Inter-node superconductivity in strained Weyl semimetals
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The effects of a strain-induced pseudomagnetic field on inter-node spin-triplet superconducting
states in Weyl semimetals are studied by using the quasiclassical Eilenberger formalism. It is found
that the Cooper pairing with spins parallel to the pseudomagnetic field has the lowest energy among
the spin-triplet states and its gap does not depend on the strength of the field. In such a state, both
electric and chiral superconducting currents are absent. This is in contrast to the superconducting
states with the spins of Cooper pairs normal to the field, which support a nonzero chiral current
and are inhibited by the strain-induced pseudomagnetic field. The corresponding critical value of
the field, which separates the normal and superconducting phases, is estimated.

I. INTRODUCTION

The interplay of superconductivity (superfluidity) and topology has a long history that goes back to the studies
of superfluid 3He [1, 2]. One of the most interesting and sought after features of topological superconductors is the
existence of the Majorana surface modes, which originate from the nontrivial topology of bulk states. Such modes may
have important applications in quantum computations, where the topological protection is invaluable for preventing
decoherence and errors [3]. The increased interest to topological materials also drives a vigorous search for topological
superconductors [4-6]. (For reviews on topological superconductivity, see Refs. [7-9].)

Recently, a new class of three-dimensional (3D) topological materials, Weyl semimetals, was discovered. These
materials have a very unusual band structure with the valence and conduction bands touching only at isolated points,
known as the Weyl nodes, in the Brillouin zone. Even more importantly, their low-energy quasiparticles are chiral
fermions with a linear dispersion relation that are described by a relativisticlike Weyl equation. The Weyl nodes can
be viewed as the monopoles of the Berry curvature [10] that carry nonzero topological charges. According to the
Nielsen—Ninomiya theorem [11, 12], Weyl nodes in solids always occur in pairs of opposite chirality. In general, the
pairs of nodes can be separated by 2b in momentum space and/or by 2by in energy. Note that while b, which is
known as the chiral shift [13], breaks the time-reversal (TR) symmetry, by breaks the parity inversion (PI). Because of
their unusual topological properties, Weyl semimetals quickly advanced to the forefront of condensed matter physics
research (for reviews, see Refs. [14-16]).

From the very beginning, Weyl materials were investigated as a possible platform for a topologically nontrivial
superconductivity. Generically, two distinctive types of superconducting pairing of Weyl fermions could be considered
[17-24]. The first one is the inter-node pairing of quasiparticles from the Weyl nodes of opposite chirality. The
resulting state is sometimes referred to as a Bardeen—Cooper—Schrieffer (BCS) ground state [25], which in the original
context describes the pairing of the electrons with opposite spins. By taking into account that there are several
possibilities for the inter-node pairing, including those in a spin-triplet channel, we will refrain from using the term
“BCS” in connection to such a pairing. The other possibility is the intra-node pairing that involves quasiparticles
from the same Weyl node. This leads to spin-singlet Cooper pairs with nonzero momenta and results in a Larkin—
Ovchinnikov—Fulde-Ferrell (LOFF) type ground state [26].

The question regarding the type of pairing in the ground state is important and subtle. It is possible that the
inter-node pairing is energetically more favorable than the intra-node one [21], although the former has gapless nodes
in the energy spectrum [17, 18] for Weyl superconductors. It should be noted, however, that the outcome of the
energy competition might strongly depend on model details. For example, in the case of a simplified model with a
local interaction, the inter-node pairing with the vanishing momentum of Cooper pairs is disfavored [19].

An interplay of magnetic fields and superconductivity in Weyl materials is another interesting research topic.
While it is well known that magnetic fields inhibit superconductivity due to the Meissner effect, it was argued that
the situation may change in the limit of very strong fields [27, 28], where the quenching of kinetic energy due to
the formation of the Landau levels greatly assists the electron pairing. Still, the superconducting currents due to
the Meissner effect increase the energy of superconducting states and provide the backreaction on the magnetic field
making the analysis extremely complicated. On the other hand, in Weyl semimetals, there is an additional intriguing
possibility to realize a pseudomagnetic (or axial magnetic) field Bs. Indeed, as was shown in Refs. [29-38], small



mechanical strains in Weyl semimetals can be described by an effective axial vector potential As, which, unlike a usual
electromagnetic gauge potential A, is a directly observable quantity, whose constant part can be interpreted as the
chiral shift b. In some special cases of static deformations, strains give rise to a pseudomagnetic field B; = V x A;.
(In contrast, as we showed in Ref. [39], this is not generically the case for multi-Weyl semimetals.) Typical magnitudes
of strain-induced pseudomagnetic fields range from about 0.3 T in the case of static torsion [34] to about 15 T for bent
samples [36]. From the physical viewpoint, it is important that the pseudomagnetic field Bs couples to fermions from
the Weyl nodes of opposite chirality with different sign. This immediately leads to a distinct dynamics of Cooper
pairs comparing to the case of a usual magnetic field. Last but not least, due to the fact that the backreaction
on the pseudomagnetic field is negligibly weak, the Meissner effect is absent for Bs. It should be noted that some
configurations of strain, such as a compressive strain [40], could overtilt Weyl nodes and allow for type-II Weyl
semimetals [41]. While the superconductivity in such materials could be enhanced at the critical value of the tilt (see,
e.g., Refs. [42, 43] as well as a recent review on topological transitions in Ref. [44]), the underlying physics is different
because the corresponding strains do not generate pseudomagnetic fields.

Recently, by using the quasiclassical Eilenberger approach [45, 46], the authors of Ref. [47] showed that the pseudo-
magnetic field could affect the superconducting states and even induce nonzero charge and/or spin currents. By using
a simplified model of a two-band superconductor, in particular, it was found that the electric current is proportional
to Bs. In order to study the gap generation, the authors employed the Ginzburg-Landau equation, where the gap
appeared to be spatially modulated in the absence of currents. The case of a more realistic Dirac semimetal was
described briefly and the corresponding result suggested that a nonzero spin supercurrent should be induced.

In this study, we investigate in detail the generation of gaps in the case of inter-node pairing in the minimal model
of a TR symmetry broken Weyl semimetal with two nodes separated by a nonzero chiral shift. One of our principal
findings is that the inter-node spin-triplet pairing with the spins of Cooper pairs parallel to the pseudomagnetic field is
energetically most favorable. On the other hand, the states with the spins of Cooper pairs normal to Bs are inhibited
by the field. In addition, we find that both electric and chiral supercurrents vanish for the energetically most favorable
superconducting state.

The paper is organized as follows. In Sec. II, we introduce a simple model of a Weyl semimetal with a broken TR,
symmetry and discuss how an external pseudomagnetic field couples to quasiparticles. We also define the Bogolyubov—
de Gennes (BdG) Hamiltonian and give its explicit form in the case of inter-node pairing. In Sec. III, we present
the quasiclassical Eilenberger equation up to the second order in the spatial derivatives and pseudomagnetic fields.
By using the iterative solutions of the Eilenberger equation, the superconducting gaps and currents are obtained and
discussed in Sec. IV. The summary of the main results is given in Sec. V. Technical details related to the derivation
of the Eilenberger equation and its iterative solution are presented in Appendices A and B, respectively. Throughout
the paper, we use the units with A =c¢ = kg = 1.

II. MODEL

To study superconductivity in a strain-induced pseudomagnetic field Bs, we employ a minimal model of a Weyl
semimetal with a single pair of Weyl nodes separated by 2b in momentum space. Because of a nonzero chiral shift b,
the TR symmetry is broken in such a model. The explicit form of the low-energy Hamiltonian reads

H = /d3xx1ﬁ(x)ﬁx1/(x), (1)
where
H, = —p+xvro - (—iV +eA, —xb). (3)

Here x = =+ is the chirality of Weyl nodes,  is the electric chemical potential, vg is the Fermi velocity, o = (04,04, 0)
are the Pauli matrices, which are related to the spin or, in general, pseudospin degree of freedom, and A, = A+ xAs
is the chiral vector potential, which includes both the electromagnetic A and axial Az vector potentials. (In the
latter, there is only a coordinate-dependent part.)

In order to study the effects of pseudomagnetic fields that may result, for example, in a spatially inhomogeneous
superconducting gap, we will utilize the quasiclassical Eilenberger approach [45]. As we will discuss in the next
section, such an approach uses a weak field expansion. Therefore, the starting point in the analysis is the zeroth
order solution, where the fields are absent. The structure of possible solutions could be revealed by writing down the



general form of the BAG Hamiltonian in momentum space, i.e.,

Hpqc (k) = (HA(IT{) —éf[?k)éfl ) ; (4)

where k is the momentum, A is the gap matrix,
é =i1lb® O'yf(ﬁkﬂfk (5)

is the time-reversal operator, I is the 2 x 2 unit matrix, i, is the Pauli matrix that describes the spin flip, K is the

complex conjugation operator, and the operator s changes the sign of k. The 8 x 8 BAG Hamiltonian (4) acts
in the space of the Nambu—-Gor’kov spinors

Upae = {T, To}", (6)
where
=+ =+ == =— T
= {0 ), 0} ), e () 0T ()} (7)
and the TR conjugate spinor is given by
_ _ _ _ T
\IJ(—) - {¢i(—+(_k)7 _¢¥_+(_k)7 U)\L_ (_k)v _1/}T_ (_k)} . (8)

Here 1 and | correspond to the states with (pseudo-)spin up and down, respectively. The structure of the gap matrix

A depends on the Cooper pairing channel. In the case of inter-node pairing, which involves quasiparticles from the
Weyl nodes of opposite chirality, the corresponding gap matrix is given by

AW—(AO A’;{*)—<AO_?A.U) A”%A'”)), 9)

xX=-

and we assumed that it is independent of momentum. As is easy to check, Ag corresponds to a spin-singlet state
and the vector order parameter A describes a spin-triplet gap. It is worth noting that a spin-triplet pairing with
a momentum-independent A is indeed allowed because the pairing occurs between the quasiparticles from the Weyl
nodes of opposite chirality. Technically, this is related to the fact that (A - o) enters the antidiagonal with a different
sign.

For the sake of completeness, let us also present the gap matrix for the intra-node pairing, which involves the
quasiparticles from the Weyl nodes of the same chirality, i.e.,

i (Ar 0 [Ny O
Am‘mrax - ( O AX:— ) - ( 0 _AO ) . (10)

Here the spin-triplet terms with a momentum-independent gap are absent because of the Pauli principle. Formally,
this can be seen from the fact that the fermion operators anticommutate {¥X, 1/);3‘} =0.

A. Bogolyubov—de Gennes Hamiltonian

In the case of superconducting states with the inter-node pairing, the corresponding effective BAG Hamiltonian is
given by
. a A - -k A A -
HBd(}(k): (Hx(k) AX ) _ ( ,UJ+XUF (0' X) O+X( 0') ) , (11)

Al oy (~K)ioy [Bo+x(A-a)]" 4 xvr (oK)
where k,, = k— xb. In order to diagonalize the kinetic part of the BAG Hamiltonian (11), we use the following unitary

transformation:

—p+vpky 0 tA
U )TAU
(G ey imeoo (G 8 ) =0 s
XJEXTX 0 w—vpk,



Here k, = |ky| and U, is composed of the eigenvectors of fIX(k), ie.,
1

U — xe “x\/T+ xcosh, —xe "x,/1— ycosb,
X2 /1 —xcosb, V14 xcost, ’

where we used the spherical coordinates for the momentum: k, = k, {cosp, sinf,,sin ¢, sinf,, cosf, }. Without
loss of generality, let us assume that g > 0. The explicit form of the transformed gap reads

(13)

(UNTA U, = A+ x (A1 cos gy cosby + Agsing, cosby — Azsinb,) o, — (Aqsing, — Agcosp,) oy
+ (Aqcospysindy, + Agsing, sinb,, + Az cosb, ) o,. (14)

By keeping only the two dominant low-energy modes near the Fermi level (i.e., ky, ~ kr = p/vp), we arrive at the
following reduced BdG Hamiltonian for the inter-node pairing;:

7 (inter) —p+vpky AX (IA{X)
Bac  (kx) < Ar(ky)  p—vpky ’ (15)

where the gap term is given by
Ay (ky) = Ay (x cos @y cos by +isin g, ) + Ag (x sin @y, cos by —icospy) — Agysinby. (16)

It is worth noting that the gap function (16) in the reduced BdG Hamiltonian (15) acquired an additional dependence
on the angles of momentum k,. Obviously, such a dependence is induced by the unitary transformation U,, which
diagonalizes the kinetic part. The origin of this angular dependence is similar, e.g., to that in Ref. [24], where it appears
after the transition to the band basis and projection onto the conduction band. We checked that the contributions
due to the spin singlet parameter A( are suppressed at large . Therefore, it is not surprising that they are absent in
the reduced Hamiltonian.

It is worth noting that the inter-node spin-triplet pairing always results in a gapless state [17, 18]. For example, in
the special case Ay = Ay = 0, the energy spectrum of Hamiltonian (15) is given by

i = £/ (1 — vrky)? + [ Mg sin? 0y, (17)

which is indeed gapless at §, = 0. Since the inter-node pairing involves quasiparticles from the opposite chirality
Weyl nodes, it could be affected by the chiral shift. However, in the limit when the size of the gap is much smaller
than the chemical potential, the relative shift of the nodes is not very important.

In passing, let us briefly discuss the case of intra-node pairing. Performing the partial diagonalization and removing
the chiral shift via the chiral transformation 1, — eX(Py and Yl — e’iX(b'r)d);f(, we obtain the following reduced
Hamiltonian (in general, such a transformation is anomalous and could contribute to the chiral charge density, however,
this is irrelevant for the present analysis):

Ar(intra) - —p+ vrk XAOQQix(br)
HBdG (k) - ( XASefziX(b.r) [ — ka R (18)

where the additional phase factors in the gap stem from the chiral transformation.
As is easy to check, the energy spectrum of the reduced Hamiltonian (18) reads

er =2/ (1 — vrk)? 4 [Ag|2. (19)

This describes a spin-singlet state with a fully gapped spectrum. As we showed above, the same property does not
hold in the case of inter-node spin-triplet pairing because the corresponding gap vanishes at certain points in the
momentum space. These observations agree with the results in Refs. [17, 18].

IIT. DERIVATION OF THE QUASICLASSICAL EILENBERGER EQUATION

In this section, we derive the quasiclassical Eilenberger equation for the superconducting states of Weyl materials.
Compared to the Eilenberger equation for conventional superconductors in external electromagnetic fields, see, e.g.,
Ref. [46], the distinctive features of the formalism for Weyl materials will be the relativisticlike nature of chiral
quasiparticles and the presence of the constant strain-induced pseudomagnetic field Bs.



The starting point in the derivation of the gap equations are the mean-field Gor’kov equations in the imaginary
time formalism, i.e.,

[571 + Hygn (%1, =iV, + T2eA (x1)) + ABdG(_ivxlaxl)} Gpac(x1,m2) = 6(x1 — x9), (20)
7.Gac (71, 72) | =0, + Hiin (X2,1Vx, + ToeA (X2)) + ABdG(NxZ,,xQ)} 7. = 6(x1 — x2). (21)

Here 21,2 = {71,2,X1,2}, 71,2 are imaginary times, x; » are spatial coordinate vectors, 7, is the Pauli matrix that acts

in the Nambu—Gor’kov space, and Hy;, is the kinetic part of a BAG Hamiltonian, which is obtained by omitting gaps.
The general structure of Green’s function is given by

éBdG($17$2) _ ( G(II;I2) _(%55517552) )7 (22)

Et(2y, 2) (21, 2)
where
Grac(z1,22) = (T U ()P (22)) (23)
Grac(z1,22) = — (T, 0 (21)¥(x2)) (24)

are particle and hole propagators and T is ordering operator in the imaginary time. By definition, the anomalous
Gor’kov functions are

Frag(z1,m2) = (Tr¥(21)¥(x2)), (25)

Flia(en, o) = (101 (@) 0 (2)) . (26)

In general, the Gor’kov equations (20) and (21) should also include the self-energy terms. In this study, for simplicity,
we neglect the corresponding effects.

Since we do not consider time-dependent background fields, it is convenient to work with the Fourier transforms of
Green’s function in the imaginary time, i.e.,

o0

Gpac (w1, 22) = iT Z GBac (X1, Xa; 1wy e~ @m (T1772) (27)

m’'=—o0

where w,,, = 7T(2m’ + 1) are the fermionic Matsubara frequencies and 7' is temperature. By following Ref. [46], it
is also convenient to perform the following transformations:

H = Hgnts, (28)
A = Apagrs, (29)
é = TzéBdg. (30)
Then, Eqgs. (20) and (21) take the form
{—iwm/Tz + H (x1, =iV, +TeA, (x1)) + A(—ivx],xl)} G(x1,Xo; iwm) = 6(x1 — Xa), (31)
é(xl,XQ; W) | =W T2 + H (x2,1Vx, + ToeAy (x2)) + A(iVm,xQ)] = d(x1 — Xa2). (32)

While the quasiclassical Green’s functions are not translationally invariant in the presence of weak and slowly varying
background fields, their dependence on the center-of-mass coordinate R = (x3 + x2)/2 should be weak. In this case,
it is reasonable to use a gradient expansion. In order to obtain such a systematic expansion, it is convenient to
rewrite the Green’s functions in terms of the center-of-mass coordinate R and the relative coordinate r = x; — Xs.
Furthermore, we perform the Fourier transform with respect to the relative coordinate r, i.e.,

Gk, R iwn) = /d3re’ik”6~¥ (R+ TR-L iwm/) . (33)
2 2
By making use of this Green’s function, the Gor’kov equations (31) and (32) can be rewritten as follows [46]:
—iwm T, + H (k + 7.eA, (R)) + A(k, R)} o Gk, R;iwn) =1, (34)

Gk, R iwp) 0 [—iwm/Tz + H (k + T.eAy (R)) + Ak, R)} —1, (35)



where we employed the circle product [46, 48], which is formally defined for some functions A(k,R) and B(k,R) as

Ak R)oBkR)= lim_ lim e?(VeeVri=ViaVro) Ak, Ry)B(ks, Ro). (36)
Ri2—Rk;2—k
The form of the Gor’kov equations (34) and (35) is well suited for a systematic expansion in powers of background
fields and spatial gradients with respect to the center-of-mass coordinate. As we will see in Sec. IV A, in order to
study the effects of the pseudomagnetic field on the gap generation, the expansion must be performed up to the second
order. The corresponding explicit expansion of Eq. (34) is given in Appendix A by Eq. (A1).
The final step in the derivation of the quasiclassical Eilenberger equations is to remove the dependence on the
components of momenta perpendicular to the Fermi surface. This can be achieved by integrating over the quasiparticle
energy [45, 46], i.e.,

9(R kysiwm)  f(R, K5 iwm) ) _vr

IR kg teme) = <—f*(R,ku;iwm/> 3Rk i) / RGR, K ). 37)

(s

In addition to its weak dependence on R, this integrated Green’s function depends only on the components of the
momentum kj parallel to the Fermi surface. As should be clear, the use of g instead of G makes sense only when
the electric chemical potential is significantly larger that the value of superconducting gap. Indeed, in such a case,
while the nonintegrated Green’s function G(R,k;iw,, ) may vary rapidly with momentum near the Fermi level, its
integrated counterpart g(R,k;iw,,) depends weakly on k| [45, 46]. Integrating over the quasiparticle energy in
Eq. (A2), we obtain the following Eilenberger equation:

it )+ o], [105.3] = £ {000, )} + KB (V0 (00, ,0) ) + S AL [

7;62 I _jmn pn "~ ~ ie l v ~ 2
+7AX€ BX {Mml, (8]@"‘]‘9)} — §AX {TzMjlv (8R]‘g)} -

€
B
B [, (00, 0m,9)] — 5 [V, 0r,08,0)] + 53] + 5 {(0r, 8, 01,,5)}
_% {@r,,A), 0n,9)} - % (0,08, 8), (01, 00,.9)] + 7 [(@k,,0m. D), (On, 0k, 3)]

< [@, 00,8, 0r,0m,3)] +0 (9, (40)°, (9m, 41)*) =0. (38)

ElmpejnsBiB; {Mmm (Ok, 3}6“11@}

Here, for the sake of brevity, we used the Einstein summation convention and omitted the arguments k|, 1A<, and R

in functions g, H, and A. By definition, ¢/!™ is the antisymmetric Levi-Civita tensor and the square (curly) brackets
denote the commutators (anticommutators). We also took into account that the kinetic part of the BAG Hamiltonian

H is proportional to the unit matrix in the Nambu-Gor’kov space and used the following shorthand notations:

V = (ViH), (39)
My = (O, 0, H). (40)

In general, the Eilenberger equation (38) is reminiscent of a kinetic equation, where the role of a distribution function
is played by the integrated Green’s function g. It is instructive to comment briefly on the physical meaning of some
terms in Eq. (38). For example, the covariant derivative —i0g; + 2eA{<, where the doubled electric charge 2¢ is indeed
expected for Cooper pairs, is related to the second and third terms. The (pseudo-)Lorentz force is described by the
fourth term. As we see, there are also several terms related to the spatial and momentum dependence of a gap.

It should be noted that, unlike the original Gor’kov equations, Eq. (38) is homogeneous and, therefore, it is not
sufficient by itself to determine unambiguously function §. As argued in Refs. [45-47, 49, 50], it should be supplemented
by the following normalization condition:

§* =1. (41)

Such a condition holds when the self-energy terms in the Gor’kov equations and, consequently, in the Eilenberger
equation are omitted [47, 50].

IV. SOLUTIONS TO THE EILENBERGER EQUATION

In this section, we determine the superconducting gaps and calculate electric and chiral currents in strained Weyl
semimetals by using the iterative solutions of the Eilenberger equation (38) amended by the normalization condition



(41). Before proceeding to the calculations, it is instructive to qualitatively discuss the difference between the effects
of the pseudomagnetic field B5 on the intra- and inter-node pairings in Weyl semimetals. In the former case, the
pairing occurs between quasiparticles from the same Weyl node and, as a result, the chiral charge of Cooper pairs is
twice as large as that of the individual quasiparticles. Since the coupling of the pseudomagnetic field to quasiparticles
is proportional to their chirality, its effect on the intra-node Cooper pairs from each of Weyl nodes is similar to that
of a usual magnetic field. In such a case, the superconducting currents and gaps become spatially nonuniform. This
complicates significantly the study of the corresponding phase, which will be only briefly discussed at the end of
Sec. IV A in the limit of the vanishing fields. It should be also noted that the source of such a nontrivial spatial
dependence is the axial vector potential As, which, unlike its electromagnetic counterpart, is an observable quantity
by itself.

In the case of inter-node pairing, on the other hand, the Cooper pairs are made from the quasiparticles of opposite
chirality that couple to the pseudomagnetic field with opposite signs. Therefore, the corresponding phase has a simpler
structure. This is one of the main reasons why our analysis in the present paper will be concentrated primarily on the
superconducting states with the inter-node pairing. Also, we will assume that the ordinary magnetic field is absent,
ie., Ay = xAs and B, = xBs.

In order to solve the Eilenberger equation (38), the iterative method is used. In particular, we expand the integrated
Green’s function g up to the second order in powers of the background fields and spatial derivatives, i.e.,

g~ go+ g1+ go, (42)

where the subscript corresponds to the order of expansion. The details of the derivation, including the explicit
expressions for the integrated Green’s function components in Eq. (42), are given in Appendix B.

A. Superconducting gaps

In this subsection, we analyze the effects of the strain-induced pseudomagnetic field Bs on the generation of a
superconducting gap in Weyl semimetals. Without loss of generality, we assume that By || z. The general form of the
gap equation reads

d

[e'e] Q ,
Ak, R) = p(p)miT Z / 4:' U (kl\’kil) f(kil,R), (43)

where p(p) is the density of states at the Fermi level, >°°,_ _is the summation over the Matsubara frequencies,

f ko/H denotes the integration over the Fermi surface, and U (k”,kil) is an attractive interaction potential. The
anomalous part of the integrated Green’s function f(k|,R) ~ fo(kj,R)+ fi(k|,R) + f2(k|, R) is given by Eqs. (B8),
(B15), and (B24) in Appendix B. Integrating over the angles first, we can safely omit the subscript x in the corre-
sponding momenta.

In the case of inter-node pairing, the structure of the gap function ansatz follows directly from Eq. (16) and is given
by

Ay = AR (ycospcos +ising) + [Ag|e R (ysinpcos§ —icosp) — |As|e Ry sin g, (44)

where |A4|, |Az], and |A3| quantify the spin-triplet state with a spin projection on the axes X, y, and z, respectively.
The spatial modulation is described by the constant phase vectors Q1, Qz, and Q3. Further, we will consider each of
the spin-triplet channels separately. It is worth reminding that the angular dependence in Eq. (44) appeared due to
the reduction of the effective BAG Hamiltonian discussed in Sec. IT A. In order to be consistent with the gap equation

(43), the interaction potential U (k”,kﬂ) =U; (k”,kﬂ), where j = 1, 2,3 correspond to spin-triplet states, is chosen

in the following form:

Uy (kl\vki\) = |U|(xcospcos® +isinp) (xcosg cosd —ising'), (45)
Us (kH,kH) = |U|(xsinpcos® —icosp) (xsing' cosd +icosy’), (46)
Us (kH , kﬁ) = |U|sin@sind'. (47)

Here |U] is the strength of the potential. It is worth noting that the form of the interaction potential is very important
for the competition between different types of Cooper pairing. In our study, however, we do not attempt to rigorously



address such a competition, but concentrate primarily on the effects of strain-induced pseudomagnetic field on the
inter-node spin-triplet pairing (i.e., the pairing between the quasiparticles from different Weyl nodes where the Cooper
pairs have nonzero spin projections). For our purposes, it is sufficient to use the fact that any interaction potential
can be decomposed into spherical harmonics with specific weights in each angular momentum channel (see, e.g.,
Ref. [51]). Therefore, by assuming that the appropriate interaction channel exists, we define the interaction potentials

as U, (kH,kil) in Eqs. (45)—(47), whose angular dependence is dictated by the self-consistency of the gap equation
(43) with the gap function (44).
By using the explicit form of fq, f1, and fa, presented in Appendix B by Eqs. (B8), (B15), and (B24), respectively,

expanding in small |A;|/T, integrating over the angles, and performing the summation over the Matsubara frequencies,
we obtain the following Ginzburg-Landau equation for Aj:

— 2
Arln <“’_;> —A;ln (w_;) - AlT To _ AdAfP7¢3)
™

Lo Th w22 10
Ajvg 2 22 2 2 22 2
T 1120507, | 2@1e [49m*T212((3) — |A1[* (567°T2¢(3) + 9317¢(5)) ]

+(QF , + Q7 .) [1967* T2 1%((3) + |AL* (T T2¢(3) — 55842¢(5)) ]
+14xvrQ1 zeBsu [35m°T2((3) — 93|A1°¢(5)] + 3bvie® B [147°T?((3) — 31|A1|*¢(5)] } +0(|A1]%). (48)

Since the above equation was obtained by expanding in powers of |A1], it is valid only for a sufficiently small gap in the
vicinity of the superconducting transition temperature Ty. It is worth noting that we followed the standard approach
in obtaining the Ginzburg-Landau equation (see, e.g., Ref. [52]), where the near-critical regime (T — Tp)/To < 1 is
assumed. Such a regime allowed us to perform the integration over the angles analytically. For Bs = 0 and Q; = 0,
the corresponding critical temperature Ty is given by

Ty = % exp (—m) . (49)

Here wp is the Debye frequency, which defines the energy cutoff. In the derivation of Eq. (48), we regularized the
sum over Matsubara frequencies as

2. 2m’1+ p = (:_;) (50)

m’/=—oo

We also employed the standard summation formula

o0

Z |2m/1_|_1|z :2(1_2%> (), (51)

m'=—o0

which is valid at > 1 and where ((x) is the zeta function. We note that the result of summation over m’ vanishes
for any function odd in w,, and, thus, there is no contribution to the gap equation from the first order anomalous
function fy, which is explicitly defined in Appendix B by Eq. (B15).

The gap equations for Ay and As have the same form as Eq. (48) but with the replacements Q; — Q2 and
Q1 — Qgs, respectively. Additionally, one should interchange Q2 < Q2 and Q3. <> @3 .. Last but not least, the
pseudomagnetic field strength does not enter the gap equation when the spins of Cooper pairs are parallel to the field.
Technically, this means that, in addition to the above redefinitions, one should also set Bs; — 0, when obtaining the
gap equation for Az from Eq. (48).

The explicit form of the nontrivial solution to the gap equation (48) is given by

1/2
V147l
1A, = N 80m*T2(Ty — T)p® — T ToC(3) [(QF . +2Q7 , +2Q3 ) pu? + 5vpeBs (vreBs + xpuQ1.2)]

X

{7<<3>W2T2 (11202 — v} (1603, — @3, — Q1.)] - 31C5)E 6 Q.. +3Q3, +30Q2..)

~1/2
+ TupeBs (5vpeBs +6X;LQ1,Z)}} . (52)
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FIG. 1: The dependence of the absolute value of gap |A1| given in Eq. (52) on the pseudomagnetic field strength Bs at a few
fixed values of the phase vector components Q1. and Q1,y (left panel), and Q1,. (right panel). While the pseudomagnetic field
tends to inhibit the gap, this effect can be mitigated when Q is antiparallel to Bs. To plot the results we used 7' = 0.45u and
To = 0.54.

Note that when both B; = 0 and Q1 = 0, we obtain the standard Ginzburg-Landau value for the gap, i.e.,

L B 0 [To—-T
Ay qimg 1A =T [ 2mms ) (53)

Further, we can also determine the critical value of the pseudomagnetic field from the condition of vanishing gap.
The corresponding expression reads

; XQ1,- 10 1%
Borit — d 320m2T2(Ty — T) — 7¢C(3)v2 T, (4Q%  +8Q3% ., +3Q2 ). 54
b 2e0F 2 35<(3)Toev%\/ (To =) = TCEETo (101, + 804, +301..) 59

[Note that the above expression is valid in the vicinity of the critical temperature, which, as we will see from Fig. 3(c),
is lower than Tj for Bs # 0 and Q1 # 0.] The dependence of the absolute value of gap |A;| on the pseudomagnetic
field strength is presented in Fig. 1 for several fixed values of Q1 5, Q1,y, and Q1,.. As we see from the left panel in
Fig. 1, nonzero phases @1, and @1, always reduce the gap. In agreement with the analytical expression in Eq. (52),
the dependence of the gap on @1, and Q14 is qualitatively similar, although not exactly the same. It can be also
seen that the gap does not change when the signs of ); , and @), , are flipped. However, this is not the case when the
sign of @1, is changed. As one can see from Eq. (52), the corresponding nontrivial dependence is rooted in the terms
proportional to x@Q1,,Bs. This finding is also supported by the numerical results in the right panel of Fig. 1, where
the value of |A1| is presented as a function of Bs for several fixed values of Q1 .. At sufficiently small values of Bs, the
terms quadratic in )1 , have the tendency to suppress |Aq|. On the other hand, for sufficiently large pseudomagnetic
fields, the gap can be either an increasing (if xQ1,. < 0) or decreasing (if xQ1 . > 0) function of Q1 .. Also, in the case
when x@1 » < 0, we find that the value of the critical field strength Bg“t can become larger than that at Q1 , = 0 (see
also Eq. (54)). Briefly summarizing the obtained results, we found that the pseudomagnetic field tends to inhibit the

spin-triplet gap. This effect can be partially mitigated when the phase vector is antiparallel to the pseudomagnetic

field. All other configurations of the phase vector decrease the gap and lead to a smaller critical field strength.

In order to determine the ground state of the system, it is necessary to compare the energy densities of the

superconducting and normal states. The difference between the corresponding energies can be expressed as follows

[52]:

|U| |A1|2 92 To |A1|2
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FIG. 2: The dependence of the energy densities difference between the superconducting and normal states Qs — €2, given
in Eq. (55) on the pseudomagnetic field strength Bs for several values of the phase vector components Q1,» and Q1,4 (left
panel), and Q1,. (right panel). Generically, only the phase vector component Q1,. can be energetically favorable at nonzero
pseudomagnetic field if xQ1,- < 0. To plot the results we used T' = 0.451 and To = 0.54u.

where we used Eq. (49) to obtain the last expression. The numerical results for the energy densities difference (55)
between the superconducting and normal phases are presented in Fig. 2 for several choices of phase vectors Qi. In
agreement with the results for the gap in Fig. 1, the presence of Q1 , and @1, is always unfavorable. On the other
hand, the situation with @ . # 0 is different. While at small Bs the state with a nonzero (1 , is also unfavorable,
the superconducting state with the phase satisfying x@1,. < 0 has a lower energy at some nonzero Bs.

It should be noted that the energy density difference between the superconducting and normal states can be
estimated qualitatively by calculating the square of |A; ] in Eq. (52), see also Fig. 1. By making use of such an approach,
we can determine the value of Q that corresponds to the maximum gap |A;| and, therefore, the energetically most
favorable superconducting state. The condition of a local extremum for the gap function is given by the system of
equations 9|A1|%/0Q1 ; = 0, where i = z,y, 2. Its solution reads

P = QP =, (56)
49 (¢(3))* To — 186¢(5)(To — T)
70¢(3)m2T2(Ty — T) + 4p? |343 (C(3))® Ty — 1395¢(5)(Tp — T)

%

[Note that there is another solution, but it has parametrically large (determined by u) value lying outside the validity
range of the model and, therefore, should be omitted.] By recalling the similarity between the gap functions A; and
A, it is clear that the result for Q§**" should be exactly the same. As for the phase vector in the gap function Ag,
it should be given by a similar expression but with the vanishing Bs. By noting that the result in Eq. (57) is trivial
in the limit Bs — 0, we conclude that Q§**" = 0.

The numerical results for the absolute value of gap |A;|, the difference of the energy densities Qs — Q,, and the
phase diagram in T—-Bj; plane are shown in three panels of Fig. 3 for two different choices of the phase vector Q; =0
and Q; = Q§**", where the latter is given by Eqs. (56) and (57). As expected, the solution with the phase Q; = Q§***
has a lower energy and a larger critical value of the pseudomagnetic field strength Bg'i*. Physically this means that
the corresponding superconducting state in the presence of pseudomagnetic fields should be spatially modulated. This
result also agrees qualitatively with the findings of Ref. [47], where a spatial modulation of a gap was advocated for
a p-wave superconducting state.

Before concluding this subsection, let us briefly summarize our main results here. We found that the pseudomagnetic
field By inhibits the spin-triplet gaps when the spins of Cooper pairs are normal to the field. This is not the case
when the spins are parallel to Bs, where the pseudomagnetic field neither affects the value of the gap nor leads to
its spatial modulation. In agreement with an earlier study in Ref. [47], the spatial modulation of the gap, which is
determined by the phase vector Qq, leads to an energetically more favorable state for A; # 0 or Ay # 0. Such a
state, however, still has a higher energy than that with Az # 0.
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FIG. 3: The absolute value of gap |A1| (panel (a)), the difference of the energy densities s — Q, (panel (b)), and the phase
diagram in T—Bs plane (panel (c)) in the absence of the phase Q1 = 0 (red solid lines) and for the extremal value of the phase
vector Q1 = Q" (blue dashed lines), where Q$*" is given by Eqgs. (56) and (57). The case with a nonzero phase vector
Q1 = Q™ corresponds to a more energetically favourable solution with a larger gap and critical temperature. The shaded

areas in panel (c) correspond to superconducting phases. To plot the results we used To = 0.5¢ and 7' = 0.454 in panels (a)
and (b).

Finally, let us briefly discuss the case where the pseudomagnetic fields are absent and the spatial gradients can
be ignored. Here, the fully gapped spin-singlet superconducting state with the intra-node pairing might have a
higher critical temperature and could be more energetically favorable than the spin-triplet states with the inter-node
pairing. This suggests that there might exist a critical value of the pseudomagnetic field strength separating the
spin-singlet state with the intra-node pairing from the spin-triplet one with the inter-node pairing. By taking into
account, however, that the former should be spatially nonuniform in the presence of a nonzero B, the study of the
competition between these two phases is a nontrivial task. While it is beyond the scope of this study, it should be
addressed in future investigations.

B. Currents

Since the superconducting gaps generically have nontrivial phase factors, one might expect that nonzero electric
and/or chiral currents could be induced in the corresponding states of strained Weyl semimetals. (Note also that
strain can be used to control supercurrents in some two dimensional systems [53].) The formal expression for the
current in each chiral sector is given by

ix A 2ep()miT Y /

m’/=—oo

Ko (58)
4

vrk’ |go(kj, R) + g1(K|, R) + 92 (K], R) |

which is valid up to the second order in external fields and spatial derivatives. For concreteness, let us consider the
contribution due to the single gap component A;. By taking into account the similarity of the gap equations for the
other components, of course, the analysis could be straightforwardly performed in the case of nonzero Ay and Aj.
(In this connection, we should remind that, in addition to the replacements of the phase vectors, By should be set to
zero in the case of Az # 0.) From the definition in Eq. (58), we derive the following expression for the current:

TG hep()| A ? F

) 1. vpeDBs
Jx = 127272 5 (Ql - §XQ1-,I> + X Z:| ) (59)
where we used the formula in Eq. (51) and took into account that the zeroth order contribution vanishes after the

Matsubara summation. By making use of this result and substituting the phase vector Q; = Q$*", where Q§*'" is
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FIG. 4: The dependence of the chiral current component js . given by Eq. (61) on the pseudomagnetic field strength Bs for
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the extremal value of the phase vector Q1 = Q7" provided in Eqs. (56) and (57). To plot the results we used T'= 0.45u and
To = 0.5;1,.

given by Egs. (56) and (57), we obtain the following results for the electric and chiral currents:

je = Z jx = 07 (60)
x==

7¢(3)v? A2 (4Q7 Bs)\ .
js = Zij:_ CB)vpep(u)| A < QT +UF€ 5)z. (61)
x==+

6m2T2 5Y m

Here we took into account that Q‘l”fz“ given in Eq. (57) is proportional to x. As is clear, the currents in the case with
As # 0 will be exactly the same (up to the replacement of |A;| with |As| and Q§*'" with Q$*'"). On the other hand,
in the case of a nonzero Ag, i.e., when the spins of Cooper pairs are parallel to the pseudomagnetic field, both electric
and chiral currents are absent.

The dependence of the z component of the chiral current (61) on the pseudomagnetic field strength Bj is presented
in Fig. 4. The current is a nonmonotonous function that is determined by an interplay of gap |A;|, which decreases
with Bs, and a linear in B term. By comparing Figs. 1 and 4, it is evident that the current vanishes simultaneously
with the superconducting gap. As we see, the chiral current is considerably smaller in the state with Q; = Q%
than in the spatially uniform state. Technically, this is due to the fact that the two contributions in the parentheses
in Eq. (61) are comparable and largely compensate each other. In view of this, it might be tempting to suggest then
that the approximate value of the phase vector was not determined precisely enough and the correct result should
give a vanishing js. We checked, however, that the value of Qi that enforces the condition j; = 0 leads to a higher
energy state.

V. SUMMARY

In this study, by using the quasiclassical Eilenberger approach, we studied the effects of the strain-induced pseudo-
magnetic field Bs on the inter-node spin-triplet superconductivity in Weyl semimetals with a broken TR symmetry.
Unlike the usual magnetic field, the pseudomagnetic one couples to fermions from the Weyl nodes of opposite chirality
with different sign. This immediately leads to an unusual dynamics of Cooper pairs, where the Meissner effect is
absent. In agreement with previous studies, we found that only the spin-triplet channel is relevant for the inter-node
pairing of quasiparticles in the vicinity of the Fermi surface (i.e., the pairing of quasiparticles from the Weyl nodes
of opposite chirality). As expected, when the pseudomagnetic field is absent, there is no preferred direction for the
spins of Cooper pairs and the spatial modulation of the superconducting gap is not favorable. The dynamics changes
qualitatively in the presence of the pseudomagnetic field. The superconducting state with the spins of Cooper pairs
parallel to Bj is not affected by the field and has the lowest energy among the spin-triplet states. On the other hand,
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the states with the spins normal to Bs are modified and inhibited by the field. In the latter case, the gap function
acquires a nontrivial phase proportional to the field strength, which lowers the energy of this state. This result
qualitatively agrees with that in Ref. [47]. Thus, the pseudomagnetic field effectively selects one of the spin-triplet
superconducting states by inhibiting the other two.

We also investigated the currents in the superconducting ground state. While the electric currents always vanish,
the spin-triplet state could give rise to a nonzero chiral current js, which is determined by the pseudomagnetic field
and the phase of the gap. From a physical point of view, this current corresponds to a spin polarization that could be,
in principle, detected experimentally. Interestingly, for the Cooper pairing with spins normal to the direction of the
pseudomagnetic field, js is nonzero, albeit small for the energetically most favorable phase vector. The chiral current
is completely absent when the spins of Cooper pairs are parallel to B5. Since the latter has the lowest energy, we
believe that both electric and chiral supercurrents are absent in the spin-triplet ground state of Weyl semimetals with
the inter-node superconducting pairing.

At the end, let us briefly discuss the limitations of this study and outlook for future investigations. In our analysis,
we used a rather simple model of Weyl semimetals with a broken TR symmetry. While the key qualitative results
are likely to remain valid also for realistic materials with multiple pairs of Weyl nodes, it would be interesting to
verify this by a direct analysis. Another limitation of this study is connected with the use of the quasiclassical
Eilenberger equation whose validity is restricted to weak pseudomagnetic fields. It would be important, therefore, to
rigorously investigate the role of strong pseudomagnetic fields on the superconductivity when the pseudo-Landau levels
are formed. The use of the Ginzburg-Landau theory implies that our study becomes unreliable far away from the
superconducting phase transition where the gap is not very small. Such a limitation should be overcome in the future
investigations by employing more sophisticated approaches. They include, for example, the Eliashberg method [54]
for the Green’s functions in the background pseudomagnetic field or the functional renormalization group approach,
where the smallness of the gap is not required and the gradient expansion can be avoided. In this connection, it
should be noted that the assumption of the smallness of the gap is not required even in the semiclassical Eilenberger
approach used in this study. Without it, however, the analysis would become significantly more complicated. Last
but not least, in this paper, we studied primarily the inter-node pairing of quasiparticles from different Weyl nodes.
On the other hand, the case of intra-node pairing, which was briefly discussed at the beginning of Sec. IV as well as
at the end of Sec. IV A, could result in rather complicated, spatially nonuniform solutions and deserve an in-depth
investigation. The corresponding task is highly nontrivial and is beyond the scope of this paper.

Acknowledgments

The work of E.V.G. was partially supported by the Program of Fundamental Research of the Physics and Astronomy
Division of the National Academy of Sciences of Ukraine. The work of V.A.M. and P.O.S. was supported by the Natural
Sciences and Engineering Research Council of Canada. The work of I.A.S. was supported by the U.S. National Science
Foundation under Grant PHY-1713950.

Appendix A: Expansion of the Gor’kov equations

In this appendix, we expand the Gor’kov equations (34) and (35) up to the second order in spatial gradients and
the uniform chiral magnetic field B, .
The left-hand side of the first Gor’kov equation (34) gives

i Ts + H (k + moeA (R)) + Ak, R)] o G(k, R it ) ~ —iwn -G + HG + 1.e AL (9, H)G
2 . . ~
+3NAW%ﬁm)G+D(@L)W%?@%U Awmﬁk )™ B (0, G)

: 1
;(ak H)(0r,G) — 2A (O, Op, H ) (Or, G) — —(akjale)(aRjaRlG)M Zelm"B"(a,g O, H) (04,01, G)

62

—gelmpBg';eimBX(akm O, H) (0,01, G) + AG + A) (0, G) — (aij)(aRjé)}

(0
—g%%m@mﬁwg%%&@@a%gm%x%%m+d%m)%@@ﬁ (A1)

Here H, A, and G are the transformed Bogolyubov—de Gennes (BdG) Hamiltonian, the gap matrix, and the Green’s
function defined in Egs. (28), (29), and (30) in the main text, respectively. In addition, we used the definition of the
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circle product in Eq. (36), 7 is the Pauli matrix acting in the Nambu—Gor’kov space, w,+ is the Matsubara frequency,
e is the electron charge, k is the momentum, R is the centre-of-mass coordinate, and /'™ is the antisymmetric
Levi-Civita tensor. The expansion for the second Gor’kov equation (35) can be performed in a similar way.

In order to obtain a homogeneous equation for the Green’s function G (k, R; iwy, ), we subtract the first and second
expanded Gor’kov equations. The final result reads

ity [, G + [B,G] + e [0k, F),G] + ’;eﬂmBgy L@ ), (01,00} - % {00, 1), (0r,0)}

e? . S ie? S o ~ ~ ie - ~
+5ALA, [(akj oy, ), G} + AL B {(a,gm Oy, H), (aij)} -S4 {Tz(akj oy, H), (8RjG)}
62 m ins s r] ~ € lmn pn r] ~

— B By [(akma,%H),(akja,ﬁG)} + [Tz(akmakjﬂ),(aklamc)}

5 (00,0010, 08,0n,0)] + [5.6] + f{(@zajA),(akjé)}—;'{(am,(amé)}
< [0n,0m,8), 91,00, + T [(04,0m,8), (0,04, C)] — < [(4,00, ), (9,05, C)]
+0 (agj,(Ag‘()i(ajA;) ) —0. (A2)

Here, for the sake of brevity, we omitted the arguments k and R in functions é, H , and A. In addition, the square
and curly brackets denote the commutators and anticommutators, respectively.

Appendix B: Integrated Green’s functions for inter-node pairing

In this appendix, we present the details of iterative solution to the Eilenberger equation (38) amended with the
normalization condition (41). The integrated Green’s function g, defined in Eq. (37), is expanded up to the second
order in powers of the background fields and spatial derivatives, see Eq. (42) in the main text. By making use of the
reduced BdG Hamiltonian (15) for the inter-node pairing, as well as the definitions in Eqs. (28), (39), and (40), we

derive the following explicit expressions for V and Mj;:

V = upk, (B1)
2
7 = F (5 _kok
M]l = 1 (5]l k]kl)7 (B2)

where v is the Fermi velocity, u is the electric chemical potential, and, for the sake of simplicity, we omitted the
chirality index x at k.

As discussed at the beginning of Sec. IV, it is convenient to assume that the ordinary magnetic field is absent, i.e.,
A, = xAs and B, = xB;s. By recalling that the axial vector potential is proportional to the chirality of Weyl nodes,
we should also replace A5 — 7, A5 and B; — 7.B5 in Eq. (38) for the case of inter-node pairing.

1. Zeroth order

Let us start from the solution in the zeroth order approximation, in which background fields and spatial gradients
are neglected. The corresponding Eilenberger equation reads

i [T, Go] + {A,go} —0. (B3)

By taking into account the matrix structure of go, see Eq. (37) in the main text, it is straightforward to show that
there are two nontrivial equations for the components of gyg. Their solution reads

*

1 fo (B4)

o 2lwm/fo
do = 9o A, )
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where A, is given by Eq. (16). In order to determine go and fo, one needs to employ the normalization condition
(41), which in the zeroth order is equivalent to

go = —9o, (B6)
9~ fofd =1. (B7)
By taking these conditions into account, we obtain
ho= )y = (B3)
= - (B9)

go = —gJo = —F———.
NN NE

In passing, let us mention that the same relations would be also valid in the case of intra-node pairing with the
corresponding value of the gap.

2. First order

In the first order in background fields and spatial gradients, the Eilenberger equation (38) for the inter-node pairing
reads

— Wy [Tz, G1] + ieVR ([IA( X BX} . Vku) Jo — ivp (l; . VR) Jo
+[8.0] + 2 {(VrB). (Va0)} — £ (Vi B), (Tdo) } =0 (B10)

As in the leading order approximation, the matrix equation (B10) contains only two nontrivial equations that produce
the following relations:

ff_fli—i—iAv—i{e([l;xBX} -Vku)—(fi'VR)}go (B11)
and
Y IS SN [ B T T

Here the normalization conditions for the zeroth order solutions in Eqs. (B6) and (B7) were used. By retaining the
first order terms in the normalization condition (41), we obtain

g1 = —4g1, (B13)
29091 — f1fd — fofi =0. (B14)

Taking these expressions into account, we derive the following anomalous and normal components of the integrated

Green’s function:
f - _.vrfo <f0 _ M) {e ([k x Bx} 'Vku) — (k- VR)}QO

Z2AX Ay + A%
() ) - v (0 255) v

and

p = g B0 S g

207 (Ay +4%) ko BX} ' Vku) — (k- VR)} 90

+ % {e([kxBy] Vi) - (k- vr)} ( 0%) 7 (B16)

respectively. Here, fi can be obtained by using Eqs. (B11) and (B15). It is worth noting that while the anomalous
function f; in Eq. (B15) is odd in wy,/, its nonanomalous counterpart g; is an even function. This property, as one
can see in Sec. IV A, is very important for solving the gap equation and for calculating the superconducting currents.
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3. Second order

Next, we consider the second order in background fields and spatial derivatives. In such a case the equation for the
integrated Green’s function reads

it 72, 3o] + devn [k x By| - Vi ) a1 = ive (k- VR) g1+ ie? Al ™ BE MmO, , Go — ie AL Myudr, o
<~ ) ~ N 7 < ~ 1 ~ -
+ [8.32] + 5 {(VRA), (Vigd0) } = 5 { (Vi A). (Vi) | = 5 [(0r,0m,8), (04, 0k, ,50)
1 ~ _ 1 < N
+ {(8Rj6kwA), (Ohy , O, go)] -3 [(aku,ja,g”,lm, (Or, Or, go)] = 0. (B17)

This matrix equation allows one to determine two out of the four components of g». In particular, we derive

f;f — Qi_i — ZAU—I: {e ([f{ X BX] 'Vku) — (l; . VR)}gl - ii:f ([Ax x By] - Vku) 9o
N :3 (A ) ([ xB,] - 9 ) 0 + A—i {(Ac-Vr)— (A, k) (k- Vr) oo - 22)( Diehns (B18)
and
Go = got AX%A;‘({ — 2iwny (f3 + f2) + ivp {e ({k X BX} 'VkH) - (R'VR)} (fi— /)
* iiv% {([AX x Byl Vku) - (AX f{) ({f( X BX} 'Vku)} (fo— fJ) - iev% (Ay - VRr)(fo— fg)
| ek (Ac-K) (k- Vg) (fo—fg)+D§§r)ms}- (B19)

Here, we used the explicit form of ]\7[jl in Eq. (B2) and introduced the following shorthand notations for the terms
with the gap function derivatives:

1 *
Dt(izms = 4 [(8RjaRzAx) (8ku,jaku,zfg) - (8RjaRzAx) (8k\\,j8k\\,lf0):|

+ % [(83]8;@",le) (8k\|,jaleg) - (8Rj8kwA;) (8’6\\48sz0)]
= i @y, 00.08%) (9,0, ) = Dy, D0y AL) (O, O, fo) | (B20)
and
PP = 1 [0m, 0 (B + AD] (B, 0k, ,90) + 5 [9m, 0, (A + AL)] (D, Or,00)
1 Bhy By (B + 2] (O, Do) (B21)

In order to determine the remaining components of function go, we need to employ the normalization condition (41),
which in the second order gives

g2 = —g2, (B22)
20092 — fofd — fofs — fofd — fiff + g2 = 0. (B23)

Similarly to the first order case discussed in Sec. B 2, the explicit expressions for the components of g, can now be
easily obtained, but they are rather bulky. For studying the gap generation, however, it is sufficient to have only the



anomalous part fo of the integrated Green’s function, i.e.,

e it (- 2 ) (e ([fxm ] v - G Vo
- (- 2 ) (a8, 9i) - (AR (om0 o
i (g 2ot (V- (A K) (V) oo g2 (5 2

2 (A +AL) T2 (A + AL

+ ﬂD@) '+%Ogo){e({f{xl3xj|'Vk|)_(f('VR)}(f1_ IT)
ie?vZ fogo k k LX_A;
+ —fg){([AxXBx]'VM)_(AX'k) ({kXBX}.Vk)}QCO )

2;L(AX+A;‘( Ay
iev% fogo AW Ay — A fOflfJf fogi
3, g (T (k) (v} (075 ) <Rt -
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(B24)

The expression for fg can be obtained from fs by using Eq. (B18). Then, the expressions for the functions g, and g
follow from Egs. (B19), (B22), and (B23). As for the first order terms, they are given in Sec. B2. We note that the
function fy in Eq. (B24) contains both odd and even terms with respect to the Matsubara frequency.
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