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Abstract— This paper presents an instruction-driven adaptive
clock management scheme using a dynamic phase scaling (DPS)
operation and compiler-assisted cross-layer design methodol-
ogy for a low power microprocessor. The intrinsic instruction-
level timing variation is explored on an ARMv7 ISA pipeline
architecture. The clock period can be dynamically adjusted by
a multi-phase all-digital PLL, with the timing encoded into the
instruction set at the compiler level. Special compiler optimiza-
tion schemes are also presented through reorganizing the runtime
instruction sequences to better exploit the dynamic timing slack.
In addition, an instruction timing calibration scheme is proposed
to characterize the instruction delay under process, voltage, and
temperature (PVT) variations, which can be integrated with the
conventional dynamic voltage and frequency scaling (DVFS).
The implementation of 55-nm CMOS process shows a 20%
performance improvement from the proposed instruction-driven
adaptive clock management. The performance improvement can
be equivalently converted up to 32% energy saving benefit.

Index Terms— Adaptive clock, all-digital PLL (ADPLL),
cross-layer design, dynamic timing slack (DTS), phase scaling
operation.

I. INTRODUCTION

HE increasing prominence of the low-power computing

applications, such as IoT or wearable devices, requires a
renewed focus on the system-level energy management. The
conventional dynamic voltage and frequency scaling (DVFS)
has become a widely utilized power management scheme
to scale down the core voltage and frequency to perform
program-level power optimization [1], [2]. As reported in [1],
there is a total of 48 voltage domains, with each regulated by
an on-chip voltage regulator to provide sufficient flexibility on
the power management for DVES. Although the prior schemes
achieve significant energy saving, the operation speed of
conventional DVES is bounded at the program level. In other
words, the longest exercised critical path delay within the
whole program determines the minimum voltage Vi, that can
be scaled to for each voltage domain.
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In the previous work, the minimum safety voltage Vpin
for different application programs have been studied for
various processor chips, such as an ultra-low-power MCU
chip [3] or an ARMv8 CPU chip [4]. These studies observed
that the Vi value varies significantly across different bench-
mark programs. Similar program-dependent Vp,i, behavior was
also observed in GPUs [5]. These prior studies show the
opportunities to exploit the program-level DVFS for extra
energy saving. However, the granularity of the previous DVFS
schemes was at the program level and cannot fully exploit the
critical path timing slack at the finer-grained cycle-by-cycle
instruction level. In fact, it has been observed that the critical
paths are not always exercised during real-time execution,
leading to the dynamic timing slack (DTS) existed within
every instruction cycle [6]. The error detection and correc-
tion (EDAC) techniques have been widely explored to detect
timing errors in real-time and coupled with DVFS schemes to
virtually eliminate the timing slack margins for fast-dynamic
and local variation [7]-[11]. The in-situ EDAC circuits can
monitor the timing violations of critical paths and can react
the operation failure by pipeline replay. The error detection
circuits can be realized by a double-sampling mechanism using
a flip-flop and a latch, tunable replica circuits (TRCs), or the
Razor techniques.

Although the EDAC techniques achieve notable benefits by
removing the timing margins, they are relying on circuit-level
timing speculation with allowing timing violation happened
at logic critical paths. In fact, there is significant deter-
ministic timing slack depending on the variation of runtime
instructions. In this paper, an instruction-driven adaptive clock
management scheme which operates at instruction level is
presented to exploit the runtime slack variation. The proposed
scheme can be used for the non-speculation processor, i.e., no
EDAC required. By identifying the DTS for different instruc-
tions, the clock period can be dynamically adjusted cycle-
by-cycle based on the runtime instructions with no timing
violation, which leads to significant performance improvement
benefit beyond the conventional program-level clock manage-
ment. The proposed design methodology also complies with
conventional design flow.

Previously, the adaptive clock techniques have been
explored to provide the timing adjustment under the events of
voltage supply droop with response time tens of nanoseconds
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[12], [13]. To exploit the deterministic timing slack based on
runtime instructions, the clock period is required to dynam-
ically adjust cycle-by-cycle. In [14], a look-up-table-based
cycle-by-cycle adaptive clock technique was presented for a
simple open-source pipeline design with most critical paths
located inside the EX stage. However, in the more complicated
pipeline architecture, such as the ARMv7 ISA core used in this
paper, most critical paths are located across pipeline stages and
heavily depend on the in-flight instruction sequences. As a
result, the scheme in [14] cannot handle a more complex
microprocessor design. Besides, the use of a look-up table
leads to the additional area and power overhead.

To exploit the intrinsic instruction-level timing slack, a
dynamic phase scaling (DPS) operation scheme is proposed,
where the clock period is modulated in real-time by instruc-
tions being processed inside the processor pipeline [15]. As the
extension from the previous preliminary results [15], this
paper presents the complete design vision and the approach
for the instruction-driven clock management techniques. The
contributions are summarized as follows.

1) In this paper, we present a complete design view of
exploiting instruction-level DTS for a 32-bit six-stage
ARMV7 in-order pipeline core. A cross-layer design
methodology through the compiler, architecture, and
circuit is demonstrated in a 55-nm test chip.

2) A zero-overhead timing encoding strategy is proposed to
encode the timing control into the instruction set. The
utilization of compiler for clock management enables a
new end-to-end clock design paradigm.

3) Compiler optimization strategies are proposed for the
first time to optimize the runtime instruction sequences
and gain additional performance benefit. This also
realizes our vision of cross-layer software/hardware
co-optimization.

4) A low-overhead instruction timing calibration technique
is proposed to capture the process, voltage, and tem-
perature (PVT) variation impacts. The dynamic timing
of each runtime instruction can be calibrated to further
improve the performance benefit. The calibration scheme
can be integrated with the conventional DVFES to com-
pensate for real-time PVT variations.

The rest of this paper is organized as follows. The
instruction-level timing slack and cross-layer design flow is
introduced in Section II. Section III presents the overall
scheme of the proposed instruction-driven clock management
and the details of DPS operation. Compiler-level assistance
including timing encoding and optimizations is illustrated
in Section IV. Section V introduces the proposed timing
calibration scheme. The measurement results obtained from
the test chip are shown and discussed in Section VI, followed
by the conclusion in Section VII.

II. TIMING SLACK AT INSTRUCTION LEVEL
A. Instruction-Level Dynamic Timing Slack

The conventional static timing analysis (STA) evaluates the
worst-case critical path inside each processor pipeline stage
and sets the critical path delay as the timing bound of the
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Fig. 1. Example of (a) dynamic delay simulation for six-stage pipeline and
(b) runtime DTS in comparison with the conventional clock period based on
STA.

operation (i.e., clock period). However, the DTS exists during
the program runtime when the critical paths are not exercised.
In this paper, we explore the DTS in our test vehicle, a 32-bit
six-stage in-order pipeline architecture using ARMv7 ISA,
with the pipeline stages instruction fetch (IF), instruction
decode (ID), operand fetch (OF), execution (EX), memory
access (MEM), and write back (WB).

A cross-layer simulation environment is built to perform
dynamic timing analysis for the runtime instruction traces.
The architecture simulator GEMS [16] is configured to run
simultaneously with the gate-level simulation to correlate
software instruction with the gate-level delay information
at cycle-by-cycle basis [17]. In the gate-level simulation,
the inputs of all the pipeline registers, i.e., D-flip-flop, are
tracked for the latest transition within every clock cycle
to identify the exercised critical paths delay, as shown
in Fig. 1(a). For every clock cycle, the longest dynamic delay
across all the pipeline stages is extracted and identified as
the minimum required clock period, i.e., dynamic timing.
Fig. 1(b) shows the cycle-by-cycle gate-level dynamic timing
for a sequence of instructions based on the cross-layer
environment above. The SPEC CPU2006 benchmark program
403.gcc is used for demonstration in this example [18]. The
gate-level timing analysis was performed on the final backend
design of the processor core using a 55-nm CMOS process.
As can be seen, a different DTS is observed within every
clock cycle inside the pipeline. The excitation of the critical
path only appears in small fraction cycles, e.g., triggered by
5%—-10% of instructions.

Fig. 2(a) shows the STA results in the logic heavy pipeline
stages (we exclude less timing-critical MEM and WB stages
for simplicity). Industry EDA tools were utilized for the
front-end synthesis and backend place and route design
flow. The sign off frequency of the baseline microprocessor
core is 625 MHz (1.6 ns). As shown by the STA, every
pipeline stage contributes to the critical paths, which
indicates that the pipeline has balanced critical paths across
all stages (IF: 26%, ID: 19%, OF: 19%, and EX: 35%).
Approximately 74% of delay paths from STA are fairly long
(longer than 1.2 ns or 75% of critical path delay). Further
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Fig. 2. Timing analysis histogram of the pipeline. (a) STA analysis high-

lighting the difference of timing distribution among instructions. (b) Cycle-
by-cycle dynamic timing from gate-level simulation, only a small amount of
cycles observed with long delay EX.

synthesis and place and route with tighter timing constraint
does not improve the frequency of the design but incurs
significant area increase. Hence, this design has been pushed
to its best performance.

Fig. 2(b) shows the histogram for cycle-by-cycle gate-level
simulation in the processor. Although STA reports 74% of
logic path delays are relatively long, gate-level dynamic timing
simulation shows only 14% of runtime exercises these long
delay paths. The remainder clock cycles only exercise short
delay paths. This is because many instructions are associated
with short delay operations, such as instruction mov. Fig. 2(a)
shows the distribution of a few selected instructions. Some
instructions have fundamentally longer delay than others, such
as cmp is significantly slower than mov, which is because the
latter performs a much simpler arithmetic operation in the EX
stage. Therefore, the attempts to equalize the instruction-level
timing are unlikely to change this result as the timing variation
among instructions is often due to their intrinsic difference in
logic complexity.

B. Architecture-Level Study of DTS

To fully understand the root reasons behind the observed
long delay instructions, we scrutinized critical paths inside
the backend netlist design of the processor. Each instruction
with long dynamic delay is mapped into gate-level netlist
and layout. It is interesting to observe that only the long
delay instructions at the EX stage are opcode dependent. The
instruction delays in the remaining stages are highly sequence
dependent. Fig. 3 shows several representative critical paths
after scrutinizing final backend design. MEM and WB stages
are excluded as instruction delays are fairly short within these
two stages. The correlations between the critical paths and the
dynamic delay are explained in the following.

1) Instruction Fetch: This stage normally only performs the
program counter (PC) “+4-4” operation leading to a relatively
short delay. However, under the branch conditions, a PC
update is issued from the EX unit within the same cycle. As a
result, any branch operation entering EX stage will trigger a
long delay path ended at the IF stage. A similar situation is
observed whenever PC is specially updated, such as the PC

PC Stall: push/pop/ldm/stm/Isl... Branch: beg/bne/blt/bge...

pmmm————— — T TT T T N Ot N M

{ ID v OF ! ]

i AN A :

: | ] Joen | :

1 G 1

| Decode [l ] | i

_-Logi !

'i' sle + : L) : i Flags :

| 1 g OpBi | |, (nzcv) T)

i =l T l

S RN N\ N B S T
Data Forwarding Complex ALU:

cmp/subs/mia...

Fig. 3.  Several representative critical paths mapped by the long delay
instructions in the pipeline design.

stall cases for special instructions like push and pop. The PC
stall instructions will exercise the long delay paths initiated
from the ID stage.

2) Instruction Decode: This stage only has a very small
amount of critical paths, which are highly related to the
runtime sequence of instruction EXs. The root cause is the
specific instruction sequences exercise the value transitions
of particular pipeline registers, which will trigger the critical
path toggling. Therefore, the dynamic delay of the ID stage is
determined by the successive runtime instructions.

3) Operand Fetch: The long dynamic delays in OF stage
are mainly caused by the instructions requiring operand
forwarding operations. For example, the instruction adds
rl, r2, and r3 followed by sub r2, r1, and r5 where the
operand of register 1 needs to be forwarded from the prior
EX stage. Such data dependence instruction sequences form
the read-after-write (RAW) operation and normally trigger the
long delay paths.

4) Execution Stage: The long dynamic delays in the
EX stage are caused by special instruction types, such as cmp
and subs which require some additional efforts to set up con-
ditional flags. Multiplication will also trigger long delay paths
due to complex computation. Instructions such as mov, 1dr,
str, and XOR will not require costly ALU operation and thus
only incur a short delay. In addition, for the branch scenario,
potential instruction sequences formed from the branch being
taken or not taken may also cause longer dynamic delays.

It is worth to mention that the interfaces between the
pipeline core and the caches have also been considered during
the timing analysis. The cache (SRAM) access time needs
to be taken into account for critical path delay calculation.
For the data cache, it is only accessed when the data need
to be read/write in the SRAM by load/store instructions. For
the instruction cache, the data need to be fetched every cycle
into the IF stage, except the PC stall cases. Different SRAM
sizes lead to various access time and impact the dynamic
timing of the pipeline core. However, for our targeted low
power microprocessor, the clock period is relatively longer
than the SRAM access time. In addition, conservative timing
constraints are added during the synthesis flow to guarantee the
interface setup/hold timing. Therefore, the critical paths inside
the pipeline dominate the longest dynamic timing during the
workload runtime.
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Fig. 4. High-level view of cross-layer hardware and software co-design to

enable end-to-end exploitation of the instruction-level timing slack.

C. Exploiting Instruction-Level DTS by Cross-Layer Design

As the localized design optimizations at any single level
of the system stack have been well-studied, cross-layer design
and optimizations present interesting opportunities for improv-
ing the energy saving and performance. Fig. 4 presents a
high-level overview of the developed approach. In contrast to
the conventional design strategies which attempt to decouple
many elements of software and hardware design, this paper
intends to provide circuit-level dynamic timing information
(hardware) to the compiler (software), which fully exploit
properties of the hardware. The co-design method enables an
end-to-end clock management paradigm, which utilizes the
high-level compiler to manage and optimize processor adaptive
clock and gain performance/energy benefit. The development
at each design layer is summarized as below.

At EDA level, methodologies of cross-layer DTS analysis
and generation of dynamic timing profiles are developed. This
technique captures comprehensive instruction-level dynamic
timing information and provides the baseline timing control
for the instruction-level adaptive clock.

At the compiler and architecture levels, a zero-overhead
instruction timing encoding strategy is developed as an exten-
sion to the ARMv7 ISA. The dynamic timing is encoded
into every instruction and is used to guide the real-time
cycle-by-cycle clock period adjustment. In addition, compiler
optimization methods are proposed to optimize the runtime
instruction sequence to gain additional performance benefit
based on the dynamic timing observations from the hardware.

At the circuit level, the dynamic clock period adjustment
is realized based on the developed multi-phase all-digital
PLL (ADPLL). The clock circuit allows the clock period
to be dynamically stretched or shrunk by 5%-40% of the
clock period at every cycle using the proposed DPS operation.
A special instruction timing calibration technique is developed
to track the timing variations during runtime and provide
timing compensation margin.

IIT. INSTRUCTION-DRIVEN CLOCK MANAGEMENT
A. System Scheme

Fig. 5 shows the overall implementation of the proposed
instruction-driven clock management scheme. The dynamic
clock period for every cycle is determined from the gate-level
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Fig. 5. Overview of the proposed system scheme implementation.

dynamic timing simulation and encoded into each instruc-
tion code by the software compiler during compile time.
In the test chip, a 32-bit six-stage in-order pipeline design
using ARMv7 ISA is implemented. A multi-phase ADPLL
is designed to support the DPS operation and provide the
adaptive clock period for all modules. Timing closure was
carefully performed across multiple modules, e.g., pipeline,
caches, register file, and PLL to guarantee no timing violation
under the aggressive clock adjustment. During the processor
operation, the instruction is fetched from instruction cache to
the IF stage, with its condition code sent to the clock manager.
The timing decoder decodes the condition code and issues
phase selection for the equally spaced phases from PLL DCO.

Instead of only relying on the simulated instruction timing,
an online instruction timing calibration scheme is implemented
to characterize the on-chip instruction timing under PVT
variations. In addition, the proposed timing calibration scheme
can be embedded into the normal program instruction to detect
the real-time timing variations and react by scaling down the
ADPLL frequency, i.e., change the PLL divider ratio, as the
conventional DVFS approach [7].

B. Multi-Phase ADPLL Implementation

To exploit the instruction-level timing slack, DPS operation
is proposed. A multi-phase ADPLL is designed to support the
DPS operation, as shown in Fig. 6(a). A multi-phase DCO
is implemented by an 11-stage tri-state ring oscillator array,
which is similar to [19] and [20], as shown in Fig. 6(b).
The frequency of DCO is proportional to the drain current
of the ring array and inversely proportional to the loading
capacitance. There are 4-bit coarse tuning and 7-bit fine tuning
to control active rings and loading capacitance, which achieves
the coarse and fine resolution 30 and 0.1 MHz. The key feature
of this multi-phase DCO is to provide 22 evenly delayed
phases, i.e., delay step fgep = TpLr/22, which will be used for
the phase selection. Identical fine capacitance loads are dis-
tributed at each phase node and carefully matched. When the
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runtime instructions dynamically require a longer or shorter
clock period, the phase selection is changed accordingly to
generate Tgyretch = Teik +1 X Idelay OT Tshrink = Teix —n X Idelay>
where n is determined by the encoded timing control. Note
that the ADPLL only needs to lock to the target frequency
at the beginning of the operation. During the microprocessor
operation, the ADPLL remains in the locked frequency and
only the selection of DCO phases is changed. Therefore,
the clock period can be adjusted at the instruction level for
every clock cycle without relocking the PLL loop.

The clock manager module including a timing decoder
logic and a clock phase selector is utilized to dynamically
select out one delayed phase and scale the output DPS clock
period, as shown in Fig. 6(c). The phase selection informa-
tion is encoded into the instruction condition code, which
is fetched from the instruction cache and sent to the clock
manager. The condition code is decoded by a timing decoder
to generate the phase selection (enable) signal. Every delayed
phase from the PLL DCO is connected to an integrated clock
gating (ICG) cell to avoid clock glitch. The ICG cell for
each clock phase is followed by a pull-down nMOS, with all
connected to a shared pull-up pMOS [21]. The decoded enable
signals will only select one ICG out of the total 22 ICG cells.

C. Dynamic Phase Scaling Operation

The detail DPS operation is shown by waveforms
in Fig. 6(d). The output DPS clock can either stretch the
clock period Tpyy, by scaling to later phases, e.g., from phase
0 to phase 2, or shrink the clock period by scaling to earlier
phases, e.g., from phase 2 to phase 1. At the beginning time #1,
the rising edge of phase 0 is selected to be the DPS output as
the en0 signal is high. At time 1, i.e., fps propagation delay
after 71, the rising edge of the phase 0 is propagated to the DPS
output node. This DPS clock will trigger the timing decoder
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(a) Top-level block diagram of the multi-phase ADPLL, detail schematic of (b) multi-phase DCO and (c) clock manager, and (d) waveforms of the

logic and pass the decoded phase enable signals for the current
clock cycle to the ICG cells. At time 3, the enable signal
of the new selected phase, i.e., phase 2, is toggled to high.
The ICG is a negative edge triggered cell, i.e., the selected
phase will be updated at time #4. Therefore, the rising edge
of phase 2 will be selected as the following DPS rising edge
at time 5. The overall clock period is hence stretched to be
longer than the constant clock period. Similarly, for shrinking
the clock period, the DPS phase needs to be scaled to earlier
clock phases.

There is a latency of two clock cycles required to allow
the encoded timing to take effect and adjust the clock period.
Within the first cycle, the instruction condition code is fetched
and sent to the clock manager. At the second cycle, the clock
manager decodes the condition code and guide the DPS phase
selection. The dynamic clock period is then taken effect at
the third cycle. As the microprocessor is in-order execution,
the execution order can be predicted at the compiler level.
Hence, the timing control is encoded two cycles earlier than
its actual execution. The unpredicted operations such as the
branch instructions are assigned the most conservative timing
control, i.e., stretched to the longest clock period.

IV. COMPILER ASSISTANCE FOR DTS

A. Encoding Timing Into Instruction Set

As the executed instruction of the processor is statically
scheduled, the compiler is able to predict all instructions that
occur in the pipeline and the upcoming instructions. The gate-
level dynamic timing analysis is used to generate the dynamic
timing profile by inspecting the sequence of operations. The
compiler encodes the dynamic timing information into the
instruction code to guide the real-time adaptive clock manage-
ment. This method avoids increasing the size of the instruction
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condition code field.

binary or dedicating additional hardware to store the clock
control.

In the 32-bit ARMv7 ISA, the condition code takes on MSB
bits [31:28] to represent 16 condition cases. However, in many
programs, the majority of instructions will not utilize the
condition codes. For the instructions utilizing condition codes,
the condition cases like equal (EQ) and not equal (NE) are the
most frequently used (~75% of the cases). The rest condition
cases are rarely utilized. Therefore, in this paper, the dynamic
timing is encoded into the 4-bit condition code by remapping
the condition code without increasing the instruction size.

As shown in Fig. 7, the LSB of condition code bit [28] is
used as a mode selector to identify the condition code usage.
If bit [28] == 0, the instruction will be executed uncondition-
ally and bits [31:29] specify a 3-bit clock control. The encoded
values allow the clock period 7pr 1, to be scaled in the range of
—30% to +40% for unconditional instructions. If bit [28] ==
1, i.e., indicating a conditional instruction, the instruction will
be executed using bits [30:29] to specify the condition cases
EQ/NE/GT/LE. Bit [31] is used to select the clock phases. For
conditional instructions, a binary choice of scaling between 0%
and 40% is implemented. Note the most stretched clock period
1.4Tp 1, is set equal to the conventional clock period T¢ik sTA
based on STA. Hence, the ADPLL is locked at 40% faster
than the conventional operation mode with a maximum speed
up of 70% compared with the conventional clock period.

To support the proposed timing calibration scheme, in the
special timing calibration mode, the MSB bit [31] of condition
code is utilized as a label for calibration instructions. The
bit [31] == 1 represents the calibration cycle, in which a
shorter clock period is provided to calibrate the minimum
timing requirement. Bit [28] is still used as a mode selector
as the normal operation mode. The bits [30:29] are utilized to
carry dynamic timing information for non-conditional instruc-
tions. In special cases when condition codes are used in
calibration mode, the phase selection is controlled by the
external control signals. During the timing calibration, the
target instructions or instruction sequences will be repetitively
operated with shrunk dynamic clock period. The minimum
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1. Instruction Substitution Example:

Stage Instr Delay
IF str r3, [sp] 0.86ns
add r3, sp, #112 0.95ns

OF beq <addr>
EX cmp r0, #0

0.93ns substitute
1.445ns < teqr0,#0 0.93ns

I
|
I
| ID
I
I
|

_MEM |
I 2. Instruction Reordering Example:
| Stage Instr Delay  Stage Instr Delay |
| IF cmp 5,10 0.56ns IF cmp 15,10 0.56ns |
| ID rsbr4,r1,r0 0.73ns ID str r2, [r3, #12] 1.02ns I
| OF str r2,[r3, #12] 132ns/ OF rsb r4ﬁ1, r0 0.82ns |
| EX add r3fr3, #8 0.93ns EX add r3,r3,#8 0.93ns I
| MEM . MEM . b
| 3. Long Instruction Overlapping Example:

Stage Instr Delay Stage Instr Delay

IF Isl r2,r2,#16 0.85ns add r4,r1,r0 0.84ns
052ns\ ID Isl r2, r2, #16

OF Idrb r2, [r1, #4] 1.02ns
EX beq <addr> 1.36ns

OF Idrb r2, [r1, #4] 1.02ns

I

I

I

1.26ns 1

I

EX beq <addr> |

|
|
| ID add r4,r1,r0
|
|

1.36ns

Fig. 8. Examples of the compiler-level instruction optimization.

clock period that guarantees instruction execution correctness
is recorded on-chip and read out as the calibrated timing.

B. Compiler-Assisted Optimization

We also introduce the compiler optimization schemes to
unlock additional gains from DTS. We leverage the dynamic
timing analysis and derive a few simple but useful code
transformations, which have no hardware overhead and are
easy to implement in the compiler. We implemented three
peephole optimizations: instruction substitution, instruction
reordering, and instruction overlapping, as shown in Fig. 8.
We implemented these optimization strategies in LLVM com-
piler [22] and evaluated their impacts in our test chip.

1) Instruction Substitution: The first optimization strategy
identifies long delay instructions and replaces them with
shorter delay instructions with the same semantics. This is
based on the observation that some instructions with the same
semantic show significant different delay time due to different
hardware mechanism. For example, in ARMv7 ISA, the check-
ing of “EQ to” relationship could be implemented using either
cmp or teq instructions. They are equivalent semantically,
while implementation-wise are quite different. teq sets the zero
status register if two operands are equal, which can be simply
realized by XOR gate, while cmp checks the relationship of
greater, equal or less than between two values and generally
requires subtraction using adders. As a result, teq can be
operated much faster than cmp as no subtraction is involved.
While there is no reward for such compiler optimization in
the conventional processor, it provides a reward for our DTS
exploitation.

2) Instruction Reordering: The second optimization strat-
egy finds the instruction groups which can be re-sequenced.
One usage example of this optimization is the data dependence
case, where the results need to be forwarded from an instruc-
tion to its immediate successor, as described in Section II.
Reordering instruction sequence will remove the adjacent data
dependence and create some new timing slack. As compilers
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Fig. 9.

typically apply re-orderings like this for other performance
reasons, we are merely introducing a new application.

3) Instruction Overlapping: The third optimization strat-
egy tries to overlap the occurrence of multiple critical path
stressing operations within the same clock cycle. For example,
if the critical paths are exercised at different pipeline stages
in successive cycles, this optimization attempts to reschedule
the instruction EX order so that the critical paths will be
exercised simultaneously. This allows the compiler to bundle
two or more clock stretching operations, i.e., long delay
instructions, into a single clock cycle.

V. INSTRUCTION TIMING CALIBRATION

To deal with PVT variations, an instruction timing calibra-
tion scheme is proposed. As shown in Fig. 9(a), different from
the conventional pipeline register, the calibration register (CR)
is designed with one more correct register appended to the
original register to store the correct operation value. During
the timing calibration, the original pipeline register holds the
register values at Q p under different clock periods, while the
correct register holds the correct EX values at Q¢ using a
conventional clock period. These two values are compared
by the following XOR gate, which generates an error signal
if two register values are different. The pipeline registers at
the end of the critical paths are selected by STA method and
replaced by the CR. As shown in Fig. 9(b), the critical paths at
each pipeline stage are carefully analyzed during the timing
analysis and can be calibrated by the CRs. During the core
implementation, 336 flip-flops out of total 2120 flip-flops are
replaced by the CRs, which leads about 3.8% area overhead of
the microprocessor design. By leveraging the calibration flip-
flops, about 24% critical paths inside the pipeline core can be
calibrated.

For each instruction or instruction sequence to be calibrated,
the test instruction patterns will be repetitively sent into the
pipeline. As an example shown in Fig. 9(c), the instruction

+40% DPS +0% DPS -20% DPS

(a) CR design for selected pipeline registers. (b) Implementation of the CRs inside the pipeline. (c) Operation waveforms of the calibration process.

sequence sub(EX)—cmp(OF) is calibrated, which is signified
by the calibration label, i.e., MSB of condition code = 1,
for the execution cycle. All the rest in-flight instructions are
replaced by no operation (nop) instruction to remove potential
delay impact. The first-round execution of the test pattern
is given a longest stretched clock period, i.e., +40% phase
scaling, to avoid timing violation. As the longest clock period
is assigned, the correct operation data are captured by the
pipeline register at D p and the CR D¢. As shown in the wave-
form, the CR holds the correct value at Q¢ after the first-round
execution. In the subsequent run, a shrunk clock period is
given and the output of the pipeline registers will be compared
with the stored correct results through XOR gates. In the exam-
ple in Fig. 9(c), the DPS clock period is shrunk to +-0% and
—20% for the same instruction sequence execution. The +0%
DPS clock period still can capture the last transition at Dp
node, while —20% DPS clock period is too short to latch the
proper register value leading the error signal appears. An auto
testing program flow was built to automatically send multiple
test instruction patterns into the chip for the timing calibration.

During the instruction timing calibration, the error signals
generated by these CRs due to the timing violation will be
sent and saved in a small on-chip register file and readout
as the calibration results. Therefore, both the timing violation
value and pipeline stage can be obtained during the off-chip
analysis. The calibrated instruction timing will be further used
as the encoded timing at the compiler level.

It is worth to mention again that the dynamic timing is
mainly determined by the instruction sequences, e.g., the data
dependence cases. Even for single instruction, its dynamic
timing is also related to the instruction in the previous cycle.
It is common that the activities on input pipe registers are
constrained from its past state, i.e., the history of the previous
instruction execution. Therefore, during the timing calibration,
we selected several representative instruction sequences to
calibrate the instruction timing. Each calibrated instruction
sequence will be sent into the pipeline repetitively, with using
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Implementation Details

Process 55nm CMOS
Core Power 106.8mW
Baseline Freq. 650MHz
Nominal Vdd 1.2V
Total Area 0.807mm?
Instr. Cache 2KB SRAM
Data Cache 2KB SRAM
Register File 128B
Cali. Result 32B

Fig. 10. Die photograph and implementation details of the chip.
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2% 19,

Manager
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Fig. 11.  Test chip (a) area and (b) power breakdown.

Fig. 12. Example of using dynamic delay simulation to show the
cycle-by-cycle critical path in the layout.

“nop” instructions added in between, as shown in Fig. 9(c).
Therefore, the exact same pipe register conditions can guar-
antee to exercise the same critical paths during each round of
the timing calibration.

VI. IMPLEMENTATION AND MEASUREMENT
A. Chip Implementation

The proposed microprocessor design is fabricated in a
55-nm low-power CMOS process, as the die photo and the
implementation details shown in Fig. 10. The overall micro-
processor area is about 0.807 mm?. The instruction cache and
data cache are implemented by commercial SRAM compiler.
The baseline operation frequency is about 650 MHz, which is
the measured maximum operation frequency using the conven-
tional clocking scheme without timing violation. The internal
cache/RF values were scanned out to evaluate the proper

Pregsam ¢xe¢iioghows the area and power breakdown for
the chip implementation. The area overhead of the clock
manager module, as the red square in the photo, is only
1.6%, which could be even smaller for a larger microprocessor
design. The timing calibration scheme takes about 3.8% area,
which mainly contributed by the storage memory for the
calibration results. The power overhead for the clock manager
and calibration are less than 1% and 2%, respectively.

Fig. 12 shows an example to show the difference between
STA result and the runtime dynamic timing at the same
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Conventional Clock:

Benchmark: 403.gcc

mov Idr orr bne sub and cmp b mov mov rsb add .str Idr

Instruction-Driven Adaptive Clock: 18% Speedup

(W QAN e

§mov Idr orr bnesubandcmp b movmov rsb ada‘s

Tshrlnk Tstretch

Fig. 13.  Measured clock waveforms in the conventional normal operation
mode and the instruction-driven adaptive clock mode for the same instructions.

1.Substitution 2, Reordering 3.Overlapping

3 1 ' ' ' . |
3 ﬂ I AL
= !
£ msﬁr 3 "'\ Bl en j \ g 1D "!r
2 and H mov.lsr o sub r2, ,mOV'bSQ. Isl | orr |
o |r1r7|r2r0' r1#12 |eor|add|movlbeq
g ERE A | A | RCHnstr
8 S A A T
T Il | il .(l\i\.'z i ‘\'}a,
g : | ] e A1 x/:b& {2 £
= Isrr mov| sub r2, IoVbeqlIong WISThs) =
& far | sub: "eq'"'o"' and :r2r0:r7 17} 1,813 ! eor ! add jmov] ! beg 23
i o
Speedup: 17% 10.8%

cycle / overall )45% / 2 1%

27% 1 1.4%
(b) (©

Fig. 14. Measured clock waveforms using the proposed compiler optimiza-
tion techniques. (a) Instruction substitution. (b) Reordering. (c) Overlapping.

pipeline stage. When using the conventional STA method to
report the longest delay, the STA pessimistically assume all
the input start point can toggle the critical path and then
find out the longest delay path. However, in real operation,
the maximum dynamic delays vary significantly at each cycle
due to different hardware root causes. The exercised critical
paths, i.e., longest delay paths, for each cycle are highlighted
for the example in Fig. 12. The layout view shows that the
exercised critical path for each cycle is quite different, while
they are all shorter than the critical path reported by the
conventional STA method.

B. DPS Clock Measurement

The ADPLL clock generated can operate with either a
constant clock period in a normal operation mode or dynamic
clock period at the DTS exploitation mode. As shown
in Fig. 13, during the normal operation mode, the processor
was operating at the baseline operation frequency using con-
ventional clock scheme. During the DTS exploitation mode,
the clock period is guided by the encoded timing inside
every runtime instruction and dynamically shrunk or stretched
for short or long delay instructions. As an example shown
in Fig. 13, the proposed instruction-driven adaptive clock can
be successfully scaled based on the encoded dynamic timing
information and achieve the performance improvement by
about 18% for the same segment of instructions. The distortion
in the clock measurement waveform is due to impedance
mismatching on PCB traces and is not present inside the chip.

The proposed compiler assistance schemes for instruction
sequence optimization were also verified on the test chip. The
measured instruction substitution, reordering, and overlapping
examples are shown in Fig. 14. By substituting a long delay
instruction with a shorter one, up to 45% speedup can be
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obtained within one single clock cycle. Overall, the compiler Fig. 16. (a) Measured Shmoo plot and (b) power consumption with scaled

assistance provides more than 4% performance improvement
over the entire program execution. This compiler optimization
opportunity is unique to our DTS exploitation scheme and does
not exist in conventional worst-case bounded pipeline design.

C. Performance Measurement

Fig. 15 shows the performance and energy benefits by
leveraging the proposed DPS operation for different bench-
mark programs. Six benchmark programs from the SPEC
CPU2006 benchmark suite were utilized during testing to
represent different application categories [18]. All bench-
marks were cross-compiled for the ARM architecture using
LLVM compiler [22]. As shown in Fig. 15(a), the proposed
instruction-driven adaptive clock scheme achieved about 14%
performance improvement based on the simulated dynamic
timing profile. The proposed timing calibration scheme was
utilized to obtain more accurate instruction dynamic timing
under process variation. In the experiment, the instruction
timing calibration leads to additional performance improve-
ment by 3%—5% or about 8% additional energy saving. With
leveraging the compiler to optimize the runtime instruction
sequences, the performance improvement is further increased
by up to 4%. Overall, the proposed DPS scheme achieved up
to 22% performance improvement with an average of 20%
across different test programs. The proposed DPS scheme can
also obtain energy saving benefit by scaling to a lower supply
voltage. For the energy benefit measurement, we drop supply
voltage while keeping the effective clock speed the same as
conventional clock speed to maintain the same total execution
time. The benchmark is executed under scaled voltage levels.
The lowest voltage level with correct program execution is the
minimum voltage level, and power is measured at this setting
to obtain effective energy saving. In the experiment, an average
of 28% and up to 32% energy saving was achieved by the
proposed DPS operation scheme, as shown in Fig. 15(b).

Shmoo plot and measured power with the supply voltage
scaling from 1.2 down to 0.6 V are shown in Fig. 16(a).
Without DPS operation, the test chip can operate correctly
up to 650 MHz at a supply voltage of 1.2 V. With enabling

voltages with and without enabling the proposed DPS operation.
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Fig. 17. (a) Measured instruction timing. (b) Power saving benefit across

12 test chips.

DPS operation, the effective operating frequency is improved
to 780 MHz by 20%. When applying the scaled supply voltage,
the instruction timing is calibrated at each voltage level, and
the performance improvement is maintained. At 0.6 V, about
17% of performance improvement can be obtained. Fig. 16(b)
shows the power consumption of the processor with scaled
supply voltages. With enabling the DPS operation, about 28%
and 24% power reduction can be achieved at nominal 1.2 V
and low voltage 0.6 V, respectively.

D. Instruction Timing Calibration

The timing of individual instruction or instruction patterns
is calibrated across 12 test chips with chip—chip variation.
Fig. 17(a) shows some representative instruction timing cali-
bration results. It is observed that the instruction timing only
varies within a relatively small timing range. The simulated
individual instruction delay at typical condition is compared
with the measurement for a sequence of instructions, as shown
in Fig. 18. A very small constant frequency offset was
observed, most likely due to the test chip being fabricated
at a slightly fast corner. Although there is a small variation
between simulation and measurements on different chips, the
overall timing profiles are very close. This shows the simulated
dynamic timing profile can be used to generate the general
timing profiling. Fig. 17(b) shows the measured energy saving
benefit across chips using benchmark gcc. The proposed DPS
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Fig. 18. Measured and simulated instruction delay in an instruction sequence
of benchmark gcc.
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Fig. 19. Power saving versus (a) voltage scaling and (b) temperature change
with and without timing calibration scheme.

operation maintains similar benefit, with at least 27% energy
saving, across multiple chips.

The benefits of the calibration scheme under different supply
voltage and temperature conditions were also tested and shown
in Fig. 19. An interesting observation is that the benefit
varies significantly based on which timing profile is used. The
dynamic timing profile generated based on the timing library
at 1.2 'V has energy saving benefit dropped from 25% to 15%
at 0.6 V due to different instruction timing characteristics at
different supply voltages. On the other hand, the 0.6-V timing
profile generated using low-voltage timing library was opti-
mized for 0.6 V but does not produce the maximum benefits
at 1.2 V. As a result, the proposed timing calibration solution
can be used to calibrate and adjust the timing profile for large
voltage ranges showing the optimal results at all conditions.
As shown in Fig. 19, for both voltage and temperature changes,
the timing calibration scheme remains energy saving above
26% from 0.6 to 1.2 V and from 27 °C to 110 °C. Note that
only large supply voltage change creates a large variation to
the instruction timings based on our measurement. For small
variation, e.g., temperature or supply noise, a single timing
profile is sufficient for use.

The proposed timing calibration can be integrated online
with conventional DVFS operations. As an example shown
in Fig. 20, the special calibration instructions are periodically
embedding into program runtime to detect the real-time timing
variations. Therefore, when executing programs, the instruc-
tion timing is periodically calibrated, and the error signal is
generated to indicate whether there is a loss of timing margins.
In our experiment, the calibration instructions will take 8 clock
cycles to complete the timing calibration. These calibration
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Fig. 20. Online timing calibration scheme integrated with the DVFES to adjust
PLL frequency under noise droop event.

instructions have been inserted into the workload by every
five thousand instructions, which leads negligible performance
penalty. The proposed calibration scheme can be utilized to
detect the slow real-time PVT variation. Whenever the timing
violation is detected, the calibration error is sent to the clock
manager guiding adjustment of the PLL divider ratio. As an
example in Fig. 20, the PLL reacts to the supply noise droop
by reducing the PLL divider ratio following the error message
detected by calibration instructions.

E. Comparison and Discussion

1) Conventional DVFS [1]: As discussed earlier, the pro-
posed technique is orthogonal to conventional DVFS which is
constrained to low-speed program-level frequency adjustment
and only works on the worst-case critical path of a design. The
fine-grained instruction-driven adaptive clock management in
this work can be applied to the top of existing DVFS to achieve
additional saving.

2) EDAC/Razor Techniques [7]-[11]: Table. 1 listed the
comparison between the proposed work and the prior EDAC
techniques. EDAC/Razor technique is speculative and brings
benefits of error tolerance that our proposed technique does
not have. However, there are significant design overhead and
challenges in EDAC techniques including new error-detection
flip-flop/latch design, min-delay padding, exacerbated hold
timing risks and special timing closure flow. In addition,
the architecture needs to be modified to support the pipeline
replay after the timing error detected. In our design, both
digital front-end and back-end implementation are identical
to the classic ASIC design. Hence, it is much easier to
implement our technique compared with Razor. The proposed
instruction-driven clock management technique is exploiting
the deterministic timing slack difference between different
instructions and does not require error detection and pipeline
recovery. The proposed technique is also orthogonal to Razor
technique as Razor can be implemented with the proposed
scheme to achieve additional saving.

3) Droop-Based Adaptive Clock [12], [13]: The prior adap-
tive clocks schemes can detect the dynamic voltage droop
and mitigate the voltage guard band by adaptive adjusting
the operation frequency. The voltage variation monitor (DVM)
design, i.e., TRCs, is required to monitor the voltage droop.
In addition, the mismatch between the replica circuit and the
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TABLE I
PERFORMANCE SUMMARY AND COMPARISON
[7] 11°JSSC | [9] 08°ISSCC [10] [11] [12] [14] This work
13’ISSCC 16’ ISSCC 15’ISSCC 16’ESSCIRC
Process 45 nm 130 nm 45 nm 40 nm 16 nm 28 nm 55 nm
Architecture LEON-3 Alpha Alpha Cortex-R4 MAC OpenRISC ARM CPU
Pipeline Stages 7 7 7 8 -- 6 6
Frequency 1.45 GHz 185 MHz 1.2 GHz 843 MHz 2.5 GHz 1106 MHz 625 MHz
Power 135 mW 94.3 mW Not reported 113 mW 250 mW 88 mW 107 mW
Timing Error EDS Razor II Razor-lite iRazor Replica Lookup Compiler
Detection Latch Latch Flip-Flop Latch DVM Table Encoding
Timing Error Pipeline Pipeline Pipeline Clock Gating Reduce to Adaptive DPS Adaptive
Management Replay Replay Replay 1/2 Felk Clock Clock
Core Recovery Yes Yes Yes No No No No
Special Latch/FF Latch Latch Flip-Flop Latch -- -- Calibration FF
Modified FF #/ 0 121/ 492/ 1115/ 336/
Total FF # 12% 826 2482 12875 B B 2120
Energy Saving 22% 35% 45.4% 41% 13% 15% 28%
Area Overhead 3.8% Not reported 4.42% 13.6% 4.4% ~7.3% 31:3((,)//2 f:g; g;?

pipeline critical paths may lead to pessimistic benefit and
needs to be carefully calibrated [12]. Compared with the pre-
vious supply droop based adaptive clock, this paper focusing
on exploiting the deterministic instruction based DTS.

4) Prior Instruction-Level DTS Technique [14]: The pre-
vious study is based on a simple open-source pipeline archi-
tecture, with most critical paths located inside either Fetch or
EX stage. Therefore, a simple instruction based clock solution
with a look table design is sufficient to exploit the instruction
timing slack. However, in the more complicated pipeline archi-
tecture, most critical paths are located across pipeline stages
and heavily depend on in-flight instruction sequences. The
proposed timing encoding scheme which leveraging high-level
compiler can efficiently deal with the instruction sequence-
dependent clock management and does not incur look-up table
overhead. In addition, the online calibration scheme can further
characterize the instruction timing under PVT variations.

5) Prior Program-Level DTS Technique [3]: The architec-
ture used in [3] was the openMSP430 processor, which is
a simple 16-bit single cycle architecture. The achieved DTS
benefits rely on no EX of the critical path in a complete
program. In our analysis on ARM operation, a critical path
is frequently executed in 10%—-20% of the time rendering no
benefit from the previous technique due to the slow DVFS
speed. Hence, our proposed technique is more applicable to a
general pipeline architecture.

6) Other Related Work: Increasingly, the cross-layer opti-
mizations that couple modifications in architecture with cor-
responding changes in the circuit implementation and code
generation, are applied to maximize the performance of the
system. In Blueshift and DynaTune, timing speculation
was built from the ground up coordinating circuit-level
characteristics like gate-sizing and Vth assignment to control
error rates and maximize the benefits of the architecture

[23], [24]. Relax introduced a framework that supports soft-
ware recovery of hardware faults including ISA extensions and
compiler support [25]. Speculative dynamic timing exploita-
tion was proposed where improvement on performance was
achieved using Razor based technique [6]. The design that
ties opcodes with critical path activity and allowing the system
to operate in more aggressive modes was proposed, however,
without further support from software compiler and required
additional hardware to store operation information [14]. Com-
pared with the above work, our work is the first demonstration
of a full-layer implementation of the DTS exploitation micro-
processor design with validation of real silicon operation and
PVT variation tolerance. The cross-layer co-design method-
ology bridges the low-level hardware timing information and
the high-level compiler leading to a new end-to-end design
approach for software and hardware co-optimization.

VII. CONCLUSION

In this paper, an instruction driven DPS operation is pre-
sented to exploit the DTS of instructions on an ARMv7 micro-
processor. By building a cross-layer design environment and
utilizing the multi-phase ADPLL, the circuit-level delay infor-
mation is delivered to the compiler to provide runtime tim-
ing control dynamically at the instruction level. In addition,
an online instruction timing calibration scheme is used to
characterize chip variations. The proposed instruction-driven
clock management technique was implemented in a 55-nm test
chip achieving 20% performance improvement or 28% energy
saving benefit.
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