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Abstract

Fourier ptychographic microscopy enables gigapixel-scale imaging, with
both large field-of-view and high resolution. Using a set of low-resolution
images that are recorded under varying illumination angles, the goal is
to computationally reconstruct high-resolution phase and amplitude im-
ages. To increase temporal resolution, one may use multiplexed measure-
ments where the sample is illuminated simultaneously from a subset of
the angles. In this paper, we develop an algorithm for Fourier ptycho-
graphic microscopy with such multiplexed illumination. Specifically, we
consider gradient descent type updates and propose an analytical step size
that ensures the convergence of the iterates to a stationary point. Fur-
thermore, we propose an accelerated version of our algorithm (with the
same step size) which significantly improves the convergence speed. We
demonstrate that the practical performance of our algorithm is identical
to the case where the step size is manually tuned. Finally, we apply our
parameter-free approach to real data and validate its applicability.

1 Introduction

Fourier Ptychographic Microscopy (FPM) is a computational imaging technique
that—guided by synthetic aperture principles—generates gigapixel images with
both wide field-of-view and high resolution [?]. The system is realized by replac-
ing a microscope’s illumination unit with a light-emitting diode (LED) array.
As LEDs illuminate the sample from different angles, the camera captures mul-
tiple intensity images of different spatial frequency bands of the sample, without
moving parts. Based on a nonlinear inverse problem, which is a type of phase
retrieval [?], the low-resolution measurements are used to computationally gen-
erate a high-resolution image of the sample in both amplitude and phase.
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FPM has been established as a viable tool for bioimaging applications [?,?,
?,?], including live cell imaging [?] for studies such as stem cell development and
drug discovery [?]. Sequential data collection (i.e. one image collected per LED)
has limited temporal resolution, preventing dynamic imaging. This has been
addressed bymultiplexed coded illumination, where a random subset of LEDs are
turned on at the same time to reduce the total number of images that need to be
taken [?]. However, the multiplexed information must then be decoupled, which
can make the reconstruction less robust to noise and model-mismatch [?]. This
puts emphasis on the stability (such as convergence and sensitivity to hyper-
parameters) of reconstruction algorithms for FPM, especially when multiplexed
illumination is used.

Several algorithms have been proposed for solving the phase retrieval prob-
lem within the context of FPM [?]. Existing reconstructions have noticeably
capitalized on gradient descent type methods (and their projected variants)
for the multiplexed illumination case [?]. They provide a favorable trade-off
between the reconstruction quality and compute time [?]. However, the very
fundamental question of how one chooses the step size has not been rigorously
investigated. Since the acquisition parameters (for instance, the illumination
coding and number of measurements) can vary, the importance of a systematic
approach to determine the step size is pronounced in practice. While there are
known strategies for quadratic cost functions of the phase retrieval problem [?],
these approaches do not apply to other cost functions including those that are
effective for the FPM model at hand [?]. More importantly, these heuristics do
not provide us with convergence guarantees except for idealized random models
such as those in [?,?,?].

In this paper, we develop an auto-tuned algorithm for FPM with multi-
plexed coded illumination that is based on theoretical principles. To that aim,
we propose a gradient descent algorithm called the accelerated Wirtinger Flow
(AWF). Our main contributions are:

� The proposal of an analytical expression to select the step size, which
makes the final algorithm free of tuning parameters. The framework is
applicable to any type of LED selection for multiplexing.

� The stationary point convergence of the Wirtinger flow iterates with the
chosen step size.

� The illustration of AWF’s convergence speed reaching its analogue with
manually optimized step size. We also demonstrate the applicability of
AWF to real data.

2 Forward Model

We start with a mathematical description of the measurement formation process
in FPM with multiplexed coded illumination. Consider the setup in Figure 1,
where an array of LEDs is used as the illumination source of a standard micro-
scope. The coordinate vector is given by (r, z) where r = (r1, r2) ∈ R

2 denotes
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the spatial location on a transverse plane perpendicular to the optical axis z. A
thin sample (that is the 2D object to be imaged) is located at z = 0, which is
also the rear focal plane of the objective lens.

The sample is characterized by a complex-valued transmission function

s(r) :=
√
Is(r) exp (jφs(r)), (1)

where j2 = −1 and the continuous mappings Is : Ω → R and φs : Ω → R

represent the spatial intensity and phase maps (of the sample), respectively.
The domain Ω is assumed to be a compact subset of R2.

Placing the LED array sufficiently far away, each LED’s illumination is mod-
eled as a monochromatic plane wave at the sample plane z = 0. When the ith
LED is switched on, the field exiting the sample (and entering the microscope
objective) is given by si(r) = s(r) exp (2πj〈ξi, r〉) , where ξi is the spatial fre-
quency vector of the corresponding angle of illumination1. In effect, each si
is uniquely described by shifting the Fourier transform2 of the transmission
function ŝ since it holds that ŝi(·) = ŝ(· − ξi).

Due to the finite-aperture objective lens, the exit field is low-pass filtered
as it goes though the microscope. The process is specified by the pupil func-
tion p̂, which is the Fourier transform of the coherent point spread function [?],
and suppresses spatial frequencies beyond the diffraction limit (the pupil func-
tion is 1 inside the numerical aperture (NA) of the objective and 0 otherwise).
Consequently, the camera captures the intensity of the lower-resolution field,
expressed as:

Ii(r) =
∣∣∣F−1 {(p̂(·) ŝ(· − ξi))}

∣∣∣
2

(r). (2)

We see in (2) that FPM can sample spatial frequency bands beyond the diffrac-
tion limit via angle-varying illumination, however phase information is lost. By
sampling the spatial frequency bands with overlapping regions, FPM enables
phase retrieval, but this typically requires excessive redundancy [?]. Multiplex-

ing fixes this (i.e. less redundancy) without making the phase retrieval fail. In
this approach, rather than turning on LEDs on one at a time, a subset of LEDs
are simultaneously lit [?]. Since LEDs are mutually incoherent with each other,
the total intensity of the multiplexed measurement is expressed as the sum of
the intensity if each LED was switched on individually:

IM(r) =
∑

i∈M

Ii(r), (3)

whereM denotes the index set of the selected LEDs.

1ξi := (1/λ)(cos(αi), cos(βi)) where λ is the wavelength; αi and βi are the angles of
incidence on the axes r1 and r2, respectively.

2The Fourier transform f̂ of a function f is defined by

f̂(ξ) = F {f} (ξ) :=

∫∫
f(r) exp (−j2π〈ξ, r〉) dr.
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Here, K represents the total number of captured multiplexed images. An itera-
tive approach to solve this problem is to consider gradient descent type updates
of the form

st+1 ← st − µt∇J (st), (6)

where µτ is the step-size at iteration t. Since the cost function J is not complex-
differentiable3, we shall rely on the notion of Wirtinger derivatives to define the
gradient ∇J and, hence, refer to (6) as Wirtinger Flow (WF)4 [?]. Still, the cost
function is differentiable (even in the sense of Wirtinger derivatives) except for
isolated points so that we use the notion of generalized gradients. This allows
us to define the gradient at a non-differentiable point as one of the limit points
of the gradient in a local neighborhood of the non-differentiable point [?]. For
our cost function in (5), the generalized gradient takes the form

∇J (s) :=

K∑

k=1

∑

i∈Mk

CH
i P

HFe, (7)

where

e =



√ ∑

i∈Mk

|Ais|2 − yMk


�


 Ais√∑

i∈Mk
|Ais|2




with Ai = FHPCi. Here, � denotes the Hadamard (i.e. element-wise) product
while PH and CH

i are the adjoint operators of P and Ci, respectively. Note
that for a complex-valued vector a, the element-wise division a/|a| results in a
vector whose entries contain the phase of the entries of a.

Based on bounded Hessian arguments5, we propose the following step size
for the WF iterations in (6):

µt = µ :=
1∥∥∥

∑K

k=1

∑
i∈Mk

CH
i P

HPCi

∥∥∥
2

. (8)

This proposed step size is general and can accommodate any illumination coding
design represented byMk, k = 1, . . . ,K. Moreover, we establish that

∥∥∥∥∥

K∑

k=1

∑

i∈Mk

CH
i P

HPCi

∥∥∥∥∥
2

=

∥∥∥∥∥
∑

i∈A

|Pi|
2

∥∥∥∥∥
`∞

, (9)

where A := ∪Kk=1
Mk and ‖·‖`∞ is the maximum norm. Here, Pi represents a

shifted pupil function that is centered at ξi. Therefore, under the assumption of
an ideal pupil function, the step size is inversely proportional to the maximum
redundancy factor of the sampling in the Fourier domain.

3J is a mapping from Cn to R≥0 so that it is not holomorphic.
4It is noteworthy that (6) is also closely related to the well-known Gerchberg-Saxton

method [?].
5We omit the full derivation.
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3.1 Theory for convergence to stationary points

We now provide a theoretical justification for our choice of step size in (8). To
do so, we state the following theorem:

Theorem 1. For k = 1, 2, . . . ,K, let yMk
∈ R

m
≥0 denote the kth multiplexed

FPM measurement according to (4). We run the updates

st+1 ← st − µt∇J (st),

with ∇J (s) as defined in (7) and the step size µt obeying (8). Also, let s∗ ∈
argmin
s∈Cn

J (s) be a global optima. Then, it holds that

lim
t→∞

‖∇J (st)‖2 → 0,

and

min
t∈{1,2,...,T}

‖∇J (st)‖
2

2
≤

(J (s1)− J (s∗))

µT
.

Our theorem demonstrates that the WF iterates with our chosen step size
converge to a point where the generalized gradient is zero. This is a non-trivial
statement, as the cost function is non-smooth and there are many stationary
points where the generalized gradient does not vanish. We note that the theorem
does not imply convergence to a local optima.

3.2 Acceleration

We have shown that the WF iterates converge to a stationary point if the step
size is set as in (8). However, the convergence rate is still rather slow. To
overcome this challenge, inspired by the seminal work of Nesterov [?], we apply
an acceleration method to our WF scheme. The accelerated WF (AWF) updates
are

vt+1 ← st − µt∇J (st); (10a)

qt+1 ← 1/2 + (1/2)
√
1 + 4q2t ; (10b)

st+1 ← vt+1 + (qt − 1/qt+1)(vt+1 − vt), (10c)

where q1 = 1 and the step size µt is kept the same. We note that Nesterov’s
acceleration scheme is derived for convex and smooth functions, which is not
the case for the cost function in (5). Within our framework, it is used as a
remedy for improving the convergence in practice, which we shall demonstrate
in Section 4.
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Figure 2: Evolution of the cost function throughout with iterations: Wirtinger
Flow (WF) and its accelerated version (AWF) implement the updates in (6)
and (10), respectively.

4 Numerical Results

We illustrate the practical benefits of the AWF algorithm with both simulated
and experimental data. We start by investigating the efficiency of our analyt-
ical step size. We simulate the optical system in Figure 1 using the following
physically-accurate parameters: separation of the LEDs is 4 mm; distance of
the LED array to the sample is 77 mm; illumination wavelength is 514 nm;
microscope objective has 0.1 NA with 8× magnification; pixel size is 6.5 µm.
We consider a total number of 293 LEDs. Randomly chosen 4 LEDs are lit at
the same time for multiplexing.

For comparison, we manually optimize the step size for WF where we aim
at achieving the fastest-possible convergence speed while ensuring that the cost
function decreases as the iterations proceed. Once the step size is tuned, we
also incorporate the Nesterov’s acceleration. We run the algorithms for 500
iterations. All methods use the same initialization that sets a constant image
for both amplitude and phase.

By looking at the convergence plots illustrated in Figure 2, we see that
the AWF with our proposed step size is as efficient as its variant that uses a
manually-tuned step size. This shows that our parameter-free approach does
not compromise performance, providing us with a practical framework that does
not require any tuning. We see that Nesterov’s acceleration notably improves
the convergence speed for both cases. We also note that there is a significant
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the sequential ones (total of 293 images) for validation. We use AWF with the
proposed step size for both reconstructions (see Figure 3). Our experiments
show that FPM drastically improves the spatial resolution (approximately 5×)
of the imaging system. We also see that the reconstruction obtained from mul-
tiplexed measurements (with 30% less data) is similar to the one from the se-
quential data, but exhibits more artifacts.

5 Conclusion

We introduced a theoretically-sound reconsruction algorihm for multiplexed
FPM. Our main contribution has been the proposal of an analytical step size
for which we established a stationary point covergence. Considering a Nesterov-
type acceleration, we have shown that the practical convegence is as fast as the
case where the step size is manually optimized.
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