation is dense. The centroids are part
of the live state that persists across datapoints and do not
affect the computation density or the compactness. However,
the distance computation from each of the k centroids may
require proportional effort and not constant effort like most of
the other applications (i.e., O(k) instead of O(1)).



TABLE II
SUMMARY OF APPLICATION BEHAVIOR

Application Input Per-node Operations

record | live state per byte
Count Movie Bin Count o(1)

rating
Sample Selection Movie (count, o(l)

rating elements)

per bin

Statistics — variance Movie Bin count | O(1)

rating Bin sum of

squares

Supervised classification (dis- | N-dim. | Conditional | O(1)
crete) - Naive Bayes (NB) point + | probability

Bin-id per bin
Supervised classification via | N-dim. | N-dim. O(1)- new
Euclidean distance point centroids centroid,
Unsupervised clustering via O(k)- nearest
Kmeans (1-iteration) centroid
Dimensionality reduction via | N-dim. Mean and | O(1)- mean,
Principal Components Analy- | point covariance | O(N)-
sis (PCA) covariance
Supervised classification | N-dim. | Per-bin
(continuous) via Gaussian | point+ | mean, co-
Determinant Analysis (GDA) | Bin-id variance

Other BMLAs can be made compact with appropriate
data layout. For example, NB and GDA (Table II) typically
process a training set that includes: (1) the coordinates of
each datapoint in a multidimensional space, and (2) the
bin/class to which the datapoint belongs. Maintaining two
separate arrays, one each for data-points and classification,
would lead to non-compact, discontiguous accesses. Instead,
an array of structs, in which the coordinates of each datapoint
and its classification are contiguous, enables acceleration.
Subsequently, the applications’ compact computation includes
partial mean/covariance (for GDA) and partial conditional
probabilities (for NB) depending on the bin to which each
data-point belongs. PCA, which computes the mean and the
covariance matrix, is inherently row-dense and compact.

While Deep Neural Networks (DNNs) are important for im-
age processing and have received much attention recently from
computer architects, the BMLAs are commercially-important
analytics [3], [4], as discussed in Section I, and do not include
DNNs. Further, traditional database analytics (e.g., [15]) do
not share BMLASs’ characteristics. For example, scan is regular
and join is not compact for unstructured, unindexed data (as
is common in BMLAs as opposed to databases). Such a join
requires pairwise comparisons of all the records in two large
tables, which cannot be made compact because while one
of the tables can be tiled and streamed in, multiple passes
are needed over the other table. As such, both tables are
accessed at high rates. (Databases may employ hash-joins
on previously-indexed data, but the hashing incurs its own
problem of lack of row locality especially in PNM [18].)
While poor row locality would mean poor performance [18],
our point is that even with good row locality, joins are not
compact and therefore would underutilize PNM’s bandwidth
(Section III-D). Finally, many of the BMLAs are full applica-
tions which produce final results (e.g., unsupervised clustering
via kmeans clusters data for a market segmentation analysis).
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D. Implications of BMLA characteristics

Absence of the characteristics identified by us have strong
implications. (1) Regular computation would mean that vector
or GPGPUs may suffice. (2) Compute-heavy would imply
compute-boundedness weakening PNM’s bandwidth advan-
tage. (3) Not compact (despite transformation) would mean
that some data other than one input is large (the old PIM
problem, as discussed in Section I). Because the processor can
be near only one large data, the other data may be bottlenecked
by traditional, non-die-stacked channels and networks, again,
weakening PNM’s bandwidth advantage (e.g., join). While
the problem does not occur if the second data is needed
at low rates, such a case degenerates to a computation that
predominantly uses only one large data (i.e., is compact). Such
data movement is discussed in [11] but not the implication
of compactness. (4) Not row-dense (despite transformation)
would mean memory bandwidth inefficiency and degradation
of PNM’s advantage.

Except for irregularity, these characteristics are necessary
for efficient PNM, irrespective of the architecture. As such,
all but the first implication expose the fundamental limits of
PNV, irrespective of the architecture. While PNM’s advantage
is diminished for applications that violate these characteristics,
this limitation is not specific to Millipede but applies to any
PNM architecture. On the positive side, we have identified
BMLAs, which are prevalent in the real world today, to fit
within PNM’s constraints.

E. Application-architecture match

We briefly consider mapping Naive Bayes (Table 1) to a
GPGPU, plain SSMC, and Millipede. The mapping for the
other applications is similar. The indirect access would cause
uncoalesced accesses to the L1 D-cache in a GPGPU. Instead,
the per-thread live state can be allocated in the GPGPU Shared
Memory and striped across its banks (i.e., i'" thread’s state in
the #/" bank). Because Shared Memory has as many banks
as lanes with word-level interleaving, the indirect access in
each thread can access any word within its bank in parallel
with the other threads. The input data is prefetched in cache
blocks from the die-stacked DRAM to the L1 D-cache. In
plain SSMC, both the live state and the input data are placed
in the L1 D-cache to which both cache-block prefetches and
demand accesses occur. In Millipede, the live state is in the
per-corelet local memory, and the input-data row-prefetches
and demand accesses go to the prefetch buffer.

Despite these good mappings, GPGPUs and plain SSMC
incur problems which Millipede solves. As discussed in Sec-
tion II, GPGPUs SIMT incurs performance loss due to data-
dependent branches; our results show that GPGPU schemes for
branches [41] do not help. While plain SSMC’s MIMD can
avoid these SIMT penalties, the cores stray from each other
due to work variability, interleave accesses to multiple rows,
and destroy row locality (as explained in Section II). Syn-
chronizing the cores at each record would push SSMC closer
to SIMT and its overheads. As discussed in Section II, even
100%-accurate cache-block prefetches do not help GPGPUs



and plain SSMC (row locality is a bandwidth problem whereas
prefetching improves latency but not bandwidth). To avoid
the SIMT problems, Millipede also employs MIMD. Unlike
plain SSMC, however, the row-oriented Millipede prefetches
entire rows and employs flow-control to limit the corelets’
straying from each other and avoid premature eviction of
prefetched data. Thus, Millipede utilizes the full bandwidth
while enjoying MIMD’s benefits.

Nevertheless, two key advantages of SIMT over MIMD
are (1) wide access to registers, caches, and memory greatly
amortizes the bandwidth and energy cost of each access, and
(2) the amortization of instruction processing costs over mul-
tiple threads. However, the branch and memory irregularity in
BMLASs impede SIMT execution and renders these advantages
less effective. As such, we carefully model these differences
between SIMT and MIMD in our experiments.

IV. MILLIPEDE

Recall from Section I that there is a Millipede processor for
each memory array (or a few arrays), as shown in Figure 1.
Like SSMC, each Millipede processor comprises a wide set
of simple cores, called corelets, which employ some well-
known ideas. The key novel ideas are: row-orientedness, flow-
controlled, cross-corelet, row prefetching, and coarse-grained
compute-memory rate-matching.

A. Corelets (well-known ideas)

To handle our irregular data-dependent branches and mem-
ory accesses to the intermediate program state (input data is
row-dense and sequential), Millipede employs MIMD execu-
tion where each corelet has its own instruction cache. Because
BMLA code size is small (e.g., under 4 KB), we broadcast
the code once at the beginning of execution. Because the
applications are compact, each corelet has a small register
file and local memory (similar to the Cell [42]). Recall
from Section III-B that the live state fits in the local memory
without spilling to the DRAM. Due to MapReduce’s automatic
data partitioning, BMLA MapReduce code can be compiled to
allocate the intermediate state in the local memory, obviating
the need for hardware-managed, deep cache hierarchies and
coherence.

Because the applications are compute-light, the corelets’
pipeline is simple and energy-efficient. Because memory la-
tency is hidden by prefetching, the local memory is small and
fast, and the pipeline is shallow, the pipeline hazards are short.
Therefore, instead of complex register bypassing and branch
prediction, we employ small-scale hardware multithreading
like GPGPUs to tolerate the short hazards (e.g., 4 contexts).
Each context needs its own registers which are only a few;
hence, the register file remains small. The local memory
holds the partially-reduced live state which is shared among
the contexts and therefore need not be replicated. In our
evaluation, we assume that GPGPUs and plain SSMC can also
employ such small-scale hardware multithreading to tolerate
their pipeline hazards.
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B. Row-orientedness

A Millipede processor’s corelets collectively but asynchro-
nously fetch and operate on entire rows before moving on to
the next row (i.e., row-centric access and compute-schedule).
Millipede employs simple row prefetching to exploit die-
stacking’s full bandwidth for the memory-row-dense BMLAs.
Each corelet works on a slab of the input data brought into
the prefetch buffer (e.g., 64 B). Thus, this deliberate access-
schedule coupling preserves full row bandwidth. Recall from
Section III-B that in the interleaved layout each slab holds
the same field(s) of one or more records whose Map tasks
are completely independent of each other. Each corelet runs
the Map for each of its records which successively update
the partially-reduced intermediate state held in the corelet’s
local memory. The host CPU runs the per-node Reduce to
combine this state from all the processors, as discussed later
in Section IV-D.

C. Flow-controlled cross-corelet prefetch

The next row prefetch occurs before the current row pro-
cessing starts. This simple prefetch could be in hardware
or software because the processing of a record is easily
identifiable in MapReduce. Each slab is large enough that its
processing is enough to hide the next row access latency, else
we can prefetch one more row ahead. Our hardware scheme
can take hints from software about how far ahead to prefetch
(not needed for the BMLASs we evaluate). The prefetch buffer
is organized as a circular queue where each entry has an
address tag. Because all the corelets execute the same Map
code, there may be multiple prefetches to the same row. The
first demand access to an entry, identified by a full-empty bit
called prefetch-trigger (PFT) bit in the entry, allocates a new
entry, and triggers the next prefetch. The PFT bit prevents later
demand accesses from triggering redundant prefetches, similar
to traditional MSHRs.

A central issue is that the corelet’s MIMD execution im-
poses a need for flow control in the prefetch buffer. A leading
corelet may surge past the other corelets and issue prefetches
for all the free buffer entries, wrapping around to the head
entry and later entries which have not been consumed fully
yet. A crucial detail, best explained by an example, increases
the chances of such premature re-allocation. Assuming 2-
KB memory row, 32 cores, lanes, or corelets per processor
in SSMC, GPGPU, or Millipede, and 4-way multithreading,
there are 512 records per row in our interleaved layout (4
bytes per word) and 128 concurrent threads each of which
processes only 4 records per row, irrespective of the PNM
architecture. This low number implies high work variability
across the threads increasing the chances of the premature re-
allocation; a higher number would have the variation-reducing
effect of statistical smoothing.

Accordingly, Millipede smooths out the variability across
the threads by processing more records per thread resulting
in the concurrent processing of more rows (e.g., 16 rows).
To prevent this concurrency from degrading row locality,
Millipede enforces loose synchronization via a per-prefetch-
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buffer entry demand-fetch (DF) counter which is incremented
upon every demand fetch. A prefetch buffer entry is re-
allocated only after the DF counter saturates at the corelet
count, indicating that the entry has been consumed fully. The
DF counter is reset upon re-allocation and subsequent prefetch
fill. Unlike the PFT bit, the DF counter cannot just be a full-
empty bit because we do not know which corelet would be the
last consumer and hence we must count. Normally, the next
entry would be consumed fully (i.e., its DF counter would
be saturated) and can be re-allocated for the next prefetch
(i.e., the circular queue is not full). When the queue is full,
however, the DF counter of the next entry (the head entry)
would be unsaturated (‘First demand access’ in the timeline
in Figure 2). Then, the leading corelet does not trigger a
prefetch upon a demand fetch to the tail entry even if the tail
entry’s PFT bit is set (implying the first demand access to the
entry). A later access to the head entry causes the entry’s DF
counter to saturate (‘Last demand access’ in Figure 2). The
next demand fetch to the tail entry issues the next prefetch and
clears the PFT bit (‘Later demand access’ in Figure 2). As
BMLAS access rows sequentially, the head entry’s DF counter
is guaranteed to saturate before the last demand fetch to the
tail entry, ensuring that the next prefetch is not missed.

Because of their MIMD execution, the corelets access the
prefetch buffers at different times. For full bandwidth to all
the corelets, we break up each prefetch buffer entry into as
many slabs as corelets so that a slab is accessed by only one
corelet. Thus, each corelet’s access goes only to a small slab-
wide slice of the prefetch buffer entries (e.g., 64-byte slabs and
16 entries means 1-KB prefetch buffer slice). By using fixed-
size slabs, the interconnection between the prefetch buffer and
the corelets remains simple (see Figure 1). In our interleaved
layout, a slab contains either words each from a contiguous
set of records (word-interleaving), or n contiguous words
of a record (slab-interleaving). The latter has many choices
for n such that ‘n * coreletCount * multithreadingDegree =
row size’ for typical values. Thus, each corelet can flexibly
process one or more records. While GPGPUs must use word-
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size columns to achieve coalesceable accesses (wider columns
would mean the lanes’ accesses span multiple cache blocks),
Millipede can use wider columns for layout flexibility.

The full-row prefetch and the flow control are fundamental
for Millipede but not the prefetch buffers. The prefetches can
bring the data into the local memory instead of the prefetch
buffers. The slabs from a prefetched row would go to their
respective corelets. Then, the PFT bits and DF counters would
exist without the accompanying buffers. However, such an
implementation would need address tags in the local memory
to detect prefetch data whereas the above implementation
needs tags only in the prefetch buffers.

We make a few observations: First, while more prefetch
buffer entries achieve more statistical smoothing across the
threads, some variability remains although the probability
is lower. Thus, our flow control incurs less, but non-zero,
waiting. Second, without flow control, this variability still
causes premature prefetch buffer evictions, as shown by our
results (Section VI-A). Further, once a premature eviction
occurs (non-zero probability), the lagging corelets miss in
the prefetch buffer and are exposed to die-stacked memory
latency which widens the lag for long periods of time (i.e.,
left to chance, there is little self-correction). Our results show
that this lag is worse for performance than our flow control’s
short waiting. Finally, software barriers across Map tasks
could prevent premature evictions instead of our hardware
flow control. A barrier after all the entries are consumed
would incur the barrier cost only once for all the entries.
However, the Map tasks operate on record granularity while
the prefetch buffer holds arbitrary number of bytes. Hence,
the barrier may fall in the middle of records which would
break MapReduce’s task granularity and not be expressible.
Generic thread-based application programming, instead of
MapReduce, would work but would severely degrade data-
center/cluster programmability. Our results show that placing
software barriers at record granularity within MapReduce does
not help. Because the full records far exceed the prefetch buffer
entries (many tens to a few hundreds of rows in our interleaved
layout versus 16-32 entries), the barriers are not invoked
when needed. Instead, Millipede employs simple hardware to
maintain programmability.

D. Final Reduce

The per-node Reduce and global final Reduce (Sec-
tion III-A) are much smaller than the Map and partial Reduce
but require data from all the processors within a node and all
the nodes, respectively. Therefore, providing communication
support for these Reduce phases may not be worth it. Instead,
the host CPU performs the per-node Reduce, as observed
in [10], [13]. The global final Reduce uses the cluster network
like other MapReductions. For example, Map and partial
Reduce of tens of millions of records in each node take
a few seconds versus per-node Reduce across 32 Millipede
processors of a node takes hundreds of microseconds and the
global final Reduce across 5000 nodes of a cluster takes tens
of milliseconds.



E. Memory Interface

For simplicity, Millipede assumes a discrete GPU-like mem-
ory interface where the host CPU copies the input data into
the die-stacked memory before processing and copies out the
output data in the corelets’ local memories after processing.
The die-stacked memory and local memories are not part of
the host CPU’s physical memory address space. The corelets
do not support virtual memory or coherence with the host,
which we leave for future work.

Loading the input data into the die-stacked memory for
every run would fundamentally make BMLAs, or any ap-
plication, host-memory-bound (or disk-bound, if the data is
spilled to the disk), rendering die-stacking bandwidth irrele-
vant for any PNM architecture — GPGPU, SSMC, or Millipede.
Instead, the input data resides in the interleaved layout in
the datacenter/cluster’s die-stacked memory like Spark, Web-
Search’s memory-resident Web Index, or memory-resident
databases, and unlike generic MapReduce ( Section III-A).
Further, to amortize the disk and layout costs, numerous
MapReductions (chained or not) reuse the data similar to Web-
Search/memory-resident database queries.

E. Compute-memory rate-matching

Being compute-light, most BMLAs are memory-bandwidth-
bound. Our rate-matching eliminates the idling energy incurred
when the corelets wait for memory, To that end, we leverage
our flow-controlled prefetch to rate-match the Millipede pro-
cessor and die-stacked DRAM via dynamic frequency scaling
(DFS). Our evaluation conservatively assumes that voltage
scaling is impossible; otherwise, our energy savings would
be higher. While the corelets may diverge from each other
at fine time granularities, they perform statistically similar
amount of work over the full BMLA execution (e.g., billions
of records). Further, because the same computation is repeated
for billions of records, BMLA behavior does not change across
code sections. Accordingly, our rate-matching is at the coarse
granularity (in space) of the processor and not the individual
corelets, and (in time) of the full application execution and
not smaller code sections.

Because of the coarse application-level granularity, we em-
ploy a simple, one-dimensional hill-climbing control algorithm
that decreases (increases) the processor clock speed in small
steps (e.g., 5%) via frequency scaling whenever a leading
corelet (defined in Section IV-C) finds the prefetch buffers
to be empty (full), signifying a memory-bandwidth-bound
(compute-bound) application. The small steps suffice due to
the application-level granularity where the algorithm needs
to converge just once at the start of the application whose
compute-work behavior does not change later. For instance,
small 5% steps, a large 4x required change in the clock speed,
and 200 cycles of computation per DRAM row (typical for
BMLAs) imply convergence in 16,000 cycles compared to a
few billions of cycles of execution time. Any oscillations after
convergence would be within a band of the size of the small
step, resulting in acceptable inefficiency.
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TABLE III
HARDWARE PARAMETERS

#Millipede processors

# GPGPU SMs 1 of 32

# SSMC processors

Compute clock 700 MHz

# Corelets/lanes/cores 3

per processor/SM/SSMC

# Multithreading contexts 4

per processor/SM/SSMC

# Registers per corelet/lane/core | 32

L1 I-cache per .
corelet/SM(got lane)/core 4 KB, 128B line,
Local memory per corelet 4 KB
Prefetch buffer per corelet 16 x 64B

L1 D-cache per SM
Shared memory per SM
L1 D-cache per core 5 KB, 128B line
Die-stacked DRAM capacity 4 GB

# Die stack layers 4

32 KB, 128B line
128 KB, 4B interleaving

# Memory channels 1 of 32

Channel clock 1.2 GHz

Channel width 128 bits

DRAM tCAS-tRP-tRCD-tRAS 9-9-9-27

DRAM row size, banks/channel 2 KB, 4

Memory Controller FR-FCFS (16 deep)
DRAM Access Energy 6pl/bit [31]

Core Technology node 22nm

Overall, Millipede adds simple hardware — PFT bits, DF
counters, and adders (for the above 5% steps) — to SSMC.

V. METHODOLOGY

We modify GPGPUsim to implement Millipede. For com-
parison purposes, we use GPGPUsim to simulate PNM archi-
tectures based on a GPGPU, Variable Warp Sizing (VWS) [41]
which is currently the best branch-optimized GPGPU (for
BMLASs’ branches), and SSMC (representing previous mul-
ticores without row-orientedness [11], [10], [12]). This SSMC
matches Millipede in compute bandwidth, unlike conventional,
superscalar-core multicore which has large caches and far
fewer high-performance but power-hungry cores. Because
narrower GPGPU warps lose less performance in the pres-
ence of branch divergence and wider warps achieve lower
energy otherwise, VWS dynamically chooses between 4-wide
and 32-wide warps based on branch divergence. To capture
their MIMD execution, we simulate an SSMC processor
and Millipede processor each as an SM with only one lane
corresponding to a simple core or corelet. Our simulation
assumes that each PNM architecture (i.e., SSMC, GPGPU,
VWS, and Millipede) is on the logic die with stacked DRAM
and is separate from the host CPU. In addition, we ensure that
the number and pipeline of the cores and the on-processor-die
memory size are identical in all these PNM architectures. All
the architectures use the interleaved layout (Section III-B).
While Millipede uses sequential row prefetch, the GPGPU,
VWS, and SSMC use sequential cache-block prefetch. Thus,
our results isolate the benefits of Millipede’s novel features
while holding the effects of technology (on-die transistor count
and die-stacking), well-known architecture schemes (simple
cores, hardware multithreading, and sequential prefetch) and
software (interleaved layout) to be the same for all the PNM
architectures we compare.



TABLE IV
BENCHMARK PARAMETERS AND CHARACTERISTICS
g 5
= 31 S
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Benchmark E.E & 2 AEE ~S
count 7 0.14 0.253 544
sample 10 0.2 0.162 528
variance 12 0.08 0.351 581
nbayes 14 0.11 0.344 565
classify 40 0.05 0.393 625
kmeans 44 0.05 0.384 613
pca 150 0.02 0.489 644
gda 180 0.015 0.497 644

The hardware parameters are shown in Table III. We
simulate a 32-corelet Millipede processor, a 32-core SSMC,
and a 32-lane GPGPU SM. VWS varies the warp widths
on the same SM. All the PNM architectures use simple, in-
order-issue pipelines with 4-way hardware multithreading to
tolerate pipeline hazards. Each corelet has 4-KB local memory
and 1-KB prefetch buffer (total 160 KB per processor); each
SSMC core has 5-KB L1-D (160 KB per SSMC processor);
and each GPGPU SM has 32-KB L1-D and 128-KB Shared
Memory (total 160 KB per SM). Recall from Section III-B that
BMLASs’ compact nature implies that all of the intermediate
state and input prefetch data completely fit in the small local
memory (or L1 D-cache), obviating the need to experiment
with larger L1 D-caches. Each Millipede corelet and each
core in the SSMC has an L1 I-cache. The GPGPU SM has
an L1 I-cache shared among the lanes. We account for the
extra I-cache in Millipede and SSMC in the energy estimates.
The die-stacked DRAM’s parameters, shown in Table III, are
typical [31]. The bandwidth is similar to HBM’s specification
of 128-bits per bank, with 1 Gbps bandwidth per pin [2].

We implement the applications in Table II in CUDA. Ta-
ble IV shows the instruction count per input word, the branch
frequency, the row miss rate (row misses / row accesses) in
SSMC and Millipede’s rate-matched clock speed. To achieve
realistic simulation times, we limit the input data to 128MB
and run the benchmarks to completion on one processor. Being
repetitive, BMLAs behave identically for large-enough and
larger inputs. As such, the steady-state behavior (achieved well
before 128 MB), will not change with larger datasets or more
processors.

We use GPUWattch [43] to estimate energy (parameters
in Table III). Recall from Section III-E that BMLAs access the
input data (prefetches) and intermediate live state. In GPGPUs,
the live state is in the Shared Memory and the input data is
cache-block prefetched into the L1 D-cache. The live state
is not in the L1 D-cache because BMLASs’ indirect memory
accesses would cause uncoalesced accesses to the L1 D-cache
whereas the Shared Memory supports 32 uncoalesced word
accesses, one from each lane, by using 32-way banking and
a 32x32 switch. While the Shared Memory is power-hungry,
the GPGPU enjoys the energy benefits of wide accesses to
the register file and L.1 D-cache, and shared access to the L1
I-cache whenever SIMT execution succeeds (Section III-E).
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However, such success is not often due to BMLAs’ control-
flow and memory irregularity (Section III-C). We ensure that
these benefits do not exist in Millipede and SSMC due to
their MIMD execution. In SSMC, the live data, input data
cache-block prefetches and demand accesses all go to the L1
D-cache. In Millipede, the live state is in the per-corelet local
memory, the input data is row-prefetched into the prefetch
buffers (Section IV-C). Both the local memory and prefetch
buffer are small and therefore dissipate low power. Each
architecture’s dynamic energy includes the components for the
core (which includes the pipeline energy, L1 I-cache, local
memory (or L1 D-cache, as appropriate) and idle dynamic
energy due to imperfect clock gating), the DRAM energy
dissipated in the stacked memory dies, and leakage energy
of the logic die.

VI. RESULTS

We start by comparing Millipede against PNM architectures
based on GPGPU and SSMC in terms of performance and en-
ergy. We isolate the impact of each of our contributions: mem-
ory row-orientedness, cross-core flow-controlled prefetching,
and coarse-grain compute-memory rate-matching (application
characteristics is covered in Section III-C). We then study
Millipede’s sensitivity to the system size and the number of
prefetch buffers.

A. Performance

We compare a 32-corelet Millipede processor against 32-
lane GPGPU and VWS SMs and a 32-core SSMC, all with
input data cache-block prefetch into their L1 D-caches. Fig-
ure 3 shows these architectures’ performance, on the Y axis,
normalized to that of GPGPU and the benchmarks on the X
axis in increasing order of the number of instructions per input
data word to show the trends clearly. The graph also shows
(1) Millipede without flow control (Millipede-no-flow-control)
to isolate the impact of flow control, and (2) VWS with row-
orientedness and flow control (VWS-row) to show Millipede’s
generality. Table IV shows the number of instructions per input
data word, the branch frequency, and the row miss rate in
SSMC. We discuss the rate-match clock in Section VI-B.

GPGPU (with prefetch) loses performance due to branches
impeding SIMT execution (Table IV) but not due to irregular
memory accesses which are handled by Shared Memory.
SSMC (with prefetch) performs better than GPGPU but loses
performance due to the cores straying from each other and



degrading row locality (Table IV). In contrast, Millipede’s row-
oriented MIMD architecture avoids both problems. Millipede
performs, on average, 135% and 35% better than GPGPU
(with prefetch) and SSMC (with prefetch), respectively. VWS
(with prefetch) always chooses 4-wide warps for better branch
handling (8 4-wide concurrent warps), and hence performs
better than GPGPU. However, VWS still loses performance
due to (1) the remaining branch inefficiency, and (2) the
warps interleaving accesses to different rows and degrading
row locality. Branch inefficiency remains in VWS because
BMLASs’ data-dependent branches have 70-/30+ taken-or-not
split (unlike loop branches’ 90+/10-) resulting in under 25%
chance that a warp’s 4 threads are either all taken or all
not-taken. VWS-row performs better than VWS by curbing
VWS’s straying, confirming Millipede’s generality, but still
lags Millipede due to the remaining branch inefficiency.

The difference between Millipede and GPGPU highlights
the need for MIMD because both architectures enjoy row
locality whereas the difference between Millipede and SSMC
highlights the need for row-orientedness because both architec-
tures employ MIMD execution; the only differences between
Millipede and SSMC are row-orientedness and flow control.
GPGPU would not benefit from these Millipede features
because GPGPU already achieves row locality due to SIMT
which, however, incurs branch problems. These numbers iso-
late the impact of Millipede’s novel architectural features over
GPGPU and SSMC while holding technology (CMOS and die-
stacking) and software (layout) effects constant. Millipede’s
speedups are due solely to the architecture and extend beyond
the die-stacking benefits of 400-800% higher bandwidth over
pins. Moreover, Millipede achieves these speedups through
simple hardware additions.

Comparing Millipede-no-flow-control and SSMC isolates
the benefits of row-orientedness. The former includes row-
centric access and compute-schedule via full-row prefetching
(Section IV-B) but not flow control so that filling up of the
prefetch buffers can cause premature eviction of prefetched
data due to corelet straying (Section IV-C). However, such
eviction is not frequent with 16 buffers allowing Millipede-
no-flow-control to improve over SSMC. Adding flow con-
trol improves performance further by fully avoiding such
evictions (the Millipede bars). Thus, this graph isolates the
benefits of Millipede’s row-orientedness and flow-controlled
prefetch (our second and third contributions). Flow control
alone cannot be applied to Millipede’s SSMC skeleton without
row-orientedness because flow control is for preserving row-
orientedness in the face of the straying of the corelets. Using
software barriers at record granularity (Section IV-B performs
similarly to Millipede-no-flow-control because the barriers are
too infrequent to be effective (not shown). Millipede’s rate-
matching is an energy optimization analyzed next.

The benchmarks are roughly in the order of decreasing
branch frequency and increasing row miss rate in SSMC
from left to right in Figure 3 (top to bottom in Table IV).
Accordingly, Millipede’s MIMD advantage over GPGPUs
decreases from left to right causing Millipede’s speedups
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roughly to decrease. However, Millipede’s row-orientedness
advantage over SSMC increases from left to right causing
the gap between Millipede’s and SSMC’s speedups roughly
to increase barring for PCA and GDA whose heavy compute
breaks this trend.

B. Energy

We now compare the PNM architectures in terms of energy.
Figure 4 shows the architectures’ energy on the Y axis, nor-
malized to that of GPGPU. We show two variants of Millipede,
one with rate-matching and the other without rate-matching.
Each bar shows the breakdown between core energy (which
includes cores, caches and idle dynamic energy), DRAM
energy, and static leakage energy of the cores as stacked bars.

GPGPU incurs higher core energy than SSMC due to (1)
higher Shared Memory energy than SSMC’s L1 D-cache
(Section III-E), and (2) higher idle energy due to branches
(Section III-E). Further, while GPGPUs are more energy-
efficient than typical multicores using power-hungry, super-
scalar cores, the SSMC cores here are identical to the sim-
ple GPGPU lanes. However, GPGPU achieves lower DRAM
energy than SSMC because, unlike MIMD SSMC, GPGPU
does not degrade row locality. The net result of these factors
is that SSMC expends more total energy than GPGPU. Nev-
ertheless, BMLASs’ irregularity shrinks GPGPU’s energy (and
performance) advantages over SSMC as compared to typical,
regular GPGPU workloads. Comparing SSMC to Millipede-
no-rate-match, we see that the latter achieves similar core
energy as the former because both architectures avoid (1) the
crossbar energy of GPGPU’s Shared Memory via private, local
memories, and (2) GPGPU’s branch inefficiency via MIMD
execution. However, Millipede-no-rate-match achieves lower
memory energy due to its row-orientedness. By incurring
lower branch inefficiency but poorer row locality than GPGPU,
VWS lies between GPGPU and SSMC. VWS-row lowers
memory energy over VWS via better row locality due to
row-orientedness but still lags Millipede-no-rate-match in core
energy due to the remaining branch inefficiency.

Recall from Section IV-F that Millipede’s rate-matching
slows down the corelets when applications are memory-
bandwidth-bound. Figure 4 shows Millipede with rate-match
further reduces the core energy over Millipede without rate-
matching by 16%. While the nominal frequency is 700MHz
(Table III), Table IV (column 5) shows the clock speeds under
rate-matching which inversely correlate with the number of
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instructions per input word in Table IV (i.e., fewer instructions
implies more DRAM-bandwidth-bound and therefore slower
clock). These numbers isolate the impact of Millipede’s rate-
matching (our fourth contribution). While static power of the
cores and caches are comparable across the architectures ex-
cept for GPGPU’s lower I-cache power (Section V), Millipede
incurs the least static emergy due to its shortest run time.
Overall, Millipede with rate-matching dissipates 27% and 36%
less energy than GPGPU and SSMC, respectively. Though
SSMC is closer to Millipede in performance for PCA and GDA
than the other benchmarks (Figure 3), SSMC incurs higher
energy than Millipede for these benchmarks (Figure 4) due
to numerous row misses (Table IV) which can be hidden in
execution time but not in energy.

C. Comparison to conventional multicore

To compare Millipede against a conventional multicore
(as opposed to SSMC), we simulate an 8-core Xeon-like
system with 4-wide, out-of-order issue, 4-way SMT pipelines
running at 3.6 GHz, multi-level cache hierarchies (64-KB
L1, 1-MB/core L2), and an off-chip memory (one-fourth
bandwidth of die-stacked memory). We assume 70 pJ per
bit for off-chip memory access [44]. Figure 5 shows Milli-
pede’s performance and energy improvements. The far fewer
compute threads in the multicore (32) compared to those
in Millipede (4096 in 32-processor Millipede) account for
most of the speedups. The multicore’s high clock speed and
off-chip memory access energy are the reasons for most of
the energy benefits. However, these large improvements (on
average, 125x better energy-delay) come with a caveat. Using
many, simple cores for abundantly data-parallel workloads,
where single-thread performance does not matter, is well-
known. In contrast, the multicore has fewer, complex cores for
single-thread performance (e.g., database transactions) where
simple cores would perform worse. Similarly, the performance
and energy benefits of die-stacked memory stem from die-
stacking technology and not the architecture. Instead, our
above comparison to GPGPU and SSMC isolate the true
benefits of Millipede’s novel features while holding all other
factors constant. Indeed, the above arguments apply to other
recent accelerator architectures and not only to Millipede,
and should be kept in mind when comparing Millipede’s
improvements against those architectures’ improvements.

D. Sensitivity to system size

We change the number of corelets, lanes, and cores per
Millipede processor, GPGPU SM, and SSMC processor, from
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32 (default) to 64, and correspondingly double the memory
bandwidth. Figure 6 shows the performance of the three
PNM architectures normalized to that of a 32-lane GPGPU.
As the lane count increases, GPGPU’s branch inefficiency
increases compared to Millipede which can gainfully uti-
lize more corelets. Consequently, Millipede’s speedup over
GPGPU increases with more corelets. Similarly, as the core
count increases, the SSMC cores stray from each other more
disrupting row locality more. Therefore, Millipede’s speedup
over SSMC also increases with more cores.

E. Sensitivity to prefetch buffer count

Recall from Section IV-C that the prefetch buffers decouple
the corelets from each other by absorbing any temporary work
imbalance among the corelets. We vary the prefetch buffer
count as 2, 4, 8, 16 (default), and 32 in Figure 7. As expected,
more buffers improve performance by absorbing more imbal-
ance though the incremental improvement decreases as the
exposed imbalance decreases. Performance levels off around
32 buffers which amount to a reasonable 64 KB per Millipede
processor for 2-KB rows.

The record size is independent of the memory row size in
our interleaved layout where each record is laid out vertically
across the rows (Section III-B). Memory rows are long enough
in practice to keep 32-64 corelets busy (e.g., 2-4 KB). There-
fore, we do not study the sensitivity to record or row sizes.

VII. CONCLUSION

This paper matched Big Data machine learning analytics
(BMLA) applications with die-stacking via processing-near-
memory (PNM). BMLASs are: (a) irregular-and-compute-light
(i.e., perform only a few operations per input word which in-
clude data-dependent branches and indirect memory accesses);
(b) compact (i.e., the relevant portion of the input data and
the intermediate live data for each thread are small); and
(c) memory-row-dense (i.e., process the input data without
skipping over many bytes). These characteristics are not all



shared by traditional database analytics, and except for irregu-
larity, are necessary for bandwidth- and energy-efficient PNM,
irrespective of the architecture.

Based on these characteristics, we proposed memory opti-
mizations for a “sea of simple MIMD cores (SSMC)” PNM
architecture, called Millipede, which exploits BMLAS’ row-
density by (pre)fetching and operating on entire memory rows.
Instead of this deliberate row-oriented access and compute-
schedule, conventional multicores opportunistically improve
row locality while fetching and operating on cache blocks.
Millipede handles BMLAS’ irregularity and memory latency
by employing MIMD execution and sequential prefetch of
input data. However, because Millipede’s MIMD corelets
may stray far from each other, a leading corelet may pre-
maturely evict the prefetched data before consumption by
lagging corelets. Millipede employs cross-corelet flow-control
to prevent such eviction. Millipede further exploits this flow
control for frequency scaling based on coarse-grain compute-
memory rate-matching. Using simulations, we compared PNM
architectures to show that Millipede improves performance
and energy, by 135% and 27% (198% energy-delay) over a
GPGPU with prefetch, and by 35% and 36% (84% energy-
delay) over SSMC with prefetch, when all three architectures
use the same resources (i.e., number of cores and on-processor-
die memory) and identical die-stacking. Millipede achieves
these improvements by adding simple full-empty bits, coun-
ters, and incrementers to an SSMC-based PNM skeleton. As
such, its performance, energy, and simplicity make Millipede
an attractive PNM architecture for BMLAs.
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