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Abstract— Positive bias instability stress (PBI) was done on ZnO
thin-film transistors (TFTs) with Al,O; deposition at 100°C and
250°C. The threshold voltage (Vy), transconductance (g,,), and
subthreshold slope (SS) were monitored where the 100°C
samples demonstrated a “turn-around” phenomenon in the AV
compared to the 250°C samples. The 250°C samples show
consistent +AVy, suggesting a higher AlL,O; deposition
temperature results in the absence of the defect responsible for
the “turn-around” effect. Both sets also demonstrate negligible
degradation in Ag,, and ASS — suggesting little to no influence on
the V7 shift by interfacial state generation.

Index Terms-- ZnO, TFTs, Al,O3, V1, PBI

I INTRODUCTION

Large-area/flexible electronics may rely on oxide-based
semiconductors that are desirable because of their
compatibility with low-temperature fabrication required for
large-area/flex-compatible technologies. ZnO is an oxide-
based candidate to be used as an active layer in thin-film
transistors (TFT) circuitry due to inexpensive processing and
noteworthy electrical performance [1]-[3] and possible uses in
flexible circuits [1]. For flex compatibility, deposition of high-
k gate dielectrics at these low temperatures will be required as
well.
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With all the low-temperature processing, thin-film transistor
reliability must be evaluated due to threshold voltage (V1)
instability experienced by TFTs with high-k dielectrics [4]—
[6]. In this work, TFTs are constant voltage stressed while
monitoring critical parameters to assess the reliability of ZnO-
based TFTs.

II. DEVICE AND STRESS PROCEDURE DESCRIPTION

Zinc-oxide TFTs are fabricated using traditional
photolithography to pattern staggered-bottom-gate and top-
contacts, as previously reported[7], with the final device cross-
section in Fig. 1. The devices are fabricated on a glass
substrate with patterned 135 nm of indium tin oxide (ITO) to
serve as the gate electrode. Then, a 15 nm Al,O; gate
dielectric is deposited by atomic layer deposition (ALD) at
100°C or 250°C followed by 45 nm of zinc oxide (ZnO) as the
semiconductor channel deposited by pulsed laser deposition
(PLD). A protection layer (parylene) is used prior to
patterning the ZnO, and then a hard mask (parylene) is
deposited to protect the TFTs from ambient conditions.
Finally, the gate and source/drain vias are opened in order to
deposit Al contact metal followed by patterning. Stress testing
was performed by applying stress voltages of either 5.5 V,
5.75 V, or 6 V to the gate only, with intermittent Ip-Vg sense
measurements.
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Figure 1. (left) Process flow for ZnO TFTs with Al,Os, (middle) cross-section schematic of the TFT structure, and (right) plan-view of the TFT structure.
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Figure 2. Example Ips-Vgs of TFTs with 100°C ALOs at 3 different stress
biases. The threshold voltage (V1) shift appears to be minor with no
apparent degradation in the subthreshold slope (SS); however, a “turn-
around” effect is observed during stress.
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Figure 4. The % change in maximum transconductance (g.) and
average subthreshold swing (SS,y.) for TFTs with 100°C ALLO; suggests
that there is little to no interface state generation contributing to AV
during stress.

III. DATA/RESULTS AND DISCUSSION

Low-temperature high-k dielectrics are essential for
compatibility with large-area/flex electronics. A comparison
between a 100°C and a more robust 250°C dielectric is needed
for understanding the effect of dielectric deposition
temperature on Vr instability. To demonstrate consistent
trends across devices, multiple TFTs were measured for each
deposition temperature at 3 different stress voltages. Vr is
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Figure 3.The AVr vs stress time for different sets of TFTs with 100°C
AlLO; at 3 different stress biases. The fitted lines show the AVy
demonstrating the “turn-around” effect shown in Fig. 2.

extracted using linear extrapolation of Ip-Vg at the point of
maximum transconductance. All devices had dimension of
W/L = 400/20 pm, as shown in the plan-view picture of a
device in Fig. 1.

A. AlLOj; Deposited at 100°C

Fig. 2 illustrates the evolution of Ip-Vg degradation for
devices with 100°C Al,O; at the three different stress bias
conditions. One can observe a minor V- shift with little to no
degradation in either g, or SS. Extraction of the AVt across
all three sets of TFTs in Fig. 3 yields a more comprehensive
understanding of the behavior of the V1 with stress time. At a
stress voltage of 5.5 V, the V1 monotonically increases, but at
voltages of 5.75 V and 6 V, an initial positive Vr shift is
observed followed by a negative Vr shift. This “turn-around”
phenomenon has been observed in Hf-based dielectrics [8], [9]
as well more recently in IGZO TFTs [10]-[12]. This effect is
exacerbated at higher voltages, consistent with previous
reports [13]. This suggests that for TFTs with 100°C Al,O;,
the defect mechanism responsible for the negative AVr is
dominant at higher voltages compared to the defect
mechanism responsible for positive AVt observed at the lower
voltage. This could be due to the lower temperature deposition
of 100°C, where an additional defect may be present, which
may be responsible for “turn-around” effect thereby enabling
electron de-trapping to occur at the same time as electron
trapping. Previous temperature dependent studies suggest that
higher residual hydrogen content (>10 at.%) in low
temperature Al,O; may be the culprit [14]. Fig. 4 shows the
negligible % change in the g, and average SS (extracted using
an exponential fit from 10" A to 107 A) for all sets with
100°C AlL,Os, suggesting little to no interface state generation.
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Figure 5. Example Ips-Vis of TFTs with 250°C ALOs at 3 different stress
biases. The threshold voltage (Vr) shift is significant in this dielectric
with no apparent degradation in the subthreshold slope (SS). No “turn-
around” effect is present during stress.
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Figure 7.The % change in g, and SS,. for TFTs with 250°C AlL,O;
suggests that there is little to no interface state generation contributing
to AVr, similar to the 100°C Al,O; samples.

B.  AL,O; Deposited at 250°C

The Fig. 5 demonstrates the evolution of the Ip-Vg for
devices with 250°C Al,Oj; at three different stress conditions.
One can observe a more prominent Vr shift, compared to the
100°C samples, with little to no degradation in either g, or SS.
The extracted AV with stress in Fig. 6 shows monotonically
increasing Vr across all sets, consistent with the trends
observed for typical PBI in MG/HK NMOS, suggesting an
electron trapping mechanism. Fig. 7 shows negligible %
change in g, and SS,,. for the 250°C samples, similar to the
100°C samples in Fig. 4, suggesting little to no interface state
generation contributing to the Vr shift.
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Figure 6. The AVr vs stress time for different sets of TFTs with 250°C
AlO; at 3 different stress biases. The fitted lines show trends consistent
with traditional PBTI in MG/HK nMOS degradation.

C. 100°Cvs. 250°C AL, 0;

At first glance, comparing the Ip-Vg measurements in Fig.
2 (100°C) with Fig. 5 (250°C), as well as Fig. 8, the low-
temperature Al,O3 appears to have smaller Vr shifts than the
250°C samples. Intuitively, the high-temperature Al,O3 should
have less V1 degradation, not more. This suggests that the two
different defect mechanisms attributed to the +AVt and -AVt
in the 100°C samples are competing, leading a smaller net
AVr; whereas, the 250°C samples only have contribution from
the defect mechanism attributed to the +AVr, as illustrated in
Fig. 9.

In an effort to comprehend why there appears to be this
turn around effect, further analysis was conducted. As
mentioned before, higher residual hydrogen content may be
incorporated in low temperature Al,O;, where the at % of
hydrogen present in low temperature Al,O; decreases
significantly with increasing temperature [14]. This would
further indicate that the higher concentration of hydrogen in
100°C Al,0; may be partially responsible for the observed
“turn-around” effect, whereas at 250°C, the reduction in
hydrogen content may not contribute significantly to the AVr.
Furthermore, after device fabrication and stress measurements
results, the “turn-around” effect prompted the investigation of
the elemental composition of Al,O; thin films in order to
ascertain if there was any other potential reason for the -AVr.
The XPS spectra of the Al,O; used in this work in Fig. 10
show Hf content in the 100°C Al,Os, as well as carbon. Yet,
the Hf is not present in the 250°C Al,O; sample, suggesting
the Hf may be a contributing factor to the “turn-around”
effect. There is also a reduction in carbon in the 250°C Al, O3,
as has been shown in previous reports [14]. Upon further
review, the 100°C Al,Oz deposition was done first, then the
250°C deposition. Thus, prior contamination from a previous
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Figure 8. Comparison of AVr at a fixed time between the TFTs with 100°C
AlLO; and 250°C ALO;. Results demonstrate lower AV for the 100°C
samples possibly caused by the proposed competing mechanisms of
simultaneous electron trapping and de-trapping within stress duration.
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Figure 10. Comparison of XPS spectra of different temperature Al,O;
with (left) Hf 4f and (right) C 1s. These spectra show Hf content in
oxide state, not metallic state, in 100°C Al,O; as well as C content. For
the 250°C Al,Os, the Hf is below the limit of detection and the C is still
present but at a lower concentration.

HfO, deposition provided the residual Hf detected in the
100°C ALOs.

Another future work would involve the deconvolution of
the exact defect responsible, whether it be the hydrogen or the
hafnium or both, and the removal of the defect attributed to -
AV to neutralize the “turn-around” effect in order to obtain a
better comparison between the 100°C and 250°C samples.

IV. CONCLUSIONS

To study the impact of low Al,O3 deposition temperature
on Vr instability, ZnO TFTs were subjected to gate stress bias.
For devices with Al,O5 deposited at 100°C, the Vr degradation
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Zn0
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ITO
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X = defect responsible for -AV;

Figure 9. The schematic cross-sections of the gate stack for ZnO TFTs with
different Al,O; deposition temperature, illustrating an additional, plausible
defect present away from the Al,O03/ZnO interface the defect mechanisms
responsible for +AVr and -AVr in the 100°C Al,O5 samples.

in the interspersed Ip-Vg measurements appears minimal.
Extraction of AVt for multiple sets of devices demonstrates a
“turn-around” phenomenon in samples with 100°C Al,O;,
which is attributed to two competing defect mechanisms in
Al,Oj; responsible for the +V and -V shifts. Compared to the
100°C samples, the samples with 250°C Al,O; demonstrate
monotonically increasing Vt with stress time and voltage,
consistent with trends observed for more traditional PBI in
MG/HK nMOS. Both sets of samples show little to no
degradation in g, and SS,,., suggesting that interface state
generation is not a major contributor to the Vr instability.
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