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Abstract

Consider a setting with NV independent individu-
als, each with an unknown parameter, p; € [0, 1]
drawn from some unknown distribution P*. Af-
ter observing the outcomes of ¢ independent
Bernoulli trials, i.e., X; ~ Binomial(t,p;) per
individual, our objective is to accurately estimate
P*. This problem arises in numerous domains,
including the social sciences, psychology, health-
care, and biology, where the size of the popula-
tion under study is usually large while the num-
ber of observations per individual is often lim-
ited. Our main result shows that, in the regime
where ¢t < N, the maximum likelihood estimator
(MLE) is both statistically minimax optimal and
efficiently computable. Precisely, for sufficiently
large N, the MLE achieves the information theo-
retic optimal error bound of O(4) fort < clog N,
with regards to the earth mover’s distance (be-
tween the estimated and true distributions). More
generally, in an exponentially large interval of ¢
beyond clog N, the MLE achieves the minimax
error bound of O(\/%gzv)' In contrast, regard-
less of how large NV is, the naive "plug-in" estima-
tor for this problem only achieves the sub-optimal
error of @(%)

1. Introduction

The problem of learning a distribution of parameters over a
population arises in several domains such as social sciences,
psychology, medicine, and biology (Lord, 1965; Lord &
Cressie, 1975; Millar, 1986; Palmer & Dixon, 1990; Col-
well & Coddington, 1994; Bell et al., 2000). While the
number of individuals in the population can be very large,
the number of observations available per individual is often
very limited, which prohibits accurate estimation of the pa-
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rameter of interest per individual. In such sparse observation
scenarios, how accurately can we estimate the distribution
of parameters over the population?

In the 1960’s F. M. Lord studied the problem of estimating
the distribution of parameters over a population in the con-
text of psychological testing (Lord, 1965; 1969). Consider
a study involving a large number of independent individ-
uals. Each individual has an unknown probability p; of
answering a question correctly. Given the scores of these
individuals on a test with small set of questions, the goal
is to estimate the underlying distribution of p;’s. Such an
estimated distribution can be used in downstream tasks, like
testing if the distribution of scores is uniform or multimodal,
or comparing two tests of the same psychological trait.

We use the lens of sparse regime analysis for this problem of
learning a population of parameters. Our analysis is inspired
by the recent advances in a related problem of estimating
discrete distributions and their properties such as, entropy
and support size, when the number of observations is much
smaller than the support size of the distribution (Valiant &
Valiant, 2013; Jiao et al., 2015; Wu & Yang, 2015; 2016;
Orlitsky et al., 2016; Acharya et al., 2017; Jiao et al., 2018;
Han et al., 2018). However, we note that our setting is not
the same as estimating a discrete distribution. For instance,
the probabilities sum to 1 for a discrete distribution, where
as, the true parameters in our setting need not sum to 1.

There have been several classical works on non-parametric
mixture models in general (Turnbull, 1976; Simar, 1976;
Laird, 1978; Lindsay, 1983a;b; Bohning, 1989; Lesperance
& Kalbfleisch, 1992) and binomial mixture models in par-
ticular (Cressie, 1979; Wood, 1999) which have studied the
geometry of the maximum likelihood estimator (MLE), the
optimality conditions, identifiability, and uniqueness of the
MLE solution, and algorithms for computing the optimal so-
lution to the MLE. However, the statistical analysis of how
accurately the MLE recovers the underlying distribution has
not been addressed. In this paper, we fill this gap, and show
that MLE achieves the optimal error bound with regards
to the earth mover’s distance (or Wasserstein-1 distance,
Definition 3.1) between the estimated and true distributions
(equivalently, the [; -distance between the CDF’s).
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1.1. Problem set-up and summary of results

The setting considered in (Lord, 1969) can be modeled
as follows. Consider a set of N independent coins, each
with its own unknown bias p; € [0, 1] drawn independently
from some unknown distribution P* over [0, 1]. That is, the
probability of seeing a head when coin ¢ is tossed is p;. For
each coin ¢, we get to observe the outcome of ¢ independent
tosses, denoted by, X; ~ Binomial(¢, p;). Our goal is to
estimate the unknown distribution P* from { X} ;.

The MLE for this problem is as follows:

N "1
arg max Zlog/o <)§>yX(1 — ) XdQ(y),

QeD
where D is set of all distributions on [0, 1].

Our Contribution: We bound the earth mover’s distance
(or the Wasserstein-1 distange) between the true distribution
P* and the MLE solution P, and show that:

e The MLE achieves an error bound of
. 1
W1 (P*, Puie) = Os <t) .

when t = O(log N). For sufficiently large N, the bound
of © (1) is information theoretically optimal.

e The MLE achieves an error bound of

X 1
W1 (P*, Paie) = Os \/W) )

when t € [Q(log N),O (N?97¢)], and this bound is
information theoretically optimal in this regime.

Table 1 summarizes our results in comparison to other esti-
mators. While the moment matching estimator (Tian et al.,
2017) achieves the same error bound as the MLE when
t = O(log N), if fails when ¢t = Q(log N) due to high
variance in the larger moments. While the local moment
matching (Han et al., 2018) could potentially avoid this
weakness, it involves hyperparameter tuning which makes it
difficult to work with in practice (Remark 3.3 in Section 3).
In contrast, the MLE naturally adapts itself and achieves the
optimal rates in different regimes without the need for any
parameter tuning. We demonstrate that the MLE works well
in practice on both synthetic as well as real datasets. Fur-
thermore, our analysis involves bounding the coefficients of
Bernstein polynomials approximating Lipschitz-1 functions
(Proposition 4.1). We believe that this question is of inde-
pendent interest with implications to general polynomial
approximation theory as well as applications in computer
graphics.

2. Related Works

Starting from (Lord, 1969), there has been a great deal
of interest in the problem of estimating the distribution of

'0s(.) hides log (1/8) in the bound for it to hold with proba-
bility at least 1 — 24.

Table 1. Comparison of results

Estimators Bound on EMD
1 1
o (%) +o (k)
Empirical in all regimes
T
Moment * 0 ()
Matching when ¢t = O(log N)
(Tian et al., 2017) | e Fails when t = Q(log N)
* 0(3)
when ¢t = O(log N)
1
MLE e O ( T logN)’ when
(this paper) t € [QlogN),O (N¥97<)]

true scores of a population of independent entities. Maxi-
mum likelihood estimation for non-parametric mixture mod-
els has been studied extensively (Lord & Cressie, 1975;
Cressie, 1979; Laird, 1978; Turnbull, 1976; Lesperance &
Kalbfleisch, 1992). (Lindsay, 1983a) and (Lindsay, 1983b)
delineate the geometry of the MLE landscape for non-
parametric mixture models in general, and specifically for
exponential family respectively. (Wood, 1999) further dis-
cusses the issue of uniqueness of the solution for mixture
of binomials and the relationship with the moment space.
As mentioned in the introduction, the accuracy of the MLE
solution for this formulation has not been studied in the
literature. Our work fills in this gap by showing that the
MLE solution is minimax optimal when ¢t < N.

In a recent work (Tian et al., 2017), the authors proposed a
moment matching estimator to estimate the unknown distri-
bution of the biases in the regime where the number of tosses
per coin t < O(log N). This estimator finds a distribution
on [0, 1] that closely matches the first ¢ empirical moments
of the unknown distribution that can be estimated using
the observations. This moment matching estimator incurs

O(1)+0s (2% 1‘}?) Furthermore, (Tian et al., 2017)

also showed that {2 (%) is a lower bound in this setting. The
main weakness of this method of moments approach is that
it fails to obtain the optimal rate when ¢ > clog V.

A tangentially related problem is that of estimating a dis-
crete distribution and its symmetric properties® like entropy,
and support size, when the number of observations is much
smaller than the support size of the distribution. This is
a well-studied classical problem in statistics (Fisher et al.,
1943; Good & Toulmin, 1956; Efron & Thisted, 1976). It
has received a lot of interest in the past decade and con-

2 A function over a discrete distribution is said to be a symmetric
function if it remains invariant to the relabeling of the domain
symbols.
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tinues to be a very active area of research (Paninski, 2003;
Orlitsky et al., 2004; Valiant & Valiant, 2011; 2013; Jiao
et al., 2015; Wu & Yang, 2015; 2016; Orlitsky et al., 2016).
Recent work (Han et al., 2018) used local moment matching
to provide bounds on estimating symmetric properties of
discrete distributions under the Wasserstein-1 distance. This
technique of local moment matching can be used in our
setting to improve the bounds obtained in (Tian et al., 2017)
in the regime where ¢ > clog N. We discuss this more
in Section 3.2. In a similar spirit to our work, a series of
works (Acharya et al., 2009; 2010; 2017) examined the pro-
file or pattern maximum likelihood as a unifying framework
for estimating symmetric properties of a discrete distribu-
tion. Unlike in our setting, it is computationally challenging
to computing the exact maximum likelihood estimator, and
the question becomes how to efficiently approximate it (see
e.g. (Vontobel, 2012; Charikar et al., 2019)).

3. Main Results

Before formally stating our results, we introduce some nota-
tion, discuss the MLE objective and define the Wasserstein-1
metric used to measure the accuracy of estimation.
Notation: Recall that NV is the number of independent coins
and ¢ is the number of tosses per coin. The biases of the
coins are denoted by {p;},, where each p; € [0,1] is
drawn from some unknown distribution P* on [0, 1]. The set
of observations is {X;}¥ ;, where X; ~ Binomial(,p;).
For s € {0, 1, ...,t}, let ns denote the number of coins that
show s heads out of ¢ tosses. Let h°™ denote the fraction of
coins that show s heads.

N
; n
Ng i= E 1{X¢:s}7 hgbs = ﬁs; (1)
i=1

where 14 is indicator function for set 4. h :=
{h3bs hSbs ... 9} is the observed fingerprint. Since the
identity of the coins is not important to estimate the distri-
bution of the biases, the observed fingerprint is a sufficient
statistics for the estimation problem.

MLE Objective: The MLE estimate of the distribution of
biases given the observations { X;}¥ | is,

1
t ) _ X,
Ppie € arg max E log/ (X.)yxl(ly)t XdQ(y)
0 i

QeED

’L 1
1
t —s
= arg maxZns log/ ( )ys(l — )" *q(y)dy,
QeD s=0 0 5
=:Eqlhs]

where D is the set of all distributions on [0, 1], ns is the
number of coins that that see s heads out of ¢ tosses, and
Eqlhs] is the expected fraction of the population that sees s
heads out of ¢ tosses under the distribution ). Equivalently,

the MLE can be written in terms of the fingerprint as follows,

Ppie € arg max Zh"bs log Eqglhs], ()
QeD s=0
= arg min KL (h°™, Eg[h]), (3)
QeD

where KL(A , B) is the Kullback-Leibler divergence® be-
tween distributions A and B, h°™ is the observed fingerprint
vector and Eg[h] denotes the expected fingerprint vector
when the biases are drawn from distribution ().

Remark 3.1. The set D of all distributions over [0, 1] is
convex. Furthermore, the objective function of the MLE
(Equation 3) is convex in () and strictly convex in the valid
fingerprints, { Eq [hs]}5—o. While there is a unique 5 [h]
that minimizes the objective (3), there can be many distri-
butions Q* € D that can give rise to the optimal expected
fingerprint. Moreover, while the fingerprint vector h lives in
A, the t-dimensional simplex in R**, not all vectors in A
can be valid fingerprints. The set of all valid fingerprints is a
small convex subset of A*. Very often h°® falls outside the
set of valid fingerprints and the solution to the MLE is the
closest projection under the KL divergence onto the valid
fingerprint set. Furthermore, the fingerprints are related to
moments via a linear transform. The geometry of the set
of valid fingerprints therefore can also be described using
moments. For more details on this geometric description we
refer the reader to (Wood, 1999).

Wasserstein-1 Distance: We measure the accuracy of our
estimator using the Wasserstein-1 distance or the earth
mover’s distance (EMD) between two probability distri-
butions over the interval [0, 1] which is defined as:

Definition 3.1 (Wasserstein-1 or earth mover’s distance).

Wi(P,Q) : Verlr(llﬁ@/r O/y O\x yldy(z,y), 4
where T'(P, Q) is a collection of all the joint distributions
on [0, 1]? with marginals P and Q. A dual definition due
to Kantarovich and Rubinstein (Kantorovich & Rubinstein,
1958) of this metric is as follows:

Wi(P,Q) := sup /f —q(x))dz (5)
fELlp
= sup (Ep[f]—Eq[f]), (6)
JeLip(1)

where p and q are the probability density functions of the
distributions P and Q respectively, and Lip(1) denotes the
set of Lipschitz-1 functions.

Wassertein-1 distance is a natural choice to measure the
accuracy of estimator in our setting. E.g., suppose the true

3KL divergence between two discrete distributions A and B
supported on ' is defined as KL(A4, B) = >, A(z)log gg;
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distribution P* is 6(0.5) = 1. Let P, with §(0.45) = 1
and P, with §(0) = 6(1) = 3 be the output of two estima-
tors. The Wassertein-1 distance, W1 (P*, P;) = 0.05 and
W1 (P*, Py) = 0.5, clearly distinguishes the first estimate
to be much better than the second. In contrast, the total
variation distance between both P; and P, to the truth is 1
and the KL divergence to the truth in both cases is infinite.

3.1. Small sample regime

We first focus on the regime where the number of observa-
tions per coin, t = O(log N). Consider the problem setup
in Section 1.1. The following theorem gives a bound on the
Wasserstein-1 distance between the MLE (Equation 3) and
the true underlying distribution.

Theorem 3.1 (Small Sample Regime). When ¢ =
O(log N), the Wassertein-1 distance between an optimal
solution to the MLE, denoted by Pmle and the true underly-
ing distribution P* can be bounded with probability at least
1 — 24 as follows,

- 1
Wi(P*, Puie) < Os <t) : (7

For constant ¢, this O(1/¢) rate is information theoretically
optimal due to the following result (Proposition 1 in (Tian
et al., 2017)):

Proposition 3.1 (Lower Bound (Tian et al., 2017)). Let
P denote a distribution over [0,1]. Let X := {X;}¥,
be random variables with X; ~ Binomial(t, p;) where p;
is drawn independently from P. Let f be an estimator
that maps X to a distribution f(X). For every fixed ¢, the
following lower bound holds for all N:

. 1
inf sup EWi(P, f(X))] > - (8)

3.2. Medium sample regime

In this section we consider the regime where the number
of observations per coin ¢ is larger than (log V). For the
same setting as before (Section 1.1), the following theorem
provides a bound on the Wasserstein-1 distance between the
MLE solution and the true distribution.

Theorem 3.2 (Medium Sample Regime). There exists
e > 0, such that, for t € [Q(log N), O (N*7¢)], with
probability at least 1 — 24,

W1 (P*, Pue) < O ( 9)

1
Vtlog N ) '
Remark 3.2. We conjecture that the interval for this bound
should be ¢ € [Q(log N),O (N?/3¢)]. Details on why

the sub-optimal bound of O (N*/9~¢) arises in our analysis
is described in Remark 4.1 and discussion after Lemma 4.2.

We prove a @(ﬁ) lower bound of the minimax rate for
estimating the population of parameters under Wasserstein-1
distance. This lower bound, combining with the ©() lower
bound shown in (Tian et al., 2017), implies that the MLE is
minimax optimal up to a constant factor in both the regimes.
The lower bound is formalized in Theorem 3.3.

Theorem 3.3. Let P be a distribution over [0, 1]. Let X :=
{X;}} | be random variables with X; ~ Binomial(t,p;)
where p; is drawn independently from P. Let f be an
estimator that maps X to a distribution f(X). For every

et—
t,Nst. t< N2(3 D , the following lower bound holds:

6
inf sup E IV (P, (X)) > ———
inf su _—.
i S 3¢1y/ilog N
Remark 3.3. Local Moment Matching: The moment
matching estimator in (Tian et al., 2017) fails when ¢ is
larger than Q(log V) because the ¢-th order moments can-
not be estimated accurately in that regime. This causes the

(10)

second term in the error bound O (%) +Os (2% lngt to

become large. Naturally, one might consider matching only
the first log N moments which can be reliably estimated.
In addition, the parameter interval [0, 1] can be split into
blocks, and the moment matching can be done in each block
locally by utilizing the fact that for large ¢, X;/t tightly
concentrates around p;. The local moment matching was
first introduced in a recent work by (Han et al., 2018) in
the setting of learning discrete distributions. Potentially,
one may apply the local moment matching approach to our
setting of learning populations of parameters which will
likely yield an algorithm that achieves Wasserstein-1 dis-
tance error O(max(ﬁ, 1)) inthe t < N regime. The
algorithm will degenerate to the one developed in (Tian
etal., 2017) in the t = O(log N) regime. However, from a
practical perspective, the local moment matching algorithm
is quite unwieldy. It involves significant parameter tuning
and special treatment for the edge cases. Some techniques
used in local moment matching, e.g. using a fixed blocks
partition of [0, 1] and matching the first log N for all the
blocks, are quite crude and likely lose large constant factors
both in theory and in practice. Therefore, we expect the
local moment matching to have inferior performance than
the MLE approach in practice. We include a brief sketch of
how one may apply the local moment matching approach to
our setting in the supplementary material.

Remark 3.4. Empirical Estimator: The naive “plug-

in" estimator for the underlying distribution is the sorted

estimates of the biases of the coins. This incurs an error
1 1) :

of O ( ﬁ) + O ( 7~ ) 1n the earth movers distance (or

l1— distance between the estimated and the true CDFs),
where the first term is due to the error in estimating the
biases of the coins from ¢ outcomes, and the second term is
due to estimating the error in the estimated CDF using N
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coins. If the number of tosses per coin is very large, that is,
t > N, then we can estimate individual biases pretty well,
and obtain empirical CDF that can estimate P* incurring
overall error rate of O (\/—%) However, in the regime of
interest, the number of observation per coin is small, i.e.,
t < N (sparse regime). The empirical estimates of the
biases in this regime are very crude. Thus, when ¢ is small,
even with a very large population (large V), the empirical
estimator does not perform better on the task of estimating
the underlying distribution than on estimating the biases

. . . 1
itself which incurs a © (W)

4. Proof Sketches

4.1. Bound on Wasserstein-1 distance

Proofs of Theorems 3.1 and 3.2 involve bounding the
Wasserstein-1 distance between the true distribution P*
and the MLE estimate Pm]e. Recall the dual definition of
Wasserstein-1 distance or the earth movers distance between
two distributions P and () supported on [0, 1],

WA(P.Q) = sup / F@) (@) — g(z))dz,

feLip(1) Jz=0

where p and ¢ are the probability density functions of the
distributions P and Q respectively, and Lip(1) denotes the
set of Lipschitz-1 functions. Any Lipschitz-1 function f on
[O 1] can be approximated using Bernstein polynomials as,
f(z) = Z; 0 b; ( )9 (1 — x)'~9. Using this approxima-
tion we have,

which can be bounded by,

2([f = fll
1 ¢t ¢ ;
+/O ;Obj<j>x (1

=2||f = flloo + > _ bj (Ep[hy]

=0

z)' 7 (p(x) — q(x))dx

—Eqlh;]), A1

where ||f — fllo = rn[%)i]|f(:v) — f(x)| is the approxi-
z€|0,

mation error. Therefore, the Wasserstein-1 distance (Defini-
tion 5) between the true distribution P* and MLE estimate

pmle can be bounded as follows,

Wl(Pa Pmle) S sup
feLip(1)

+Zb (Ep-[h

(b

2/1f = fllos
—_——
(a)

N hqbs)

The first term (a) in the above bound (Equation 12) is the
approximation error for using Bernstein polynomials to ap-
proximate Lipschitz-1 functions. The second term (b) is the
error due to sampling. The third term (c) is the estimation
error in matching the fingerprints. We bound the second and
third term using the following lemmas.

Lemma 4.1. With probability at least 1 — 4,

t

log1/d
> b (hy —B(hy))| <O (mjaxbﬂ OgN/ > (13)

Jj=0

Lemma 4.2. For3 <t < +/CoyN + 2, w.p. 1 — 9,

> b; (h; —Ep,. (1))

j=0

<max|b | Z| (hj —Ep,.(hj))|

<maxb|\/21n\/ 74_71 3 . (14)

We prove Lemma 4.1 using McDiarmid’s inequality for con-
centration of fingerprints and Lemma 4.2 using optimality
of MLE, Pinsker’s inequality and recent results bounding
the KL divergence between empirical observations and the
true distribution for discrete distributions (Mardia et al.,
2018).* We believe that the v/t dependence in the bound
in Lemma 4.2 is spurious due to our analysis via the first
inequality.

4.2. Bounding the polynomial approximation error
In this section we bound term max; |b;|. Let f be any
Lipschitz-1 function on [0, 1]. Let f; be degree ¢ polynomial

“The details are available in the supplementary material and
arXiv version (Vinayak et al., 2019).



MLE for Learning Populations of Parameters

approximation of f using Bernstein polynomials:

t
@)=t ()aﬁjl—xtjz—ZbBt ) (15)

Jj= j=0

where, Bf(z) := (;)xj(l — )%=, is j—th Bernstein poly-
nomial of degree ¢, for j = 0,1,...,¢&. Our goal is to
bound the uniform approximation error, ||f — f|le =

m[ax]| f(x) — f(z)| while controlling the magnitude b1,
of the coefficients. We note that max; |b;| appears in the
bounds of error terms (b) and (¢) in Equation (12), and
hence it is important to control it to obtain tight bounds on
the Wasserstein-1 metric in different regimes of ¢ and V.
Bernstein used ¢ 4+ 1 uniform samples of the function f

n [0,1], f(%), as the coefficients in Equation (15) and
showed that the uniform approximation error of such ap-
proximation is ||f — f|lee < \/, where C' is a constant.
This approximation is not sufficient to show the bounds in
Theorems 3.1 and 3.2. Can we obtain better uniform ap-
proximation error using Bernstein polynomials with other
bounded coefficients? The following proposition answers
this question.

Proposition 4.1. Any Lipschitz-1 funciton on [0, 1] can be
approximated using Bernstein polynomials (Equation 15)
of degree ¢, with an uniform approximation error of

e O(1) with max; [b;| < V2.
* O(%) with max; [b;| < VE(t + 1)64, for k < t.

For t above Q(log N), we set k = +/tlog N¢, for appro-
priate choice of ¢ > 0, obtaining a bound of max; |b;| <
4t + 1) (log Nc)l/4 N¢. Combining these bounds with
Lemmas 4.1 and 4.2 gives the results in Theorems 3.1
and 3.2. In the reminder of this section, we sketch out
the proof of Proposition 4.1. Key idea is to approximate f
using Chebyshev polynomials of lower degree, k < ¢, and
transform to Bernstein polynomials of degree ¢ to obtain
appropriate bounds on the coefficients |b;|.

Let T}, denote Chebyshev polynomial of degree m shifted
to [0, 1] which satisfy the following recursive relation:

Tm(x) = (4o — 2)Tm_1 - T~m_2(x), m=2,3,...,
and To(z) = 1, T1(z) = 22 — 1. We use the following
lemma regarding Chebyshev polynomial approximation .
Lemma 4.3. Given any Lipschitz-1 function f(z) on
[0, 1], there exists a degree k polynomial in the form of
fe(z) = anzo amTpm(2) that approximates f(z) with
error max,eo1] | f(x) — fr(x)| = O(%), where T,,, (z) de-
notes Chebyshev polynomial of degree m shifted to [0, 1].
Further, the coefficients (a1, as, ..., ay) satisfies ||al|2 < 1.

SThe proof is available in the supplementary material and in
the arXiv version (Vinayak et al., 2019).

Chebyshev polynomial T,,, can be written in terms
of Bernstein-Bezier polynomials of degree m as fol-
lows (Rababah, 2003):

Note that the coefficients of B]"* can be as large as 2. For
m = t, this gives an upper bound of 2¢ on the coefficients
of Bernstein polynomial. This along with Equation 25 gives
the first part of Proposition 4.1. To show the second part,
we need to bound the coefficents when m < t.

Degree raising: Bernstein polynomials of degree m < ¢
can be raised to degree ¢ as:

itt—m (m) (t=m
B™(z) = Z WB;(Q;). (17)

Using degree raising of Bernstein polynomials, we can write

shifted Chebyshev polynomials of degree m < t in terms
of Bernstein polynomials of degree ¢ as,

G S (DG
0 G A

C(t,m, j)Bi(x), (18)

Jj=0

where the coefficient of j-th Bernstien polynomial of degree
t is given by®,

e
2T T

Following is a generating function for the coefficients,

—m (1 +1 \/2)2m + (1 —q \/2)2m
2

t
=Y C(t,m,}j) (;) 27, (20)

Jj=0

C(t,m, j) = (19)

(1+=2)

Using Beta function, the binomial terms in the denominator
can be written as, (;) o =(t+1) fol(l — w)iut=7 du. We
bound the generating function of the coefficients on the unit
circle and use Parseval’s theorem to prove the following
lemma (details are available in the supplementary material
and in arXiv version (Vinayak et al., 2019)).

Lemma 4.4. The [5-norm of the coefficents of Bj- can be
bounded as follows,

t

S lCm )P < (t+ e @D

%For positive integers a,b > 0, (¢) = 0 whena < b.
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From Lemma 4.4 (Equation 21), we can obtain the following
bound on the coefficients:

7n

|C(t,m, j)| < (t+ 1)e (22)
Remark 4.1. Bounding |C(t,m, j)| by the l3-norm of the
coefficients gives a weak bound. We conjecture that the
right bound on the coefficients of B; for every m < t to be,

N

|C(t,m, )| < e, j=1,2,..,t (23)
In fact, for a fixed m, the coefficients C(¢,m, j) should
converge to points sampled uniformly from 7T}, (z) as t —
oo by Bernstein’s approximation. So the bound on the

coefficients should converge to 1 as t — oo.

Let f be a Lipschitz-1 function on [0, 1]. We first let f; be
the polynomial approximation using Chebyshev polynomi-
als upto degree k = /t log N¢ obtained from Lemma 4.3.
Then we re-write each T}, use Bernstein polynomials of
degree k followed by degree raising to .

k

k t
Z am T (2) = Z A Z C(t,m, j)Bl(x)
m=0

m=0 =0

Jr()

t

= (Zam tm])Bﬁ(m)

s
t
=Y b;Bl(x).
j=0

Since ||a||2 < 1,and from Equation 22, we have the follow-

ing bound on the coefficients, for j = 1,2, ...., ¢,
k
|bj| = Ct,m, )| <Y laml [C(t,m, )],
m=0

<fmax|C(t m. ) < VE(E+ e, (©25)

4.3. Lower bound for medium ¢ regime

The basic idea of the proof of Theorem 3.3 is to con-
struct a pair of distributions P, ) such that W1 (P, Q) =
@(ﬁ). With N coins sampled from theses distribu-
tions each with ¢ flips, we argue that it is information theo-
retically hard to distinguish the two distributions. We use
the following two propositions’:

Proposition 4.2. Given two distributions P, ), supported
log N

on [1/2 — /28 1/2 4 =—], whose first L :=
e*log N moments match, let p ~ P, X ~ Binomial(t, p),
g ~ @QandY ~ Binomial(t, q). The total variation distance
between X and Y satisfies TV (X,Y) < JQV—\/E

"The proofs of these propositions are provided in supplemen-
tary material and arXiv version (Vinayak et al., 2019)

(24)

(a) Single Spike (b) 3-Spike

0.3

0.2

) 045
0.2 x \

0.1 AN

0.1 - - T
0.05
0 : o

EMD
¥
&
/

2 4 68 10 12 2 4 648 10 12
0.25 (c) truncated Gaussian 015 (d) Uniform
X
02l . |=—MLE
FIRN N
* 01l % TKV17
015 S \ i
s - w_|—~ Empirical
w01 * N
Foe, 005 S
0.05F Ty T,
ol Pty DO g

0 —
2 4 6t8 10 12 2 4 6 8 10 12

Figure 1. EMD between estimated and true distribution for small ¢
(number of coins N = 1e6) for various distributions using MLE
(blue), moment matching (TKV17) (Tian et al., 2017) (magenta)
and empirical estimate (red). Results are averaged over 10 runs.

Proposition 4.3. For any ¢, there exists a pair of dis-
tributions P, ) supported on [a,b] where 0 < a < b
such that P and () have identical first ¢ moments, and
Wi(P — Dg) > (22

Proof of Theorem 3.3. First we apply Proposition 4.3 to
construct a pair of distributions P, () supported on [1/2 —

V222N 172 4 /8 N] such that P and Q have identi-
cal ﬁrst L := e*log N moments, and Wi (P — Q) >

L W Let X := {X;}¥, be random variables with
X ~ Binomial(¢, p;) where p; is drawn independently
from P. Let Y := {Y;}Y, be random variables with
Y; ~ Binomial(¢, q;) where g; is drawn independently from
Q. Denote Py as the joint distribution of X and @y as the
joint distribution of Y. It follows from Proposition 4.2 that

TV (X;,Y;) < 2\/ By the property of the product distri-

bution and ¢ < N2(c TV(PN,QN) < Ni‘[l <1/3,
which implies the minimax error is at least W. O

5. Numerical Experiments

Recall that the MLE (Equation 2) is a convex optimization
problem,

P € arg max Z R log Eqlhs],
QeD o
where D is the set of all distributions on [0,1]. We dis-
cretize the interval [0,1] into a uniform grid of width
L Note that as long as the error due to discretization
(’)(%) is smaller than the expected error in earth mover’s
distance (EMD), we will not be losing much numeri-
cally. Unless otherwise specified, we use grid length of
m = 1000. The discretized set D can then be written as
Dy i={g € R™*1 ¢ >0,1Tq =1 }. We then solve the
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MLE which is convex on this discrete convex set using
cvx (Grant & Boyd, 2014; 2008) for Matlab®.

015 (a) Single Spike 015 (b) 3-Spike
B
0.1 0.1
e —~MLE
= -~ Empirical
0.05 0.05
0 0
100 N 10° 100 N 408
0.12 (c) tr i 012 (d) Uniform
01 0.1
0.08
0.06
0.04
0.02

(1)0‘7 N 10° (1)00 N 10°
Figure 2. Comparing EMD between estimated distribution and
truth for varying number of coins (with ¢ = 10) for various distri-
butions using MLE (blue) and empirical estimate (red).

5.1. Simulations on synthetic data:

We demonstrate the performance of the MLE on synthetic
datasets where we know the ground truth. We consider 4
distributions, (1) single spike at 0.5, (2) mixture of 3 spikes
of equal mass at 0.25, 0.5 and 0.75, (3) truncated Gaussian
on [0, 1] with mean 0.5 and variance 0.1 and (4) uniform
distribution on [0, 1].

Varying ¢: In the first set of experiments we consider the
vary ¢ regime where t = O log N. With the population size
N = le6, we vary t from 2 to 12. We run MLE, moment
matching estimator and empirical estimator. Figure 1 shows
the earth mover’s distance (EMD) of the estimates from the
true distribution as a function of ¢.

Varying N: For ¢t = 10, we vary the population size N
from 10 to 10® in multiples of 10. Figure 2 shows the com-
parison of performance of the MLE and empirical estimator
in EMD. As N increases, the second term in EMD which
depends on N decreases. We note that the error in EMD
for MLE is much lower than that for empirical distribution
when ¢t < N as predicted by our analysis.

Varying ¢t: For N = 1le6, we vary the number of
tosses ¢ from 2 to 10 in steps of two and then ¢t =
[50, 100, 500, 1000] to illustrate the performance of the
MLE as t varies widely. Figure 3 shows the comparison of
performance of the MLE and empirical estimator in EMD.
5.2. Experiments on real datasets

We ran the MLE on two real datasets used in (Tian et al.,
2017): (1) A dataset on political leanings of counties in the
US with data on whether a county leaned Democratic or
Republican for N = 3116 counties in ¢ = 8 presidential
elections from 1976 to 2004. Here, each county ¢ is assumed
to have a true probablity p; with which the county leans
Republican in a given election (assuming the independence

i i b) 3-Spike
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Figure 3. Comparing EMD between estimated distribution and
truth for varying number of tosses (with N = 1e6) for various
distributions using MLE (blue) and empirical estimate (red).
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Figure 4. CDF of estimated distribution (top row), and first £ mo-
ments (bottom row) for (a) political leaning (t = 8, N = 3116)
and (b) flight delay datasets (¢t = 10, N = 25,156) using MLE
(blue), moment matching (TKV17) (Tian et al., 2017) (green) and
empirical estimate (red). Observed moments is in black.

of counties and elections). (2) A dataset of delays of flights
with N = 25,156 flights. Each flight is assumed to have
an intrinsic probability p; of being delayed more than 15
minutes. Figure 4 shows the CDF output by MLE, moment
matching (Tian et al., 2017) and empirical estimators on
these datasets. We note that the observed fingerprints often
lie outside the set of valid fingerprints (see Remark 3.1),
and hence the solution to the MLE is the projection on the
surface. Thus, the MLE tends to give sparser solutions.
While the CDF output by the MLE and moment matching
qualitatively look very different, their first ¢ moments match
and fit the observed first £ moments extremely well (bottom
row of Figure 4). Without any side information to enforce
constraints like smoothness, it is not possible to pick one
over the other with sparse observations.
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