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Abstract—In the area of network monitoring and measurement
a number of good tools are already available. However, most
mature tools do not account for changes in network management
brought about through Software Defined Networking (SDN).
New tools developed to address the SDN paradigm often lack
both observation scope and performance scale to support dis-
tributed management of accelerated measurement devices, high-
throughput network processing, and distributed network function
monitoring.

In this paper we present an approach to distributed network
monitoring and management using an agent-based edge comput-
ing framework. In addition, we provide a number of real-world
examples where this system has been put into practice.

I. INTRODUCTION

Telecommunications providers and research-focused organi-
zations have made use of Software Defined Networking (SDN)
[1] techniques to address the rapid growth of data transmission.
In traditional communications networks, traffic management
is a distributed task relying on device-level decision making.
SDN separates control and data planes, allowing traffic man-
agement decisions to be made centrally, providing methods
for the use of so-called commodity network devices in the
construction of high-speed networks. Through SDN-enabled
networks, so-called "Big Data” flows [2] can be identified
and managed independently. In addition, Data Transfer Nodes
(DTN) [3] can be used to rapidly move large volumes of data
over large distances.

Data transmitted transcontinentally and often intercontinen-
tally will pass through network exchanges, where two or more
networks join. One such example is StarLight [4], which
functions as a global Software Defined Network Exchange
(SDX) [5], peering hundreds of national and international
networks. Data generated from telescopes in Sao Paulo, Brazil
destined for Singapore might first pass through AMLight [6],
an international network exchange serving South America, and
then through the StarLight exchange on its way to Asia. While
SDN provides the ability to monitor (replicate to a switch
port) traffic with flow-level granularity, one must first know
the parameters of the data they wish to isolate. While there
are cases where we have an a priori knowledge of the flows
we would like to monitor, often we must inspect aggregate
network traffic. Traditionally, network hardware generated
high-level statistics, such as Netflows [7], that could be used
to detect and describe traffic, including anomalies. However,
in SDN networks simple low-level rules might be used to
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establish high-speed communications that traverse exchanges,
such as with our South America to Asia example, which
does not produce actionable high-level network statistics. A
number of monitoring frameworks have been proposed that
make use of SDN functions. Some SDN monitoring systems
continuously poll [8] SDN controllers for data and others
make use of periodic updates pushed [9] from controllers.
However, there are inherent performance limitations [10], [11]
in using central SDN controllers to simultaneously make high-
rate traffic decisions and perform network measurements. To
lessen the demand on central SDN controllers, it was proposed
[12], [13] moving a subset of data collection and analysis
tasks to SDN-enabled devices. While metric gathering on the
device-level is possible, deep packet inspection [14] is much
more computationally demanding. A single 100G network link
can transmit 148 million packets per second [15], leaving
nanoseconds to process a packet, thus requiring computational
demands for single port analysis at the limit of current general
purpose processors. A number hardware accelerated [16], [17]
network analysis architectures and standalone implementations
have been proposed for 100G and beyond network analysis.

Performance concerns aside, not all relevant measurement
information is available from SDN controllers and devices.
With the rise of Network Function Virtualization (NFV) [18],
a trend that moves network functions from monolithic network
devices to virtual instances, high-level information related to
network functions might not be observable through low-level
SDN network monitoring systems. In addition, there might be
more than one independent SDN or NFV controller partici-
pating in a specific network flow. For example, an OpenStack
[19] cluster might provide Network Address Translation (NAT)
[20], IPv6-to-IPv4 protocol translation [21], and internal SDN
networks that would not be observable through an external
central SDN controller.

To address the limitations of a central SDN controller to ob-
serve the state of distributed environments a number of Edge-
and Fog-Enabled SDN tools for control plane optimization
[22], [23] and service orchestration [24], [25], [26], [27] have
been proposed. Building on previous experience in distributed
high-rate network monitoring [28], we propose an edge-based
distributed network monitoring system developed using the
Cresco Framework [29].
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II. SYSTEM MODEL

We approach network monitoring and measurement as a
streaming data problem, where information is generated, pro-
cessed, and communicated between heterogeneous systems.
We find it convenient to think of streaming data problems
in the context of directed graphs, where nodes function as
computational units and edges represent data streams.

Our edge-based network monitoring and measurement sys-
tem was designed with the following characteristics in mind:

o Heterogeneous devices and data: The monitoring system
must support a wide range of platforms ranging from
low-power devices found within Wireless Sensor Net-
works (WSN) [30] to high-performance DTN nodes with
hardware accelerators. Monitoring and measurement data
might also come from unmanaged devices and systems.
Systems must support sources of data coming directly
from monolithic network devices, SDN controllers, ac-
celerated capture devices, or any number of virtualized
network functions.

o Large number of data sources: The number of high-
powered captured devices will be constrained to a man-
ageable figure through the limited number of associated
physical links. However, the number of virtual data-
generating devices could easily number in the thousands
for even small computational clusters. Monitoring and
measurement systems must be able to accommodate large
numbers of managed nodes and data sources.

e Data operations in proximity to data sources: Where
resources allow, data operations such as annotation, anal-
ysis, and stream merging should take place as close to
the sources of data as possible. Specifically, operations
such as the generation of new data streams through the
correlation of localized events should take place under a
universal clock (single device).

o Abstract user-defined tasks: Users should be able to
abstractly define a hierarchy of complex measurement
tasks, spanning geographically distributed devices and
sources of data.

o Function reuse: There is a one-to-many relationship
between data sources and potential user-defined data
operations. Where resources allow, systems should al-
low simultaneous user-defined measurement tasks on
data sources. In addition, where two replicated tasks
are defined only one task should be provisioned, with
resulting data replicated to two destinations. Likewise,
if two identical data streams are defined, through an
intermediate node, only one stream should be sent to the
node, and the node should replicate the stream. Figure 1
provides a visual example of node and edge provisioning
avoidance through stream replication.

o Security and Privacy: In many cases, raw streams of data
are observed from managed devices. There are serious
security and privacy issues related to not only the inspec-
tion of network traffic, but also to the derived results.
Monitoring and measurement systems must themselves
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Fig. 1. Node and Edge Provisioning Avoidance

operate securely while providing methods to preserve the
privacy of resulting data.

III. SOLUTION
A. System Architecture

Our solution is implemented using the Cresco Framework
[29], which provides a number of benefits used in the im-
plementation of edge-enabled applications. Specifically, the
framework provides location awareness, geographic distribu-
tion, support for large number of nodes, heterogeneous op-
erations, function mobility, secure resource discovery, secure
messaging, and pipeline (application) management functions.

While the complete description of the Cresco Framework is
outside of the scope of is paper, it is important to recognize
that Cresco operates as an agent-based [31] system implement-
ing actor-model [32] concurrency. Agents manage resources,
workloads, and establish both control (between agents) and
data (between workloads) for communication networks. Figure
2 shows a local agent controlling network device, which
streams resulting control and data plane data to remote loca-
tions. Resources might contain computational, network, and
storage capacities ranging in scale from embedded system
to large computational clusters. In this context, workload
could refer to the management of an external resource, like
a standalone measurement device, or the implementation of
functions within the framework. For the remainder of this
paper we will present workloads in the context of graphs,
referring to them as nodes and workload-to-workload commu-
nication as edges. Monitoring and measurement tasks refer to
one or more associated nodes and edges configured to provide
one or more defined outputs.

B. Resource management

There exist a wide range of capacities between what might
be found on edge devices and what is available in a public
cloud. Likewise, there are great variabilities in the resource
requirements between measurement tasks. Distributed mea-
surement carries additional complication of determining if
there is adequate communication capacity between resources
to accomplish a desired task. We assess the capacity of
a specific resource through agents. Agents report simulated
benchmark performance, total capacity, and available capac-
ity to a central service. Through agent-to-agent performance
measurements, resource-to-resource edge communication per-
formance is estimated. Likewise, nodes, and (by relation)
measurement tasks, have either known (preconfigured) require-
ments or agents report observed performance utilization per
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Fig. 2. Agent management of edge resources

node configuration to a central service. Benchmarked resource
(node host) performance is compared to observed resource
utilization (node instance) to provide synthetic computational
node resource requirements. Key Performance Indicator (KPI)
metrics, specific to node implementations, provide a unit-level
indication of load, thus allowing the estimation of per-unit
synthetic metrics.

Through the process described above we are provided a
global view of resource availability, requirements, and utiliza-
tion. In addition, we estimate specific node type requirements
to the per-unit (transaction) level.

C. User-Defined Functions

We define a node function, or plugin in Cresco parlance,
here to mean a piece of code that executes some task and
can be run on a given Cresco agent. While a full overview
of functions may be beyond the scope of this paper, we find
it necessary to review some of their inherent benefits as they
pertain to this work:

o The overhead required to define a function is mini-
mal, implying that adapting an existing workload to the
Cresco architecture does not require a large amount of
framework-specific knowledge.

o As a consequence of their pre-defined nature, functions
can be loaded on any Cresco agent with the appropriate
resources and permissions required, meaning a call to a
specific function can be issued and re-issued to one or
many Cresco agents as required for the workload.

A number of functions, implemented as dynamically-
loadable plugins that execute some piece of code, have been
developed for the Cresco framework to aid in task execution on
remote agents. A brief description of some existing functions
related to network measurement follows:

1) Executor plugin: The executor plugin represents the
most basic operation in a workload; namely, a plugin calls
an existing function to be executed on the machine which
hosts the initiating Cresco agent. In this manner, existing
measurement tasks which have been pre-defined on a remote
system can be quickly called as part of a described workload.

2) Container plugin: With the recent uptick in the adoption
of containerized application delivery [33], functionality was
included to remotely launch Docker [34] containers as means
to distribute pre-defined, single-node workloads to remote
agents without the need to pre-install all versions of software
that may be required for network measurement.

3) CEP plugin: Complex Event Processing (CEP) involves
the application of selection and aggregation rules to flows of
data. This provides a natural approach for deriving high-level
insights into the massive amounts of sensor data that can be
generated as part of a network measurement workflow. One
implementation of CEP, used in our CEP plugin, is Esper [35].
As Esper requires no external dependencies and only a small
amount of resources, the plugin can launch its own instance of
Esper and interact with data streams with one or more Event
Processing Language (EPL)-defined queries as required by the
overall workflow definition.

4) HBase plugin: One of the aims of edge computing, and
Cresco as an application of the edge computing paradigm, is
to reduce the complexity of data storage and processing in a
given application deployment. To that end, we find it prudent
to define methods to access some functions, which in the past
have been primarily accomplished at a central datacenter. One
such functional definition is a plugin to connect to HBase [36],
an implementation of Google’s BigTable paradigm that allows
for large scale storage and processing on a cluster of nodes,
to allow nodes closer to the edge to handle some of the heavy
lifting related to either storing results from processing of data
flows or referencing global data for use in processing at the
edge as part of a workload.

5) Syslog plugin: Syslog [37] is a commonly used standard
message format for server and device logging. We have
implemented a syslog collector that takes in messages and
converts them to format that is both parsable and accessible
by the monitoring system. Messages are converted to a JSON
format representing a syslog class that is directly consumable
by other plugins such as the CEP plugin. Syslog messages can
be directed to one or more downstream plugins allowing for
stream enrichment or CEP.

6) SNMP plugin: Simple Network Management Protocol
(SNMP) [38], is a protocol used primary by network devices
for management. In addition, a number of software packages
exist that implement SNMP on server and other device plat-
forms. SNMP can be used to gather (pull) statistics on a wide-
range of network interfaces, sensors, and associated devices.
SNMPtraps are used to push events, such as changes in status
notifications and alerts to monitoring systems. The SNMP
plugin implements both polling metrics gathering and SN-
MPtrap collection. Both polling and trap metrics are converted
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to JSON classes, which are pushed to message exchanges for
consumption by one or more downstream plugins.

7) IPFIX plugin: Internet Protocol Flow Information Ex-
port (IPFIX) [7] is an IETF protocol used to describe network
traffic flows. The IPFIX plugin implements a IPFIX (and
Netflow v5) collector, converting IPFIX message to JSON
classes, and pushing these classes to exchange for consumption
by one or more downstream plugins.

D. Tasks Scheduling

The previous subsection describes a number of functional
components managed by the Cresco framework. While it is
possible to assign static component configurations to indi-
vidual agents, Cresco provides a number of automated data
collection and dynamic resource scheduling features. In order
to take advantage of the framework, we must generate an
abstract description of a measurement task in the Cresco
Application Description Language (CADL) format. We pro-
vide an intermediate programatic monitoring and measurement
interface used to interact with the Cresco framework, as
described below:

o Create Task: Measurement tasks in JSON format are
submitted to a central controller through a REST in-
terface. An example of a task to perform high-rate
flow measurement on two nodes, aggregate and label
the reported measurements, and provide RESTful and
queue-based output is shown in Listing 1. As previously
mentioned, we convert the simple user input into a format
used by Cresco to manage task-related plugins. Once
the Cresco application definition is reported active on a
Cresco controller, we report that the task is ready to be
started.

o Start Task: On task start, the monitoring and measurement
system confirms availability of distributed components
and starts its own processes to listen for output. Depend-
ing on the task defined, output might be directed to a data
exchange, to a log available through a RESTful API, or
both. A task will continue to run for its specified time or
when terminated.

e End Task: If a task is active, it can be terminated. On
termination, active components are stopped, but configu-
ration remains in place. In addition, any output generated
when the task was active remains available.

o Restart Task: Task that have completed or were ter-
minated can be restarted as long as the task was not
removed.

e Remove Task: On task removal, all component data,
configuration, and log information is removed from the

system.
“name”: "my test”,
”duration”: 7607,
“nodes”: [{
“type”: “flow_measurement”,
“"name”: “UK Netflow”,
”location”: “uk”,

”commands”: 710 4”7

Fd
“type”: “flow_measurement”,
“"name”: "FIU Netflow”,
”location”: ”fiu”,
“commands”: 710 47}]1}

Listing 1. Measurement Task Example

During the task scheduling process, a number of system-
derived configurations are used to connect components and
data sources. Some components, such as measurement tasks
that directly observe network traffic, require explicit location
assignments. However. there are a number of event process-
ing, data exchange, and data conversion functions that do
not require specific location assignments. While a complete
description is outside the scope of this paper, Cresco natively
provides a number of scheduling optimization methods using
Constraint Programming techniques. Within the intermediate
scheduling system, implemented as part of this project, we
restrict component configuration to specific locations, thus
limiting the Cresco scheduler to a subset of resources. For
example, if there was a single measurement device at a specific
location, the Cresco scheduler would provision all related
components on a single node. Alternatively, if a pool of
resources were available in public cloud location, the Cresco
framework would select the provisioning instance from the
pool.

A number of steps are taken to reduce the computational and
network costs associated with measurement tasks. We want
to limit redundant computational executions and data flow.
However, it is common for the same data and potentially data
operations to be requested in full or in part simultaneously. For
example, a subgraph related to the underlying measurement
of traffic at X locations might exist as part of a number of
users measurement tasks. Luckily, Cresco provides native de-
duplication of matching component configurations and related
data streams. We can take additional steps to structurally
reduce redundant network traffic by assigning components
with no location restrictions in proximity to related restricted
components. For components with a single local input and
output with location restrictions, the location assessment is
trivial, assuming resources exist in the location/device for the
assignment. For configurations with location-diverse inputs or
outputs we assign known central-resource locations. Based
on metrics maintained by Cresco the framework schedules
resources from central-resource locations.

IV. OPERATIONS

There exist monitoring and measurement cases where it is
important to include transient data from disparate devices in a
data flow as it happens. For example, to monitor devices in a
wireless network one might want to know the device address
(mac), associated access point (AP), and IP address at the
time of network flow generation. Since the AP may change
through mobile association and IP address change through the
address leasing process, this information must be captured
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in the recorded flow. We have demonstrated the ability to
capture such enriched data streams using or monitoring and
measurement system. In our specific case, as deployed at the
University of Kentucky, we gathered AP associations using
the plugin described in Subsection III-C6, SNMP plugin, by
capturing SNMPtraps from a central wireless controller. We
obtained IP address lease notification through Syslog messages
sent from our enterprise DHCP service. Syslog messages were
collected using the plugin described in Subsection III-C5,
Syslog plugin. Netflow information generated by distributed
devices was collected by plugins described in Subsection
I-C7, IPFIX plugin. Information from the related streams
was merged through the CEP plugin described in Section
III-C3, CEP plugin. Finally, the enriched message stream was
recorded for further offline analysis using the HBase plugin
described in Subsection III-C4.

In addition to data stream enrichment through the inclusion
of transient data, we also have the ability, through the com-
bination of Netflow plugin and CEP plugin (as described in
II-C3), to watch for known patterns which may be indicative
of behavior which can be useful for overall trend analysis such
as:

e Filter Flow Size

select % from netFlow where bytes
> [some value]

o Filter Src/Dst

select * from netFlow where ip_src =
"[some ip]’ and ip_dst = ’[some ip]’
o Top Talkers
select ip_src, ip_dst, bytes from

netFlow .win:time (5 min).
ext:sort (10, bytes desc)

e Flows Per Second

select count(x) as fps from
netFlow .win:time_batch(1sec)

o Missing Flow Patterns

select a.ip_src from pattern [ every
a=netFlow —> (timer:interval (10 sec))
and not netFlow (ip_src=a.ip_src) ]
group by a

As a consequence of the Cresco’s use of queues to manage
data-coordination and conveyance from various stages, as well
as its inherent de-duplication of required functions provided
during task scheduling, (as described in III-D), we can insert,
join, and perform CEP operations on nearly any stage of data
flows from one or many different monitored network locations
performing any number of measurement tasks, as required by
defined workflows. This provides flexible, scalable monitoring
to large, distributed networking environments where oversight
can be both difficult to deploy as well as reconfigure when
new information is required.

As previously described, the management of accelerated
devices is required for high-speed network analysis. In ad-
dition, monitoring making use of a number of distributed
accelerated devices is needed. Not only must we perform local
measurements, we must also synchronize measurement execu-
tion, coordinate data streams, and process the resulting data.
This work was incorporated into related efforts in network
capture presented at SuperComputing 2017, during which the
solution described here was used to distribute measurement
tasks and collect the resulting flow data for further analysis
from geographically dispersed locations, annotated in Figure
3, in real-time. Capture devices were placed at Starlight,
AMLight (FIU), and the University of Kentucky (UKY), as
shown in Figure 3. In addition, UK provided computational
resources used in device management, stream coordination,
and stream processing.

Fig. 3. Measurement Locations for SC 2017 Demonstration

Accelerated measurement tasks made use of functions de-
scribed in Subsection III-C1, Executor plugin, stream coordi-
nation made use of functions described in Subsection III-C2,
Container plugin, and stream processing was accomplished
with the CEP plugin described in Subsection III-C3.

V. CONCLUSION

In this paper a motivation has been given for the necessity of
edge-enabled monitoring and measurement of distributed net-
work systems. We have presented techniques used to describe,
model, and solve a number of problems related to distributed
system monitoring. Additionally, we have shown how the
presented data model can be used in edge-enabled resource,
execution, and data management. Finally we have provided
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several real-world operation cases where the described systems
have been used.

We will continue to improve this work as the overall
framework advances.
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