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Tree mortality events driven by drought and warmer temperature, often amplified
by pests and pathogens, are emerging as one of the predominant climate change
impacts on plants. Understanding and predicting widespread tree mortality events in
the future is vital as they affect ecosystem goods and services provided by forests
and woodlands, including carbon storage needed to help offset warming. Additionally,
if extensive enough, tree die-off events can influence not only local climate but
also climate and vegetation elsewhere via ecoclimate teleconnections. Consequently,
recent efforts have focused on improving predictions of tree mortality. One of the
most commercially important genera of trees is Pinus, and the most studied species
globally for drought-induced tree mortality is pifion pine, Pinus edulis. Numerous
metrics have been developed in association with predicting mortality thresholds or
variations in mortality for this species. In this article, we compiled metrics associated
with drought and warming related mortality that were developed for P edulis or for
which P edulis was a key example species used in a calculation or prediction. We
grouped these metrics into three categories: (i) those related to simple climate variables,
(i) those related to physiological responses, and (i) those that require multi-step
calculations or modeling using climate, ecohydrological, and/or ecophysiological data;
and we identified the spatial-temporal scale of each of these metrics. We also
compiled factors shown to modify rates or sensitivities of mortality. The metrics to
predict mortality include empirical ones which often have implicit linkages to expected
mechanisms, and more mechanistic ones related to physiological drivers. The metrics
for P edulis have similarities with those available for other species of Pinus. Expected
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future mortality events will provide an opportunity to observationally and experimentally
test and compare these metrics related to tree mortality for P edulis via near-term
ecological forecasting. The metrics for P edulis may also be useful as potential analogs
for other genera. Improving predictions of tree mortality for this species and others will
be increasingly important as an aid to move toward anticipatory management.

Keywords: climate change, die-off, drought, mortality, Pinus edulis, tree

INTRODUCTION

One of the major impacts of climate change on terrestrial
ecosystems is tree mortality events caused by drought and
warmer temperature, often exacerbated by pests and pathogens
(Allen et al.,, 2010, 2015; IPCC et al, 2014). Tree mortality
impacts ecosystem services provided by forests, including carbon
storage that helps offset warming impacts of emissions (Bonan,
2008; Kurz et al, 2008; Breshears et al, 2011; Anderegg
et al, 2013; Ma et al, 2013). Tree mortality events can
cause ecosystem state changes (Cobb et al, 2017) and, if
extensive enough, can influence not only local climate but also
climate and associated vegetation elsewhere—termed ecoclimate
teleconnections (Garcia et al., 2016; Stark et al., 2016; Swann et al.,
2018).

Recent reviews of rapidly expanding literature on tree
mortality related to drought and warming include: compilation
of observational case studies globally (Allen et al., 2010, updated
sequentially in IPCC et al.,, 2014; Allen et al., 2015; Hartmann
et al., 2018); physiological responses of plants (McDowell et al.,
2008,2011; Choat et al., 2012, 2018) including a synthesis specific
to experimental results (Adams et al., 2017b) and one specific
to tree functional traits (O’Brien et al., 2017); drought-insect
interactions (Anderegg et al., 2015); ecological (Anderegg et al.,
2013) and hydrological (Adams et al, 2012) consequences of
tree die-off events; and dynamics and management options post
die-off (Cobb et al., 2017).

One of the most important genera in terms of extent
(Richardson and Rundel, 1998) and commercial value in forestry
(LeMaitre, 1998) is Pinus, and the most studied species globally
of Pinus relative to drought-related mortality is the pifion pine
Pinus edulis (Allen et al., 2015; Meddens et al., 2015; Adams
et al, 2017b). This species has been studied with respect to
most key categories related to mortality (Allen et al,, 2015). In
this article, we summarize metrics and modifiers associated with
mortality driven by drought and warming for P. edulis, explicitly
describe the relevant spatial-temporal scales for each, relate these
to other results for Pinus, and highlight their potential utility
for other genera and for near-term ecological forecasting—where
predictions are made iteratively and publicly shared and then
tested by subsequent observations, updating the predictions as
new information becomes available and factoring lessons learned
back into predictions (Clark et al., 2001; Dietze, 2017; Dietze
et al., 2018). This review focuses on compiling the broad set of
relevant metrics related to mortality for P. edulis, complementing
that of Meddens et al. (2015), which focused on meta-analysis of
different physiographic and biotic drivers of mortality.

METRICS ASSOCIATED WITH MORTALITY
DRIVEN BY DROUGHT AND WARMING
FOR Pinus edulis

We compiled metrics associated with drought- and warming-
related mortality that were developed for P. edulis or for which
P. edulis was a key species used in a calculation or prediction
(Table 1). These metrics were grouped into: (i) those driven solely
by climate variables, (ii) physiological responses, and (iii) those
that require multi-step calculations and modeling. The spatial-
temporal scale of each of these metrics was explicitly identified
(Figure 1). We also compiled factors shown to modify P. edulis
mortality (Table 1). Many of these metrics and modifiers are
related to one another directly or indirectly, but we group them
together only if they use the same predictor variables or are
complex ecosystem models requiring multiple inputs. A key
figure illustrating each is provided in Supplementary Table S1.
Many of these metrics are associated with the early 2000s
drought in the Southwestern US (Breshears et al., 2005) and may
be overly tied to those specific drought conditions. Important
characteristics of the 2000s drought were that it was almost
as severe as the 1950s drought in terms of low precipitation
(with the 1950s drought being the worst drought in Southwest
USA since the 1500s), but it was also warmer (Breshears et al.,
2005)—the consequences of which become more evident when
Vapor Pressure Deficit (VPD) is considered (Weiss et al., 2009).
Importantly, the warmer conditions associated with the 2000s
drought are expected to be somewhat indicative of future drought
(Breshears et al., 2005; Allen et al., 2015). Time series of plant
water potential and soil moisture pre-drought and through
mortality provide additional details about this event (Breshears
et al.,, 2005, 2009a,b). Also included are diverse experimental
results (Adams et al., 2009, 2017a; Plaut et al., 2012; Krofcheck
et al.,, 2014; Pangle et al., 2015).

Metrics Driven Primarily by Climatic

Variables

Metric 1: Standardized Precipitation Evaporation
Index (SPEI)

SPEI includes both a precipitation input component and an
evaporative demand component (Vicente-Serrano et al., 2010),
a common theme among some of the metrics. After considering
all possible months of the year to begin in and SPEI durations
of 1-24 mo, SPEI with a duration of 11 months starting in July
was found to be most strongly positively correlated with P. edulis
and P. ponderosa growth, with SPEI below —1.64 identified as a
threshold to trigger mortality (Huang et al., 2015).
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TABLE 1 | Compilation of key published metrics to predict Pinus edulis mortality (upper portion), which can be used in near-term ecological forecasting, followed by
modifiers (lower portion) which need to be used in conjunction with additional information.

Metric #

Mortality = f{(....)

Threshold, Mode, or
Relationship

Data

Drought/Warming source

References

METRICS

Metrics Driven Primarily by Climatic Variables

1

Nature Metrics Based on Direct Ecohydrological or Physiological Thresholds

5

Standardized Precipitation
Evaporation Index (SPEI)
Forest Drought-Stress Index
(FDSI)

Precipitation (PPT) and Vapor
Pressure Deficit (VPD)
Thresholds

Bioclimatic Envelope for Mortality

Water Potential () Threshold

Percent Loss Conductivity (PLC)

Minimal Protracted Frequency of
Plant Available Water (PAW)
Duration of Water Potential
below Point of Stomatal Closure
(Time  {)

Multispectral Remote-Sensing
Measures

SPEI of —1.64 corresponds to
no growth and regional mortality
FDSI of —1.41 corresponds to
regional mortality events

Below 600 mm PPT threshold
and above 1.7 kPa VPD
threshold

At higher temperature can die at
wetter soil moisture

Exceeded thresholds

60% PLC threshold as mortality
tipping point

Low frequency of plant available
water over growing season

Plant water potential below
stomatal closure >10 Mo

Plant water content and plant
water potential

SPEI from September thru
July

Prior winter PPT and current
and prior summer VPD
Annual precipitation and
warm season VPD

Climate, soil moisture

Predawn water potential

Predawn water potential
with PLC relationship

Soil moisture by depth

Predawn water potential

Remotely sensed
multispectral indices

Metrics Based on Multi-Step Modeling of Climate, Ecohydrology, and/or Ecophysiology

10 Climate suitability during drought
and historic reference
(ECSXHCS)

11 Integrated Ecophysiology

12 Regional processes

MODIFIERS

Drought Properties

1

Temperature

Soil Properties

2

Topographic Moisture Index and
Elevation

Soil Available Water Capacity
(AWC)

Soil Parent Material

Tree Phenotype And Genotype

5

Tree Size

Phenotypic Plasticity and
Sequence of Events

Low ECS (Episodic Climate
Suitability) and high HCS
(Historic Climate Suitability)
Ecophysiological threshold
exceeded

Critical mortality threshold of
—2.4 MPa

Faster when warmer by 5% per
°C

Lower and drier sites
experienced more mortality

Areas with a soil AWC < 100mm
have greater mortality

Cinder exacerbates drought
more than basalt or sedimentary
parent material

Large trees more susceptible

Reduction of biomass/variable
growth rates

Climate during drought
relative to long-term mean

Climate, Predawn water

potential
Climate, Other parameters

Climate

Topographic position (slope,

elevation, aspect)

Soil AWC

Soil parent material

Demography

Dendrochronology,
Demography

Climate data from 2000s
drought

1500s droughts

Observations of 2000s
drought

Field Transplant Experiment

Literature review

Literature review;
Observations from 2000s
drought

Observations of 2000s
drought

Observations of 2000s
drought

Observations of 2000s
drought

2000s drought in context of
historical (28 year) climate

Miscellaneous studies

Miscellaneous studies

Growth Chamber
Experiment

1950s drought

Observations of 2000s
drought
Observations of 2000s
drought

Observations of 2000s
drought
Observations of 2000s
drought

Huang et al., 2015

Williams et al.,
2013

Clifford et al., 2013

Law et al., in press

Adams et al.,
2017b

West et al., 2007;
Koepke and Kolb,
2013; Adams
etal.,, 2017b
Breshears et al.,
2009a

Breshears et al.,
2009b

Breshears et al.,
2005; Rich et al.,
2008; Huang

et al., 2010;
Krofcheck et al.,
2014

Lloret and
Kitzberger, 2018

McDowell et al.,
2008

McDowell et al.,
2016

Adams et al.,
2017a

Allen, 1989; Allen
and Breshears,
1998

Peterman et al.,
2013

Koepke et al.,
2010

Floyd et al., 2009

Ogle et al., 2000;
Macalady and
Bugmann, 2014

(Continued)
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TABLE 1 | Continued

Modifiers Mortality = f{(....) Threshold, Mode, or Data Drought/Warming Source  References
Relationship
7 Prior Patterns of Growth Rates Long term growth rate, variability, — Demography, 1950s, 1990s, and 2000s Ogle et al., 2000;
and number of abrupt increases Dendrochronology droughts Macalady and
predict mortality Bugmann, 2014;
8 Resin Ducts Smaller resin ducts increase Resin flow, Observations of 2000s Gaylord et al.,
likelihood of mortality Dendrochronology drought 2013, 2015
9 Genetics Mortality of trees resistant to Genetics Observations of 2000s Sthultz et al., 2009
moth was 3 times higher than for drought
moth-susceptible trees
Biotic Interactions
10 Competition Mixed evidence Demography Literature Review Meddens et al.,
2015
11 Facilitation Facilitation reduces threshold Demography, Microclimate Observations of 2000s Royer et al., 2010;
drought Redmond et al.,
2015
12 Qutbreaks Selectivity for larger trees Beetle populations Experimental drought Gaylord et al.,
2013

Metric 2: Forest Drought-Stress Index (FDSI)

FDSI is an annual index that includes winter-spring precipitation
and vapor pressure deficit during the early summer of the
current year and the late summer of the year prior, and is
standardized by applying a ratio of the current conditions
to the long-term mean (Williams et al., 2013). FDSI strongly
correlates to regional trends of tree growth and regional
patterns of drought-related mortality agents, including bark
beetle outbreaks and area burned by tree-killing wildfire. A
FDSI < —1.41 is thought to have resulted in widespread
mortality (Williams et al., 2013), based on FDSI during the
driest half of years during Southwest USA “megadrought” events
(Swetnam and Betancourt, 1998).

Metric 3: Precipitation (PPT) and Vapor Pressure
Deficit (VPD) Thresholds

Field observations of P. edulis mortality across central NM, USA
in response to the 2000s drought were highly variable with two
thresholds for mortality identified: sites with 2-year precipitation
> 600 mm or for warm season (May-August) mean VPD over 2
years of < 1.7 kPa, had little to no mortality (<10%), whereas
at sites with < 600 mm or > 1.7 kPa, plant mortality was highly
variable (0% to ~100%; Clifford et al., 2013).

Metric 4: Bioclimatic Envelope for Mortality

A new type of bioclimatic envelope that focuses exclusively
on mortality events for P. edulis was developed for saplings
and small reproductively mature sized trees, based largely on
climate manipulation experiments that varied precipitation and
temperature (Law et al., in press). This bioclimatic envelope
estimates a boundary between survival and mortality as a
function of length of a dry period and growing season
temperature. It indicates that at warmer temperatures (or
greater VPD), the duration that P. edulis can survive is
reduced.

Metrics Based on Direct Ecohydrological

or Physiological Thresholds

Metric 5: Water Potential () Threshold

Plant water stress as reflected in more negative plant water
potential, usually measured at the twig scale for P. edulis, has
been used to identify threshold values at which tree mortality
occurs (Sperry et al.,, 1988; McDowell et al.,, 2008) and can be
measured in the field. Although the plant water potential for
stomatal closure varies somewhat (Breshears et al., 2009b), values
associated with greater stress may be more variable among sites
(Linton et al., 1998; West et al., 2007; Koepke and Kolb, 2013).
A review of experimental studies of drought found that this
metric occurred in association with mortality of every tree species
studied (Adams et al., 2017b).

Metric 6: Percent Loss of Conductivity (PLC)

Increased stress associated with more negative plant water
potential is also associated with loss in conductivity due to
embolism intrusion, usually measured in stems in the lab,
leading to disruptions of the hydraulic water column that can
lead to mortality (Sperry et al., 1988; McDowell et al., 2008).
Empirical and theoretical models suggest that this tightly coupled
relationship accurately estimates loss of conductivity across
species spanning an isohydry-anisohydry gradient (Cochard,
1992; Linton et al., 1998). A recent meta-analysis determined a
key threshold of 60% PLC as a mortality tipping point (Adams
et al., 2017b), for which site-specific relationships to P. edulis
predawn water potential can be developed prior to drought
(Linton et al., 1998; West et al., 2007; Koepke and Kolb, 2013).

Metric 7: Minimal Protracted Frequency of Plant
Available Water (PAW)

Long-term soil moisture data obtained by neutron probe
measurements that extended below the topsoil and into tuff
bedrock (Breshears et al., 2005, 2009a) were adjusted for soil
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FIGURE 1 | Spatial and temporal scale of each key metric (see section
Metrics Associated With Mortality Driven by Drought and Warming for Pinus
edulis) to predict tree mortality. Spatial scale of each metric is based on the
spatial scale at which that metric was developed. The temporal scale of each
metric is based on the frequency at which the metric can be updated and
used for near-term ecological forecasting. Pattern denotes the metric category
as climate (section Metrics Driven Primarily by Climatic Variables),
ecophysiology (ecohydrological and physiological thresholds; section Metrics
Based on Direct Ecohydrological or Physiological Thresholds) or integrative
models (section Metrics Based on Multi-step Modeling of Climate,
Ecohydrology, and/or Ecophysiology). “*” indicates long-term (15+ years)
temporal data is needed for the predictions.

texture to estimate thresholds at which soil moisture above
bedrock tuff becomes relatively unavailable to plants. During the
2000s drought, soil moisture above the bedrock tuff was below an
availability threshold for 14 consecutive months, during which
time tree mortality occurred (Breshears et al., 2009a).

Metric 8: Duration of Water Potential Below Point of
Stomatal Closure (Time ¥ |)

For relatively more isohydric species, such as P. edulis, trees
close stomata at a given level of water stress and then attempt
to survive the duration of the drought, paying respiration costs
during that period. Predawn plant water potential for P. edulis at
the same site as Metric 7 was <-2.2 MPa, the point of stomatal
closure (Lajtha and Barnes, 1991), for 10 consecutive months
preceding tree mortality (Breshears et al., 2009b). Similarly, a
field experiment removing 50% of ambient precipitation resulted
in P. edulis mortality after 7 consecutive months of near zero
conductance (Plaut et al., 2012).

Metric 9: Multispectral Remote-Sensing Measures
Multispectral assessments of whole-ecosystem responses of post-
die-off can detect P. edulis die-off (e.g., Breshears et al., 2005;

Rich et al., 2008; Huang et al., 2010; Krofcheck et al., 2014).
Further, multispectral data for P. edulis needles alone revealed
strong correlations between either plant water content or plant
water potential with each of 5 multispectral indices for needles
spanning healthy through dead (Stimson et al., 2005).

Metrics Based on Multi-Step Modeling of
Climate, Ecohydrology, and/or
Ecophysiology

Metric 10: ECSxHCS

Using climate data, extended species distribution modeling was
applied to assess whether P. edulis mortality during drought
was greater in areas with lower historical climatic suitability
(HCS; i.e., species distribution modeling using long-term average
climate conditions) or with lower climatic suitability during a
multi-year drought [episodic climatic suitability, ECS) (Lloret
and Kitzberger, 2018). Highest mortality was found in areas with
both high HCS and low ECS, suggesting trees have acclimated
to the conditions historically experienced and are thus most
sensitive to abrupt changes in climate.

Metric 11: Integrated Ecophysiology

Models based on plant ecophysiology have been developed
to predict mortality based on known detailed physiological
relationships (i.e., stomatal responses to limited water
availability) of P. edulis (McDowell et al., 2008) coupled
with information on temperature, drought intensity/duration
and the role of biotic agents (hydraulic aspects of mortality,
drawing on Sperry et al., 1988 are reviewed in Choat et al., 2018;
see Adams et al., 2013 for carbohydrate results for P. edulis).
The interactions among these specific drivers can push plants
to mortality via combinations of carbon starvation, hydraulic
failure, and/or pests and pathogens (McDowell et al, 2011;
Anderegg et al., 2015).

Metric 12: Regional Ecosystem Models

Regional P. edulis mortality projections among three ecosystem
models all predicted widespread die-off, after verifying the
ability of each to reproduce predawn water potential accurately
(McDowell et al., 2016 and references therein): (1) TREES, a
dynamic ecosystem model of water and carbon flows, plant water
balance and cavitation was coupled with stomatal conductance,
photosynthesis, and evaporation (Mackay et al,, 2003, 2010;
Samanta et al., 2007; Loranty et al., 2010); (2) MuSICA,
a multilayer, multi-leaf process-based biosphere-atmosphere
exchange model, included detailed root water uptake, plant
water storage dynamics, soil water hydraulic redistribution, root
cavitation, and plant NSC storage dynamics (Ogée et al., 2003);
and (3) ED(X), which tracks cohorts of trees based on their sizes,
simulated tree mortality of cohorts based on carbon starvation
and hydraulic failure, accounting for plant water storage and
hydraulic conductivity (Moorcroft et al., 2001 with modifications
described by Fisher et al., 2010; McDowell et al., 2013; and Xu
et al,, 2013). All three models used a critical mortality threshold
of growing season predawn plant water potential associated with
stomatal closure (—2.4 MPa) derived from a field experiment
(Pangle et al., 2012; SI 5 in McDowell et al., 2016).
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MODIFIERS OF RATES OR SENSITIVITY OF
P. edulis MORTALITY

We also identified four categories of “modifiers” that influence
the likelihood of P. edulis mortality (drought properties, soil
properties, tree phentoype and genotype, and biotic interactions)
that differ from “metrics” in that they cannot be used to
independently estimate mortality without additional factors,
nor can they be iteratively updated for near-term ecological
forecasting.

Drought Properties

Modifier 1: Temperature

The first modifier focuses on how temperature explicitly drives
mortality. Pinus edulis was the first species for which warmer
conditions during drought were shown to hasten tree mortality
for a reproductively mature-sized tree (Adams et al, 2009).
Further, P. edulis seedlings exhibited a similar slope in hastening
of time-to-mortality of ~5% per °C increase in temperature
across a wide range of temperatures (Adams et al., 2017a).

Soil Properties

Modifier 2: Topographic Moisture Index and Elevation
Spatial patterns of P. edulis mortality in response to the 1950s
drought were a function of a topographic moisture index and
elevation, with increased mortality at drier and lower sites
(Allen, 1989; additional details in Allen and Breshears, 1998).
Slope aspect and position influenced mortality in pifion-juniper
woodlands in general, but the effects of elevation were mixed
(Meddens et al., 2015).

Modifier 3: Soil Available Water Capacity (AWC)

Using publicly available soil data (SSURGO; scale of 1:20,000), P.
edulis stands had greater mortality during the 2002-2003 drought
where soil AWC (calculated based on soil texture and depth) was
<100 mm (Peterman et al., 2013). However, a smaller-scale study
conducted in NM found no relationship between soil AWC and
P. edulis mortality (Clifford et al., 2013), suggesting this metric
may be more applicable across large geographic areas that vary
greatly in soil AWC.

Modifier 4: Soil Parent Material

P. edulis mortality from the 2002-2003 drought was greater on
soil parent material derived from volcanic cinder than from flow
basalt or sedimentary substrate (Koepke et al., 2010).

Tree Phenotype and Genotype

Modifier 5: Tree Size

Physical characteristics like size are expected to be modifiers
of mortality (Bennett et al., 2015; McDowell and Allen, 2015).
Larger diameter P. edulis trees have experienced greater levels
of drought-related mortality (Floyd et al., 2009; Meddens et al.,
2015), likely due to combinations of bark beetle selectivity
for large diameter trees (Santos and Whitham, 2010; Gaylord
et al,, 2013), a greater vulnerability of taller trees to hydraulic
failure (McDowell and Allen, 2015), and carbon starvation from
increased metabolic demands (Mueller et al., 2005).

Modifier 6: Phenotypic Plasticity and Sequence of
Events

Phenotypic plasticity, including climate-induced variability in
leaf area, sapwood area (Limousin et al., 2015), and tree-ring
growth (Williams et al., 2013) can result in structural overshoot
risks during rapid transitions from wet to dry periods (Jump etal.,
2017), while the duration and sequencing of good and bad growth
years affect both short- and long-term tree mortality risk (Ogle
et al., 2000; Macalady and Bugmann, 2014).

Modifier 7: Prior Patterns of Growth Rate

Evaluating the 1950s, 1996, and the 2000s droughts, the best
predictors for growth-mortality models of P. edulis included
long-term (10-30 year) average growth rate combined with a
metric of growth variability from the past 15 years and the
number of abrupt growth increases over the past 10 years (Ogle
et al., 2000; Macalady and Bugmann, 2014).

Modifier 8: Resin Ducts

Investment in resin ducts represent a proxy for defense against
insects and may vary in response to tree size and age dynamics.
P. edulis trees that produce smaller and/or fewer resin ducts are
more likely to die during drought (Kldy, 2011; Gaylord et al,
2013, 2015).

Modifier 9: Genetics

A study of P. edulis mortality during drought for trees that
exhibited genetically-based resistance or susceptibility to the
moth Dioryctria albovittella found that drought-related mortality
of trees resistant to the moth was three times higher than for
moth-susceptible trees (Sthultz et al., 2009).

Biotic Interactions

Modifier 10: Competition

The effects of stand tree density (i.e., both intra- and inter-specific
competition) on P. edulis mortality are mixed, with more studies
not detecting density effects (Meddens et al., 2015). A study on
juvenile P. edulis survival during drought found that mortality of
juveniles located in the canopy interspace of overstory trees and
shrubs was greater in areas with higher grass cover (Redmond
et al., 2015).

Modifier 11: Facilitation

Adult trees in pifion-juniper woodlands provide substantial
shading below tree canopies and as a function of the overall tree
density (Royer et al., 2010, 2011). Facilitation by adults increases
the mortality threshold to more extreme conditions relative to
non-facilitated plants (Sthultz et al., 2007; Redmond et al., 2015).

Modifier 12: Outbreaks

Bark beetle (Ips confusus) outbreaks are usually associated
with field observations and experiments of P. edulis mortality
(Meddens et al., 2015). Note, however, that P. edulis mortality
during drought has occurred in the absence of bark beetles
(Mueller et al., 2005) and controlled experiments quantify rates
of mortality caused by drought in the absence of bark beetles
(Adams et al., 2009, 2017a; Anderegg and Anderegg, 2013).
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RELATIONSHIPS TO STUDIES OF OTHER
PINUS SPECIES

The metrics and modifiers for P. edulis mortality share
consistencies with other species in the Pinus genus. Several of the
above metrics and modifiers (e.g., Metrics 1-2 and Modifier 1)
were also predictive of P. ponderosa mortality. For instance, the
increase of hastening in time-to-mortality for P. edulis of ~5%
per °C also applies to P. ponderosa, as does the linear relationship
of this response to a wide range of warming during drought
(Adams et al., 2017b). Mortality of five European species of
Pinus depended on warming and water limitation (Matias et al.,
2017), consistent with the climate metrics for P. edulis, which
include both a warming or evaporative demand component and a
precipitation component; these species also differed in sensitivity
between montane and lowland sites. Other Pinus species have
similar ecophysiological characteristics as P. edulis (Olson et al.,
2018) and are also vulnerable to bark beetles, particularly when
under water stress (Anderegg et al., 2015). The effect of elevated
CO; on mortality has not been studied for P. edulis, but results
for P. radiata found it did not extend time-to-mortality (Duan
etal., 2015).

CONCLUSION

There are more studies of drought-related mortality for P.
edulis than for any other tree species, yet the many interrelated
and often untested metrics and modifiers indicate a need to
determine which are the most robust, accounting for tradeoffs
between robustness and data or computational requirements.
Expected future mortality events will provide an opportunity
to observationally and experimentally test and compare these
metrics related to tree mortality for P. edulis via near-term
ecological forecasting (Clark et al., 2001; Dietze, 2017; Dietze
et al.,, 2018). Given that many current projections of P. edulis
mortality predict extensive mortality in coming decades (e.g.,
Adams et al.,, 2009, 2017a; Williams et al., 2013; McDowell et al.,
2016), we need to test these metrics and modifiers with upcoming
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