
An Edge-Focused Model for Distributed Streaming
Data Applications

V. K. Cody Bumgardner
Department of Pathology and Laboratory Medicine

University of Kentucky
Lexington, Kentucky, USA

Email: cody@uky.edu

Caylin Hickey
Department of Computer Science

University of Kentucky
Lexington, Kentucky, USA

Email: caylin.hickey@uky.edu

Victor W. Marek
Department of Computer Science

University of Kentucky
Lexington, Kentucky, USA
Email: marek@cs.uky.edu

Abstract—This paper presents techniques for the description
and management of distributed streaming data applications.
The proposed solution provides an abstract description language
and operational graph model for supporting collections of au-
tonomous components functioning as distributed systems. Using
our approach, applications supporting millions of devices can
be easily modeled using abstract configurations. Through our
models applications can implemented and managed through so-
called server-less application orchestration.

I. INTRODUCTION

The number of connected data-generating devices is rapidly
increasing. According to estimates, over 5000 new devices will
be added per minute between 2017 and 2018, with overall
connected device counts in the tens of billions by 2020 [1].
Connected devices include low-power sensors with consistent
data generation rates, and large sporatic data generators, such
as the Large Hadron Collider (LHC) [2]. Unlike computa-
tional simulations in high-performance clusters and computing
clouds, where often information remains in close proxim-
ity to computational resources and results are disseminated,
connected devices share the raw data they generate, often
transmitting data over long distances to remote destinations.
Connected devices are not just data producers, they also
consume data, which could come from geographically dis-
tributed sources. It’s common for every subsequent generation
of network technology to deliver an order of magnitude
improvement in bandwidth capacity [3] and public clouds pro-
vide seemingly endless computational resources. However, as
demonstrated through Fog [4] and Edge [5] computing efforts,
faster communications and remote clouds are not enough to
harness the deluge of often transient information generated
by an ever increasing number of sources. The coordinated
collection, analysis, and transmission of data generated by
dispersed and often disparate devices is long-standing area
of distributed systems research. The authors believe that if
properly described, a number of distributed computational
techniques can be brought to bear when designing end-to-end
streaming data applications.

We propose the Cresco Application Model (CAM), a graph-
based modeling language describing functional units, unit rela-
tionships, and operating characteristics used in the deployment
and management of distributed streaming data applications. In

the following sections we present the purpose of our work, our
proposed model, provide analysis of our approach, and report
experimental results.

II. SYSTEM MODEL

On a fundamental level streaming data applications can be
decomposed into data source, intermediate processors, and
data drain component types. As the name suggest, data sources
generate or feed data into the system, intermediate processors
manipulate data, and data drains function as gateways to
other applications or long-term storage systems. We assume a
one-to-many relationship between source inputs and outputs,
many-to-many relationship for intermediate processors, and a
many-to-one relationship for data drains.

The authors believe that the following characteristics and
operating parameters are essential in the management of
distributed streaming applications:

• Dynamic provisioning: The underlying infrastructure of
large distributed systems composed of heterogeneous
components will always be in a state of change. In
addition, the data-driven resource demands of applica-
tions are also prone to change. Applications must be
able to provision and re-provision functional units in
response to observations, predictions, or prescribed land-
scape changes. In this context, a functional unit can be
thought of as critical code and software dependencies
required to execute one or more well-defined tasks.

• Autonomous operations: Once provisioned, functional
units should operate autonomously and tolerate intermit-
tent control and data channel interruptions. For example,
if a unit loses contact with its control system, it should
continue to operate based on current configuration, while
attempting to re-establish administrative communications.
Likewise, if a functional unit detects a data plane failure
while communicating with a downstream node, it should
preserve (to the extent local resources allow), data to be
transmitted once communication has been re-established.

• Component- and system-level health and performance
evaluations: Functional units should periodically self-
report health and user-defined key performance indicators
(KPI) metrics for administrative purposes. In addition,
units should take action to avoid or correct predicted
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and observed component-level breaches of KPI metrics.
Administrative-system-supporting collections of compo-
nents should act on predicted and node-reported problems
through the manipulation of new unit configurations,
resources levels, and functional unit assignments.

• Modular scalability: The configuration of functional
units, especially those using intermediate processors,
should be replicable, allowing for linear scaling of as-
sociated workloads. In addition, instances of functional
units should be able to either directly, or through admin-
istrative request, self-replicate as determined through KPI
analysis.

• Fault tolerance: As described in the previous point, func-
tional units report health status periodically allowing ad-
ministrative systems to detect both known and unknown
failures. Known failures are reported directly by units and
unknown failures are determined by the absence of so-
called watchdog notifications within a predetermined in-
terval. With the exception of units with unique location or
hardware assignments, such as a specific physical sensor
gateway, most functional unit configurations should be re-
provisioned on the event of failure. In addition, dynamic
provisioning and autonomous operations principles allow
for the potential re-provisioning of one or more compo-
nents without the loss of data.

• System Optimization: In cases where KPI and other
observable metrics are available, collections of functional
units supporting applications should be continually eval-
uated based on predefined optimization criteria. When
administrative systems determine that improvements are
possible, reassignments should be made if dynamic pro-
visioning and autonomous operations principles can guar-
antee no loss of data or breach of KPI.

III. CRESCO APPLICATION MODEL (CAM)

A number of templates and related orchestration systems
have been proposed for infrastructure [6], platform [7], and
multi-cloud [8] application deployment. We make no claims
to improve upon existing cloud orchestration platforms. In
fact, a CAM streaming data application might make use of
underlying infrastructure or software dependencies provided
by one or more cloud orchestration tools. We focus on
addressing declarative relationships between data flow and
functional units operating within intent-based parameters. This
is to say, we assume an existing application-layer abstraction
with limited control or insight into underlying communications
networks, clouds, or associated systems.

In this section we cover the format of the Cresco Appli-
cation Description Language (CADL), an external descriptive
model, and we cover the Cresco Graph Database (CGD), the
internal operational model representing distributed streaming
data applications.

A. Cresco Application Description Language (CADL)

We find it convenient to model the descriptions of dis-
tributed applications and their related data flows as directed

graphs, as defined below:
• Nodes: Graph nodes are descriptions of context-based

functional units defined by abstract configurations. Nodes
provide one or more configurable data input and output
specifications. In addition, nodes can optionally provide
specific KPI for component evaluations. For example,
a streaming complex event processing (CEP) [9] node
might describe a self-contained system to retrieve data
from a queue, perform some action on incoming data,
and emit data to a queue when specific conditions are
met.

• Edges: Graph edges define the relationships between node
instances and the potential data transformation between
node instances. For example, an edge relating two CEP
nodes might convert the output of an upstream node to a
format that is usable by a downstream node.

• Pipelines: Pipeline (graphs) are collections of nodes and
edges that abstractly describe the arrangement, function,
and performance requirements of distributed applications.
For example, a pipeline application might define a hier-
archy of upstream and downstream CEP nodes that allow
for high-rate distributed data processing with low-rate
aggregated result reporting.

The format of CADL node fields and requirements are
shown below:

• [node id] (required, unique): Node IDs are unique iden-
tifiers for nodes within specific pipelines.

• [node name] (required): Node names are used as short
descriptions for nodes within specific pipelines.

• [type] (required): Node types represent specific func-
tional unit implementations.

• [description] (optional): Node descriptions are used for
descriptions of node operations within specific pipelines.

• [params] (optional): Params are collection of key-value
pairs that specify functional unit configurations.

• [kpis] (optional): KPIs are collection of key-value pairs
that specify KPI operating parameters.

• [isStateless] (optional): The isStateless parameter is a
boolean value representing the ability of the configura-
tion instantiation to be migrated without maintaining the
current state.

• [isUnique] (optional): The isUnique parameter is a
boolean value designating whether the node’s assigned
location and configuration must remained unchanged.

• [location] (optional): The location parameter is used to
relate nodes to specific agents or locations.

Listing 1 shows a node description for a stateless CEP
function unit with no designated location.

” node id ” : ” 0 ”
” node name ” : ” p S t a r t ”
” t y p e ” : ” CEP”
” params ” :

” i n p u t c l a s s ” : ” f low ”
” o u t p u t c l a s s ” : ” f low ”
” que ry ” : ” s e l e c t ∗ from f low where x > 0”

” i s S t a t e l e s s ” : t r u e
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” i s U n i q u e ” : f a l s e
” l o c a t i o n ” : ” ”

Listing 1. CADL Node

As previously mentioned, edges represent the relationship
between nodes. The format of CADL edge fields and require-
ments is shown below:

• [edge id] (required, unique): Edge IDs are unique iden-
tifiers for nodes within specific pipelines.

• [node from] (required): The node from parameter is
used to designate source node id for the edge within a
specific pipeline.

• [node to] (required): The node to parameter is used
to designate destination node id for the edge within a
specific pipeline.

• [input type] (optional): Type of required upstream data
source.

• [output type] (optional): Type of required downstream
data destination.

Listing 2 shows an example of a CADL edge description
relating two node ids.

” e d g e i d ” : 0 ,
” node to ” : ” 1 ” ,
” node from ” : ” 0 ”
” i n p u t t y p e ” : ”AMPQ”
” o u t p u t t y p e ” : ”AMPQ”

Listing 2. CADL Edge

CADL node and edge descriptions are combined to form a
pipeline description, which represents a collection of managed
components forming an application. The format of CADL
pipeline fields and requirements are shown below:

• [pipeline name] (required): Pipeline names are used as
short descriptions for pipelines maintained by a specific
Cresco Global Controller.

• [nodes] (required): Nodes are collections of CADL node
descriptions. At least one node description must exist for
a pipeline to be considered valid.

• [edges] (optional): Edges are collections of CADL edge
descriptions.

• [description] (optional): Pipeline descriptions are used
to describe the operation of pipelines.

• [isFaultTolerant] (optional): The isFaultTolerant param-
eter is a boolean value designating if pipeline components
should be rescheduled if failures are detected.

B. Cresco Graph Database (CGDB)

As with other template languages, the CADL provides
enough information for an application management framework
to statically provision a component pipeline. However, to
implement the desired application management characteristics
described in Section II, System Model, we need a model with
the ability to describe more than just abstract component de-
scriptions. The CGDB is used to model abstract (CADL virtual
nodes), operational (node instantiations), and data translations
(nodes generated in edge provisioning).

The following node and edge class instances are used to
describe pipelines in the CGDB model.

• Node pipelineNode : pipelineNodes are root nodes for
pipelines described by the CADL language.

• Node vNode : vNodes maintain a record of pipeline nodes
as described by the CADL language.

• Node iNode : iNodes represent instantiation resource
assignments related to vNodes.

• Node eNode : eNodes represent data exchange mech-
anism between iNodes. eNodes maintain configuration
information such as node configurations generated to
fulfill data exchange between differing node output and
intput types.

• Edge isVconnected : isVConnected associates vNodes
that are connected based on CADL description.

• Edge isEconnected : isEconnected edge indicates the
directed flow of data from one eNode to another.

The relationship of CGDB classes is shown in Figure 1.

vNode

isVnode
pipeline
Node

vNode

isVnode

isVconnected

iNode iNode

eNode eNodeeNode eNode

isInode isInode

eIn eIneOut eOut

isEconnected

Fig. 1. Cresco Application Graph

CADL nodes are represented as vNodes in the database.
There is a one-to-many relationship between iNodes and
vNodes, allowing iNode to be shared between pipelines. If
needed, iNodes are created for each vNode to represent imple-
mentations of requested vNodes. On iNode, and related eNode
generation, CGDB models are searched for existing candidate
iNodes with the exact same configuration parameters and
data path(s) as the iNode representation of pipeline-specific
vNodes. If an iNode replacement candidate is found, ”isECon-
nected” and ”eIn” relationships can be traversed to determine
if iNode and eNode implementations for the source data path
are exactly the same as the sub-graph to be implemented.
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If a valid iNode sub-graph is found, the vNode ”isINode”
relationship is assigned to the existing iNode. The avoidance
of new iNode creation serves as a system-wide data and
resource de-duplication [10]. Implementation nodes (iNode
and eNode) along with edges, are updated with observed
KPI and, possibly,other metrics. The CGDB model provides
information to higher-order management systems used in the
maintenance of large pervasive streaming data applications.

IV. ANALYSIS

The previous section covered a text-based language to
describe, and a graph structure to operate streaming data
applications. In this section we analyze how the models are
used to support a subset of characteristics and operating pa-
rameters important in distributed streaming data applications,
as described in Section II, System Model.

A. Dynamic Provisioning

Software-defined provisioning and distributed resource
management is an active area of research. Geographic Load-
balancing (GLB) [11] scheduling systems such as Nimrod/G
[12] for high performance computing and DONAR [13] for
content replication, exist. We are not concerned with the low-
level provisioning of infrastructure, we focus on the appropri-
ate assignment of modular workload based on observed work-
load resource requirements, node-defined KPIs, and measured
supporting environmental changes.

We define dynamic provisioning as the arrangement (initial
and repeated) of provisioned resources from available resource
providers. Based on operational policy (e.g. workload data
can not leave specified site) and technical best practices (e.g.
separation of latency-dependent resources across high-latency
connection), not all available resources will be candidates for
assignment. This is to say, if we want to assign resources, we
need to decide where in a distributed environment can and
should resources be assigned.

Given the set S of observable resources, we assume that
there exist a subset T of resources that satisfy assignment
requirements as described by a node configuration (T ⊆ S).
If a resource is contained in the set T , it is considered available
for assignment. The available set is constructed by eliminating
resources from the global set. Resources that violate Service
Level Agreement (SLA) [14] and usage policy constraints [15]
described by configuration can be directly eliminated from the
global set.

To provide some intuition, let us assume that we are building
an application requiring a certain number of queue resources,
R0, . . . Rm−1 with available bandwidth a0, . . . , am−1, respec-
tively.

Next, we assume that we have at our disposal k queue
systems, D0, . . . , Dk−1 with the bandwidth capabilities,
b0, . . . , bk−1, respectively. The space for resource Ri must be
assigned at one of Di’s. With such constraints, we can see
that the desired assignment reduces to solving a system of
inequalities:

a0x0,0 + a1x0,1 + . . .+ am−1x0.m−1 ≤ b0

. . .

a0xk−1,0 + a1x0,k−1 + . . .+ am−1xk−1,m−1 ≤ bk−1

subject to the number of constraints. The basic constraints
are:

1) The solution is pseudo-Boolean, i.e. variables xg,h take
only values 0 and 1.

2) For each j, 0 ≤ j ≤ m− 1 exactly one of xj,0, . . . xj,k−1

takes value 1.
We observe that the proposed model is quite flexible since

we can impose additional constraints, for instance requiring
that some resources are placed on a specific Di (or within
specific group of Di’s). Likewise negative constraints (Rj

not to be placed within a group of Dis) can also be easily
expressed.

The restriction that we are dealing with pseudo-Boolean
solutions allows the use of tools such as reduced ordered
binary decision diagram (ROBDD) for fast checking the satis-
faction of constraints [?]. We also observe that there is a large
body of knowledge [16] on solving systems of inequalities
over integers (including a three-volume classical book by A.
Schrijver. [17]).

The above model dealt with placement of a single resource
(we illustrated the approach with queue resources assignment).
In practice, however, more than one resource may be consid-
ered.

B. Modular scalability

The study of workload arrival, servicing, and departure is
referred to as queueing theory [18]. In theory, the duplica-
tion of a critical function unit would double the potential
aggregate output of that system. Likewise, the deduplication
of a functional unit would provide the same output at a
reduced resource cost. In the CAM, iNodes can both be
replicated within pipelines to provide increased performance
and deduplicated across pipelines to reduce resource needs.

C. Fault tolerance

Through CADL location assignments, application nodes can
be geographically distributed for the purposes of proactive
fault tolerance. Through the use of CGDB modeling, we know
the abstract relationship between the intent-described vNode
configurations and system-derived iNode implementations. In
the event an iNode fails, a new iNode can be generated from
the vNode and one or more pipelines can be reconfigured to
use the new iNode.

D. System Optimization

In Section IV-A, Dynamic Provisioning, we described a
pseudo-Boolean approach to dynamic node provisioning. In
this section, we describe a greedy [19] problem solving
heuristic used determine locally and potentially global optimal
workload assignments.
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This algorithm will be explained in the context of CADL,
CGDB, and based on the five general components of greedy
algorithms:

1) Candidate Set: Candidate sets are composed of node
configurations or instantiations that make up a pipeline
application. These sets might contain one or more explicit
resource requirement and/or observed workload utiliza-
tion related to KPI metrics.

2) Selection Function: It is useful to think of computational
resources in terms of commodity resources (water, elec-
tricity, gas, etc.), like those that are traded in commodity
markets [20]. In this context, a commodity is a resource
that is considered the same regardless of the originat-
ing provider. While this seems to contradict previous
statements related to the variability of resources across
providers, we will account for this variation in objective
function.

3) Feasibility Function: The process of determining feasibil-
ity was previously described in In Section IV-A, Dynamic
Provisioning.

4) Objective Function: The objective function is dependent
on the type of optimization. An objective function must
evaluate a number of factors in order to assign value to
a solution. In the commodity trade, actors (providers and
consumers) agree on contracts to describe the fulfillment
of a commodity transaction. Contracts are made up of
the following four components, which we will relate to
computational resources:
• Quantity: the resource count related to the atomic

horizontal scaling of an application component.
• Quality: The selection function evaluates the perfor-

mance of resource providing services through metrics
determined through active and simulated methods. In
the active case, self-monitoring [21] data comparing
resource utilization with workload KPI metrics is used
directly. However, if such data is not available, syn-
thetic micro-benchmarks [22] can be generated for
potential resource providers.

• Price: is the actual billed price of the resource, typ-
ically a product of time and reserved capacity. Price
could be set by a market (Amazon EC2 [23], Azure
[24], etc.) or they could simply be the fixed cost
assigned to a local resource. Cost accounting models
[25], [26] exist to provide market comparisons between
resource options. In addition, one must account for
Cost of Risk, which is the cost allocated to the potential
of resource compromise. In this context, compromise
is defined as a loss of data integrity, data exposure to
unauthorized parties, or high variability in resource per-
formance. Risk models [27], [28] have been developed
to provide cost-of-risk estimations.

• Delivery: can be considered the cost of converting or
migrating [29] potential resources (configuration, data,
virtual machine, etc.), to active resource. This cost is
typically the sum of data transfer cost and deployment

(startup, configuration, transfer time) cost.
5) Solution Function: A globally optimal solution can not be

verified using this method. However, a global improve-
ment related to a defined workload optimization can be
verified.

We claim that the overall solution can be expressed and eval-
uated using the described methods in the context of resource
contracts. While we have described the process for evaluating
a single application, existing assigned resources known to a
higher-level administrative system should also be taken into
account. A natural fragmentation of distributed applications
and resources can occur if the evaluation and reassignment of
active nodes does not take place. One possible solution is to
evaluate node configurations and their related commodity re-
source contracts for resource reassignment. Similar commodity
resource contracts can be used in market equilibrium (balance
supply and demand) [30] resource scheduling allowing the
evaluation of assigned resources as if they are available.

V. SIMULATION AND EXPERIMENTATION

Smart Cities applications such as traffic and environmen-
tal sensor management require data processing on street-
intersection, neighborhood, and city-wide levels. Potential
data sources include distributed sensor arrays, vehicles, and
personal devices. Distributed resources might be used for
data interoperation, processing (analysis) services, and the
coordination of information, such as autonomous Vehicle-to-
Vehicle (V2V) interactions. The coordination of millions of
potential devices and sources of data in a large metropolitan
area is a serious computational challenge.

We have developed data source (street-intersection), in-
termediate processor (neighborhood), and data drain (central
monitoring system) functional units to model and simulate the
devices, flow of data, and operation of 1 million devices across
a large smart city. We assume that each street intersection
has at least 1000 reportable devices (data points). We assign
100 street-intersection nodes to each neighborhood and 100
neighborhoods to a central monitoring system. The CADL
representation of this pipeline contains a graph with 30,000
street-intersection nodes and 40,000 edges, 500 neighborhood
nodes and 700 edges, and three central monitor nodes and two
edges. The described graph results in a CADL size of 27.4 (1.3
compressed) Megabytes.

Using the CGDB model, we provisioned our application
across 20 nodes, each with 8 cpu cores, 8G of RAM, and
a 128G disk. We assume street-level operation takes place
in a location with limited computational capacity, such as an
intelligent street light. On a street-level, we want to simulate
the collection of data from sensors, which should be physically
connected or in proximity of collection devices and are not
candidates for reassignment. We generate and transmit 1000
fixed (sensors data) and 10-70 variable (vehicle data) values
for each node per second. When an alert is triggered, a notifi-
cation is sent to the neighborhood. We assume neighborhood-
level operations take place in small-to-medium sized telecom-
munication facilities distributed throughout a city, with enough
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computational capacity to provide analytic services for a
network of associated gateways. Locations were not assigned
to Neighborhood nodes. Neighborhood nodes see between
151,500 and 160,500 data points per second. Each event is
observed by one or more CEP engines, which can trigger
upstream alerts and downstream changes in data reporting.
In response to KPI metrics and related to values generated
on the street-level, neighborhood-level nodes can expand and
contract instances of their configuration as needed. Overall,
the central monitoring system in this simulation processes
between 2,878,500 and 3,049,500 metrics per second, and like
neighborhood nodes can expand, contract, and recover from
fault as needed.

VI. CONCLUSION

This paper presented techniques used to describe, model,
and analyze distributed streaming data applications. We have
shown how the presented data model can be used in dynamic
provisioning, modular scalability, fault tolerance, and systems
optimization. In addition, through experimentation we have
shown that our methods can be used to model large (1 million
devices) distributed applications. Along with simulation, the
described methods have been implemented in part by the
Cresco Framework [31] and are used by a number of real-
world applications. We will continue to improve this work as
the overall framework advances.
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