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We study multiclass many-server queues for which the arrival, service and abandonment rates are all mod-
ulated by a common finite-state Markov process. We assume that the system operates in the “averaged”
Halfin—-Whitt regime, which means that it is critically loaded in the average sense, although not necessarily
in each state of the Markov process. We show that under any static priority policy, the Markov-modulated
diffusion-scaled queueing process is exponentially ergodic. This is accomplished by employing a solution to
an associated Poisson equation in order to construct a suitable Lyapunov function. We establish a functional
central limit theorem for the diffusion-scaled queueing process and show that the limiting process is a con-
trolled diffusion with piecewise linear drift and constant covariance matrix. We address the infinite-horizon

discounted and long-run average (ergodic) optimal control problems and establish asymptotic optimality.
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1. Introduction

Queueing networks operating in a random environment have been studied extensively. A functional
central limit theorem (FCLT) for Markov-modulated infinite-server queues is established in Ander-
son et al. (2016), which shows that the limit process is an Ornstein—Uhlenbeck diffusion; see also
Pang and Zheng (2017), Jansen et al. (2017) for more recent work. Scheduling control problems
for Markov-modulated multiclass single-server queueing networks have been addressed in Xia et al.
(2017), Kumar et al. (2013), Budhiraja et al. (2014). In Budhiraja et al. (2014), the authors show

that a modified cu-policy is asymptotically optimal for the infinite horizon discounted problem.
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For a single-server queue with only the arrival rates modulated, service rate control problems over
a finite and infinite horizon have been studied in Kumar et al. (2013), Xia et al. (2017). For multi-
class many-server queues without modulation, the infinite-horizon discounted and ergodic control
problems have been studied in Atar et al. (2004) and Arapostathis et al. (2015), respectively.

In this paper we address the aforementioned control problems for Markov-modulated multiclass
many-server queues. We establish the weak convergence of the diffusion-scaled queueing processes,
study their stability properties, characterize the optimal solutions via the associated limiting dif-
fusion control problems, and then prove asymptotic optimality. Specifically, we assume that the
arrival, service and abandonment rates are all modulated by a finite-state Markov process, and
that given the state of this process, the arrivals are Poisson, and the service and patient times
are exponentially distributed. The system operates in the “averaged” Halfin-Whitt (H-W) regime,
namely, it is critically loaded in an average sense, but it may be underloaded or overloaded for
a given state of the environment. This situation is different from the standard H-W regime for
many-server queues, which requires that the system is critically loaded as the arrival rates and
number of servers get large; see, e.g., Halfin and Whitt (1981), Atar et al. (2004), Jansen et al.
(2017), Arapostathis et al. (2015).

We first establish a FCLT in Theorem 1 for the Markov-modulated diffusion-scaled queueing
processes under any admissible scheduling policy (only considering work-conserving and preemptive
policies). Proper scaling is needed in order to establish weak convergence of the queueing processes.
In particular, since the arrival processes are of order n, and the switching rates of the background
process are assumed to be of order n® for a > 0, the queueing processes are centered at the
‘averaged’ steady state, which is of order n, and are then scaled down by a factor of an n?, with
f =max{!/2,1 —2/2}, in the diffusion scale. Thus, when a > 1, we have the usual diffusion scaling
with 8 =1/2, which is due to the fact that the very fast switching of the environment results in
an ‘averaging’ effect for the arrival, service and abandonment processes of the queueing dynamics.
The limit queueing process is a piecewise Ornstein—Uhlenbeck diffusion process with a drift and
covariance given by the corresponding ‘averaged’ quantities under the stationary distribution of the
background process. When a =1, both the variabilities of the queueing and background processes
are captured in the covariance matrix, while when « > 1, only the variabilities of the queueing
process is captured. On the other hand, when a < 1, the proper diffusion scaling requires § =1 —/2,
for which we obtain a similar piecewise Ornstein—Uhlenbeck diffusion process with the covariance
matrix capturing the variabilities of the background process only.

The ergodic properties of this class of piecewise linear diffusions (and Lévy-driven stochastic
differential equations) have been studied in Dieker and Gao (2013), Arapostathis et al. (2019),
and these results can be applied directly to our model. The study of the ergodic properties of the
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diffusion-scaled processes, however, is challenging. Ergodicity of switching Markov processes has
been an active research subject. For switching diffusions, stability has been studied in Khasminskii
(2012), Mao (1999), Khasminskii et al. (2007). However, studies of ergodicity of switching Markov
processes are scarce. Recently in Bakhtin and Hurth (2012), Benaim et al. (2015), some kind of
hypoellipticity criterion with Hormander-like bracket conditions is provided to establish exponen-
tial convergence in the total variation distance. As pointed out in Cloez and Hairer (2015), this
condition cannot be easily verified, even for many classes of simple Markov processes with random
switching. Cloez and Hairer Cloez and Hairer (2015) provided a concrete criterion for exponential
ergodicity in situations which do not verify any hypoellipticity assumption (as well as criterion for
convergence in terms of Wasserstein distance). Their proof is based on a coupling argument and
a weak form of Harris’ theorem. It is worth noting that in these studies, the transition rates of
the underlying Markov process are unscaled, and therefore, the Markov processes under random
switching do not exhibit an ‘averaging’ effect. Because of the ‘averaging’ effect in our model, we are
able to construct a suitable Lyapunov function to verify the standard Foster-Lyapunov condition
in order to prove the exponential ergodicity of the diffusion-scaled queueing processes.

The technique we employ is much similar in spirit to the approach in Khasminskii (2012) for
studying p-stability of the switching diffusion processes with rapid switching. For diffusions, Khas-
minskii Khasminskii (2012) observes that rapid switching results in some ‘averaging’ effect, and thus
if the ‘averaged’ diffusion (modulated parameters are replaced by their averages under the invariant
measure of the background process) is stable, then a Lyapunov function can be constructed by
using solutions to an associated Poisson equation to verify the Foster-Lyapunov stability condition
for the original diffusion process. To the best of our knowledge, this approach has not been used to
study general fast switching Markov processes. We employ this technique to the Markov-modulated
diffusion-scaled queueing process of the multiclass many-server model. Ergodicity properties for
multiclass Markovian queues have been established in Gamarnik and Stolyar (2012); in particu-
lar, it is shown that the queueing process is ergodic under any work-conserving scheduling policy.
Following the approach in Arapostathis et al. (2015), we show that under a static priority schedul-
ing policy, the ‘averaged’ diffusion-scaled processes (with the arrival, service and abandonment
parameters being replaced by the averaged quantities) are exponentially ergodic (Lemma 1). We
then construct a Lyapunov function using a Poisson equation associated with the difference of the
Markov-modulated diffusion-scaled queueing process and the ‘averaged’ queueing process, and thus
verify the Foster-Lyapunov stability criterion for exponential ergodicity (Theorem 4).

To study asymptotic optimality in Theorem 2 for the discounted problem , we first establish a
moment bound for the Markov-modulated diffusion-scaled queueing process, which is uniform under

all admissible policies, that is, work-conserving and non-preemptive polices. We then adopt the
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approach in Atar et al. (2004) and construct a sequence of polices which asymptotically converges to
the optimal value of the discounted problem for the limiting diffusion process. To prove asymptotic
optimality in Theorem 3 for the ergodic problem, it is critical to study the convergence of the mean
empirical measures associated with the Markov-modulated diffusion-scaled queueing processes.
Unlike the studies in Arapostathis et al. (2015), Arapostathis and Pang (2018, 2019), the Markov
modulation makes this work much more challenging. For both the lower and upper bounds, we
construct an auxiliary (semimartingale) process associated with a diffusion-scaled queueing process
and the underlying Markov process. We then establish the convergence of the mean empirical
measure of the auxiliary process, and thus prove that of the Markov-modulated diffusion-scaled
queueing processes by establishing their asymptotic equivalence. In establishing the upper bound,
we adopt the technique developed in Arapostathis et al. (2015). Using a spatial truncation, we
obtain nearly optimal controls for the ergodic problem of our controlled limiting diffusion by
fixing a stable Markov control (any constant control) outside a compact set. We then map such
concatenated controls for the limiting diffusion process to a family of scheduling polices for the
auxiliary processes as well as the diffusion-scaled queueing processes, which also preserve the ergodic
properties. With these concatenated policies, we are able to prove the upper bound for the value

functions.

1.1. Organization of the paper

In the next subsection, we summarize the notation used in this paper. Section 2 contains a detailed
description of the Markov-modulated multiclass many-server queueing model. In Section 2.1, we
introduce the scheduling policies considered in this paper. In Section 2.2, we present the controlled
limiting diffusions and weak convergence results. We state the main results on asymptotic optimal-
ity for the discounted and ergodic problems in Sections 2.3 and 2.4, respectively. In Section 3, we
summarize the ergodic properties of the controlled limiting diffusions, and establish the exponential
ergodicity of the diffusion-scaled processes. A characterization of optimal controls for the controlled
limiting diffusions, and the proofs of asymptotic optimality are given in Section 4. Appendix A is
devoted to the proofs of Theorem 1 and Lemma 1, while Appendix B contain the proofs of some

technical results in Section 4.

1.2. Notation

We let IN denote the set of positive integers. For k € N, R* (R* ) denotes the set of k-dimensional
real (nonnegative) vectors, and we write R (Ry) for k=1. For k € N, Z* stands for the set of d-
dimensional nonnegative integer vectors. For i =1,...,d, we let e; denote the vector in R? with the
i*" element equal to 1 and all other elements equal to 0, and define e = (1,...,1)T. The complement

of a set A C R? is denoted by A°. The open ball in R? with center the origin and radius R is
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denoted by Bpg. For a,b € R, the minimum (maximum) of ¢ and b is denoted by a Ab (aV b), and
we let a™ :=a V0. For a € R", |a| denotes the largest integer not greater than a. Given any vectors
a,beR?, let (a,b) denote the inner product.

The Euclidean norm in R* is denoted by |-|. For z € R*, we let ||z| := Zlelxi|. The indicator
function of a set A C RF is denoted by 1(A) or 1,. We use the notations 9; := 8%1 and 0;; =
ﬁ;j. For a domain D C R?, the space C¥(D) (C>*(D)) denotes the class of functions whose
partial derivatives up to order k (of any order) exist and are continuous, and C*(D) denotes
the space of functions in C¥(D) with compact support. For D C R¢, we let Cf(D) denote the
set of functions in C¥(D), whose partial derivatives up to order k are continuous and bounded.

For a nonnegative function f € C(R%), we use O(f) to denote the space of function g € C(R)

lg(@)]
1+ f(x)

functions g € C(R?) such that limsup,, o

such that sup,cpa < 00, and we use o(f) to denote the subspace of O(f) consisting of

[f ()]
1+g(z)

convergence of real numbers and convergence in distribution, respectively. For any path X(-),

= 0. The arrows — and = are used to denote

AX (t) is used to denote the jump at time ¢. We use (-) to denote the predictable quadratic variation
of a square integrable martingale, and use [-] to denote the optional quadratic variation. We define
D:=D(R4,R) as the real-valued function space of all cddlag functions on R,. We endow the space
D with the Skorohod J; topology and denote this topological space as (D, J). For any complete
and separable metric spaces S; and S,, we use S; X Sy to denote their product space endowed
with the maximum metric. For any complete and separable space S, and k € IN, the k-fold product
space with the maximum metric is denoted by S*. For k € N, (D*, J) denotes the k-fold product of
(D, J) with the product topology. Given a Polish space E, P(E) denotes the space of probability

measures on F, endowed with the Prokhorov metric.

2. The Model and Control Problems

We consider a sequence of d-class Markov-modulated M /M /n+ M queueing models indexed by
n. Define the space of customer classes by Z = {1,...,d}. For n € N, let J" = {J"(t): t > 0}
be a continuous-time Markov chain with finite state space K := {1,..., K}, with an irreducible
transition rate matrix n®Q for some « > 0. Thus, J” has a stationary distribution denoted by
m=(m, -+ ,mx), for each n € N. We assume that J” starts from this stationary distribution.

For each n and i € Z, let A? .= {A(t): t > 0} denote the arrival process of class-i customers
in the n'® system. Provided J" is in state k, the arrival rate of class-i customers is defined by
A'(k) € Ry, and the service time and the patience time are exponentially distributed with rates
(k) and ~(k), respectively. Let A™ denote a Markov-modulated Poisson process, that is, for
t>0,eachn and 1 €Z,

ar) =, ([ noreas)
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where {A};: n € IN,i € T} are unit-rate Poisson processes.

Let X™, Q™ and Z™ denote the d-dimensional processes counting the number of customers of
each class in the n'" system, in queue and in service, respectively, and the following constraints are
satisfied: for t >0 and i € Z,

Xi'(t) = Q)+ 27(1),
Qr(t) >0, ZMt)>0 and (e, Z"(t)) <mn.

(1)
Then, we have the following dynamic equation: for t >0, n€ N and ¢ € Z,
XP(t) = X2(0) + AZ(E) — S2(H) — RI(E), 2)
where

st = st [werenzieas) . rio = we([ronenenes).

and {S};,R!,: n € N,i € I} are unit-rate Poisson processes. We assume that for each n € N,

*,1)

{X(0),Ar,,S”

*,89 Mk 1)

R ,;:i€T} are mutually independent.

ASSUMPTION 1. Asn—o0, fori€Z and k€ I,
nIA (k) = ANi(k) >0, pi(k) = pi(k) >0, (k) = vi(k) >0,
n P (k) = nAi(k)) = Ni(k) and 0t (g (k) = pa(k) = k)
where
B = max{}/2,1—/2}.

For i € Z and n € IN, we define

A=Y mNilk) pf =Y m(k), A7 =Y mev(k),

ke ke ke
A= omAr (k) =Y me (k) Al =y mof (k)
kel ke keK

and

AT no.__ 1 A/
pi=2/up, pti=n E M/ ap

i€L

ASSUMPTION 2. The system is critically loaded, that is, ), ., pi=1.

Under Assumptions 1 and 2, we have

. . n=P(npf —nuf)pi —n~ P (AP —nAT) pifly = AT
UREVOEDY — o
i€l i i€l K

with

A= mi(k), AT = ma(k).

ke kex
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Assumptions 1 and 2 are in effect throughout the paper, without further mention. A model
satisfying these assumptions is said to be in the “averaged” H-W regime.

Let X, Z™, Q", X", Z" and Q" denote the d-dimensional processes satisfying

vno o —1vyvn 7n __ . —1r7n A . —1n
Xi*n Xi? Z=n Zia Qi*n 79

(2

Xr=nP(X'—pmn), Z' =n""(Z]—pm) and Q; =n"Q}

K3

for i € Z. Then, for t >0 and i € Z, X7(t) can be written as

~ ~ ~ ~ ~

X2 (t) = XP(0) +02(8) + L2(t) + An(t) — S2(0) — BRI (t)
- / w2 (T ()) 22 (s) ds — / I ()0 (5) ds

where

Br(t) = 030 (0 R) = n(h)) = nps (17 (k) = 1a(h)) / 1(J"(s) = k) ds,

ke

irt) = nt? / (A (7 (5)) — AT)ds —n1 P, / (T (5)) — ) ds

forie€Z and t >0, and

Wn = L"+A"—S" - R", (4)

respectively. Then, (3) can be written as

~ A~

X"(t) = X™M0)+Y"(t)+W"(t), t>0.

Throughout the paper, we assume that {X™(0): n € N} are deterministic and does not depend on

n.
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2.1. Scheduling policies
Let 7"(t) :=inf{r > t: J"(r) =1} for t > 0. We define the following filtrations: for ¢ > 0,7 >0,

En .
Gr, -

o{ A} (s),S]'(s), Ri(s), Q7 (5), Z;'(s), X'(s),J"(s): i € LT,s <t} VN,
o{ A7 (" () + 1) = AP (7" (1)), S (7" (#) + 1) = S (7" (1)),
R (7" (t) + 1) — R (7™ (t)), Lr (7" (t) +7) — LM (7" (t)): i e T}V I,

where N is a collection of P-null sets.

DEFINITION 1. We say a scheduling policy Z™ is admissible, if it satisfies following conditions.

(i) Preemptive: a server can stop serving a class of customer to serve some other class of cus-
tomers at any time, and resume the original service at a later time.

(ii) Work-conserving: for each ¢ >0, (e, Z"(t)) = (e, X"(t)) An.

(iii) Non-anticipative: for ¢ >0 and r > 0,

(a) Z"(t) is adapted to F/".
(b) Fi* and G, are independent.

We only consider admissible scheduling policies. Given an admissible scheduling policy Z™, the
process X™ in (2) is well defined, and we say that it is governed by the scheduling policy Z".
Abusing the terminology, we equivalently also say that X" is governed by the scheduling policy
Z". We say that an admissible scheduling policy is stationary Markov if Z"(t) = 2z"(X™) for some
AV ANSY AR

Define the set

U:={ueR{: (e,u) =1},

It is often useful to re-parametrize and replace the scheduling policy Z™ with a new scheduling
policy U™ defined as follows. Given a process X" defined using (2) and an admissible scheduling
policy Z™, for t > 0, define

Un(t) — n—(e,X™(t))

. ZEOX0  for (e, X" (1)) >n,
eq for (e, X"(t)) <n.

The process U"(t) takes values in U and represents the proportion of class-i customers in the
queue. Any process Un defined as above by using some admissible scheduling policy Z" is called
an admissible proportions-scheduling policy. The set of all such admissible proportions-scheduling
polices U™ is denoted by . Then, given X" and any Un e ﬁ", the scaled processes Z" and Q”
are determined by

7" =X"—Q", Q"= (e, X")'U". (5)
By replacing (Z",Q”) with (X " U ") in the equations, it is often easier to establish the limiting

controlled diffusion as we see in the next theorem. Also, the representation in (5) is useful in
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the study of asymptotic optimality in Section 4. Abusing the terminology, we replace the term

admissible proportions-scheduling policy with admissible scheduling policy.

2.2. The limiting controlled diffusion
By the equation (4) in Anderson et al. (2016) and Assumption 1, we have

~

() — 0t as. as n—oo, (6)

where /" = (él, e ,@d)’, 0= (ly,...,0y) and {; = j\f — pi T . Let m be the stationary distribution of
J", that is, 7’Q =0 and 7’e = 1. (Note that scaling Q does not change the stationary distribution.)
By Proposition 3.2 in Anderson et al. (2016), we obtain

ﬁ”:aiw in (DY,J), as n—o0, (7)

where L" = (f}?, e ,ﬁg)’, W is a zero-drift standard d-dimensional Wiener process, and if a > 1,

then 0% =0, while if o <1, then o’ satisfies (¢%)'cl =0 =[0,;], with

[e3%

O =23 > (Nilk) = pipsa (k) (A (1) = i (1)) 7w Y (8)

lek ke

for i,j € Z, and Ty := [ (Py(t) —m) dt with Py (t) = [e%]y, that is, T = (Il — Q)" — IL. Here,
II denotes the matrix whose rows are equal to the vector .

The proof of the following result is in Appendix A.

THEOREM 1. Under Assumptions 1 and 2, and assuming that X”(O) is uniformly bounded, the
following results hold.
(i) Asn— oo,

(Z2",Q") = (p,0) in (D",J)%,

where p=(p1,...,p4)-
(ii) Asn— oo,

W" =W in (DLJ),

where W is a d-dimensional Brownian motion with a covariance coefficient matrix o0, defined

by
A2, a>1,
oloa=4AN*+0, a=1,
0, a<l1,

and A =diag(\/2AT,...,/2A]).

(iif) (X", W™, Y™) is tight in (D%, J)?.



Arapostathis et al.: Optimal control of Markov-modulated multiclass many-server queues
10 Article submitted to Stochastic Systems; manuscript no. SSy-2018-026.R1

(iv) Provided that Un is tight, any limit X of X" is a unique strong solution of

AX(t) = b(X(t),U(t))dt +dW(t), (9)
where X (0) =, x € RY, is a limit of X™(0), U is a limit of U™, and b: R% x U~ R? satisfies
b(z,u) = — M(z—(e,x)"u) —T{e,z)"u,

with M = diag(u7,...,u3) and T = diag(\7,...,7]). Furthermore, U is non-anticipative, that is,
for s <t, W(t) —W(s) is independent of

Fo=o(U@r),W(r): r<s)VN,

where N is the collection of P-null sets.

2.3. The discounted cost problem
Let R: R% — Ry take the form
R(z) = cla|™, (10)

for some ¢ >0 and m > 1. Define the running cost function R: R¢ x U~ R, by

R(z,u) = R((e,z)"u).
Note that the running cost function is penalizing the size of the queues, and depends on the
scheduling policy.
REMARK 1. In place of (10) one may merely stipulate that 3~Q(x) is a locally Holder continuous

function such that
afzf™ < R(x) < ea(1+[2[7) (11)
for some constants 1 < m <m. See, e.g., Remark 3.1 in Arapostathis and Pang (2019). For the

discounted problem, the lower bound in (11) is not required.

For each n and 9 > 0, given Xn (0), the ¥-discounted problem can be written as

Vi (X"(0) = inf 35(X"(0),07),
Unetin
and
J(X™(0),0") =E [ / e R(X"(s),U"(s)) ds} .
0
Let 4 denote the set of all admissible controls for the limiting diffusion in (9). The ¥-discounted

cost criterion for the limiting controlled diffusion is defined by

Jo(x,0) =EY [/OOO e R(X(s),U(s)) ds] ,
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for U € i, and the ¥-discounted problem is

Vy(x) = inf Jy(z,U).
The main result concerning the discounted cost problem is stated in the next theorem, the proof

of which is given in Section 4.2.

THEOREM 2. Grant Assumptions 1 and 2. If X”(O) —x €R? as n — oo, then it holds that

lim V2(X"(0) = Vy(z)  VI>0.

n—oo

2.4. The ergodic control problem
Given X™(0), define the ergodic cost associated with X™ and U™ by

3(X(0),0m) = limsup;E[/O R(X"(s),07(s)) ds| .

T—o0
and the associated ergodic control problem by
VHX™(0)) == inf JU(X™(0),0").
Unefin

Analogously, we define the ergodic cost associated with the limiting controlled process X in (9) by

T—00

. 1 r .
J(x,U) = limsup T E [/ R(X(s),U(s))ds| ,
0
and the ergodic control problem by
0+(z) = [}rgl‘j(x,U). (12)

The value g, (x) is independent of z. As we show in Theorem 6, the infimum is realized with a
stationary Markov control and g, (z) = g..

The asymptotic optimality of the value functions is stated below (proof in Section 4.3).

THEOREM 3. Grant Assumptions 1 and 2. If X"(0) = z € R? as n — oo, then it holds that

lim V7 (X"(0)) = o.(x).

n—oo

3. Ergodic Properties

We first review the ergodic properties of the limiting diffusion. Then, we establish some ergodic
results for the diffusion-scaled process. This second task forms the central part of this section, and
we explain why the results established here are needed for the study of ergodic control problems.
It is worth pointing out that equivalent results exist for non-modulated diffusion-scaled processes

(see Arapostathis et al. (2015)). However, the presence of modulation requires a fresh approach.
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3.1. The limiting controlled diffusion

The limiting diffusion belongs to the class of piecewise linear diffusions studied in Dieker and Gao
(2013). Applying Theorem 3 in Dieker and Gao (2013), we deduce that the limiting process X
with abandonment in (9) is exponentially ergodic (see, e.g., (Meyn and Tweedie 1993, Section
6), for definition) under a constant control uw=e4=(0,...,0,1)". By Theorem 3.5 in Arapostathis
et al. (2019), the limiting process X in (9) is exponentially ergodic under any constant control. We

summarize the ergodic properties of the limiting controlled process X in the following proposition.

PRroPOSITION 1. The controlled diffusion X in (9) is exponentially ergodic under any constant

control uw € U.

REMARK 2. As a consequence of the proposition, if ¥ is a stationary Markov control which is
constant on the complement of some compact set, then the controlled diffusion X in (9) is expo-
nentially ergodic under this control. For the diffusion-scaled process X", we first prove exponential
ergodicity under a static priority scheduling policy in Theorem 4. It then follows that any station-
ary Markov scheduling policy, which agrees with this static priority policy outside a compact set,
is exponentially ergodic. We remark here that exponential ergodicity of the diffusion-scaled process
under any stationary Markov scheduling policy is an open problem (compare with the study of

ergodicity for the standard ‘V’ network in Gamarnik and Stolyar (2012)).

3.2. Diffusion-scaled processes
Theorem 1 asserts that the scaled process Xn converges in a weak sense to the diffusion X, under
suitable controls. This does not mean that the optimal ergodic control problem for the limiting
diffusion is a good approximation for the optimal ergodic control problem for the diffusion-scaled
processes in general. Loosely speaking, in order to establish this, we need to show that under some
“near optimal controls”, the ergodic occupation measures of the diffusion-scaled processes converge
to the corresponding measures of the limiting diffusion process. We make this formal in Section 4.
Crucially, to establish Theorem 3, we need to establish that the diffusion-scaled process under
the “near optimal controls” are “exponentially ergodic uniformly in n”. We make this last notion
precise through the following definitions.

DEFINITION 2. For each n € IN, let 2" = 2"(z), for € Z4, denote the scheduling policy defined
by

i—1 +
ZM(x) = atﬂ\(n—in/) for ieT.
By using the balance equation x; = Z7*(z) + ¢'(z) and Definition 2, we obtain for z € Z% and

i €7, that
+

i1 +
g'(z) = |z, — (n—Zmi)
=1
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DEFINITION 3. For x € R?, define
i'(z) = (x1—pin,...,xa—pgn) , &"(z) =nPi"(z), X"={i"(z):x€Zl},

and X" = {"(x): x € A"}, with A" = {zeRL: ||z —pn| < ¢n®} for some positive constant c.
DEFINITION 4. We let [,2 denote the generator of the process (X " J"), governed by a stationary
Markov scheduling policy z". We say that {(X " J”)}nelN governed by a sequence of stationary
Markov policies {z"},en is uniformly exponentially ergodic of order m if for each n > Ny, where
Ny € N is fixed, there exists a nonnegative function Yo xn x K — R, which is continuous in its

first argument, and positive constants ¢, C; and Cy, independent of n, such that

d
V() = e lal™,
=1

and

L2VME, k) < CL— CoV™(E,k), Y(2,k)eX"x K.
Since (X " J™) is irreducible and aperiodic, it is well known that uniform exponential ergodicity of
order m implies that the transition probabilities of the process converge to the invariant distribution
with an exponential rate which is independent of n > N,. It also implies that

R I
sup limsupf E* [/ ]X”(s)\mds] < 00.
0

n>Ng T—o0

We then say that the sequence of controls z™ are stabilizing (of order m). We begin by showing in
Theorem 4 that “static” scheduling policies (Definition 2) are stabilizing. Then, roughly speaking,
we proceed to show in Lemma 3 that scheduling policies which agree with a static policy outside
a ball are also stabilizing. Finally in Section 4 we choose near optimal policies inside the ball and
static policy outside the ball, by Lemma 3 these are stabilizing, and hence the ergodic occupation
measures of the diffusion-scaled process are well approximated by the corresponding ones of the
limiting diffusion.

DEFINITION 5. Let 2™ be a stationary Markov policy. We denote the infinitesimal generator of

the “average” process by

:ZX?( (x+e;) —1—2/17? —e,»)—f(x))
+Z% q; ( (z—e) = f(x))

i€

for f€C,(R?) and all z € Z4, where ¢ (z,2) =x; — 2]"(x), i € L.
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LEMMA 1. Let zZ™ be the scheduling policy in Definition 2. Then for any even integer m > 2,
there exist a positive vector &, positive constants C1 and Cy, and ny € N, such that the functions
fn, n €N, defined by

= &lei—pin|™, VzeZi, (13)

i€T
satisfy
Zinfn(.fﬂ) S Clnm'g_Can(x)v VJ;EZT_:_, vnzno

For a proof of Lemma 1, see Appendix A. This lemma shows that, under the static priority policy
z", the “average” process is exponentially ergodic.

DEFINITION 6. Under a stationary Markov policy z™ = 2"(x), the infinitesimal generator of
(X™(t),J"(t)) is defined by

L2 fla,k )—ﬁzkka—FZn awe (f(z, k') = f(z,k)),

k'eK

for f €Cy(RY x K), where

L2 f k) =D N (k) (f(a+enk)— flak)+ > pl (k)2 (x)(f(z — e k) — f(,k))

i€ €T

+ Z’Y?(k)qzl(x7z) (f(x - ez’ak) - f(ka)) .

i€z
Let AN (k) = A" — \?(k) for i € Z and k € K, and define Ap? and Ay, analogously. Let
Aﬁf:k: Cy(R? x K) = Cy(R?4 x K) be the operator defined by

AL S, k) = AN k) (f(w+e k) — Fla, k) + > App (k)2 () (f(x — e, k) — f(z,k))

i€l €T

+ D A (k) (w,2) (@ = eisk) = flw.k))
Define the embedding 9: C,(R?) < C,(R? x K) by M(f) = f, where f(-,k) = f(-) for all k€ K. It

is easy to see, by Definitions 5 and 6, that for all f € C,(R?), f =9M(f), and k € K, we have
L3 (@) = Lo0f (@ k) + AL f (2, k). (14)
Abusing the notation, we can identify f=(f) with f, and thus (14) can be written as
L3 () = L3 f (@) + AL F (@)

LEMMA 2. Let f,(x) be the function defined in (13), and 2" be any stationary Markov policy.
There exists a function g,[f.] € C(]Rd x K), satisfying

Gulful(z, k) = Z e AL falz), Y (2,k) ER' XK (15)

k'ex
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with some constants ¢y independent of n, and

ZnQQkk’(gn[fn](w7k/)_gn[fn](ka)) Aﬁz kfn( ) V(:E,k:)G]RdX/C.

k'ex

As a consequence, we have, for fired >0 and each n € N,
|gulfal (2, k)| < C3(1+n"0 ") + e, fu(z), V(z,k) R K, (16)

where C5 is some positive constant, and €, >0 can be chosen arbitrarily small for large enough n.

Proof. The existence of g,[f,](z,k) directly follows from the Fredholm alternative. The version
applicable here may be found in Khasminskii (2012).
For k € KC, we observe that

<—Z@

i€L

AN} (k) = A (k)z] = Ay (k)gi [ [m(@)™ " + O (|27 ")

< S & (1AN B+ IAuE (W] + 1807 (D))

i€l

S 04 (1 + nm(l—a)) + enfn($) )

@)+ o(Em?)|

where Cj is some positive constant, and the last inequality follows by using z; = ' +np;, Assump-
tion 1, and following inequalities with sufficiently small € > 0:
B AN ) < O e,
Pl < ) g el a7)

O(n!=)O(|7|" ) < &y (0 (|ar )"

IN

Note that when o> 1, n™1=%) < 1. Thus, by the expression of g,[f,] in (15), we obtain (16). This
completes the proof. [0
For each n, define the function f,, €C (R x K) by

fn(z:?k:) = fn(x) +gn[fn](ka) :

The norm-like function V,, ¢ is defined by V,, ¢(x) == >, ; &lx|™ for x € RY, with m >0 and a
positive vector ¢ defined in (13). Recall from Definition 4 that £, denote the generator of (X, J")

governed by a stationary Markov policy z". Using 2" in Definition 3, we can write E;n as
2210 @ (@) k) = [ £ 7@ (), (k)
for f € Cy(R% x K). We also define the operator AEf:k: Cy(R* x K) = Cy(R* x K) satisfying

(AL G| @ (@), k) = [ALZ (), (k)
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for f€Cy(RY x K). Let ﬁm,g be the function defined by

Sn 1 ~n
Vm,f(‘r’ k) = m,g(it) + ﬁ Z ckk/AEn’k/Vm@(a:)

KeK
for z € R? with the constants ¢ defined in (15).

THEOREM 4. Let Zan denote the generator of the (X",J") under the scheduling policy defined

wn Definition 2. For any even integer m > 2, there exists ny € N such that
LV (3,k) < Cy = CoV0 ((d,k), Y(&,k)€eX"xK, Vn>n,, (18)

for some positive constants 6’1, 62 and ny > ng depending on £ and m. As a consequence, (X", Jm)

under the scheduling policy Z™ is exponentially ergodic, and for any m >0,
SR I
sup limsup — E* [/ |X”(s)|mds] < 00. (19)
n>ng T—o0 T 0
Proof.  Since operators defined in Definitions 5 and 6 are linear, we have

Vi (@"(x),k) = n~" fu (2, k)

m,§

for z € Zi and k € K. Thus, it suffices to show that
L2 fo(a, k) < Cyn™ — Cofo(x,k), Y(z,k)€Zi XK, Yn>mny. (20)

Let £ be the vector in (13). It is easy to see that

L3 fulw k) = L3 fo(@) + L300 fa] (2, K) o)
< O™ = Cofu(®) + LI gulful(x,k) . Y >ng,

where the inequality follows from Lemma 1. Applying Lemma 2, we see that there exist positive

constants Cg, C'7, and 7, such that
Con™ — Cy fl, k) > Cin™ — Cyf(x), VYn>ny, Y(zk)eRxK. (22)
Thus, to prove (20), by using (21) and (22), it suffices to show that, for large enough n,
Lrgulfal(@,k) < Cen™ +efu(2), (23)

where Cy is some positive constant, and € > 0 can be chosen arbitrarily small for large enough n.
Recall the definition of g,[f,] in (15), and observe that
Aﬁz fn n ~n n m—
ELADE) 5 & (A (k) - A (0)37 (@) - AP (W) ) (m(@)™ +0(a71m).

1€L
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Let

LS

€L

Note that in order to prove (23), by using (17) and the balance equation 27 (x) = 2! (z) — ¢ (z) +np;,
we only need to show that

Liha(z) < Con™ +efo(), (24)
where Cy is some positive constant, and € > 0 can be chosen arbitrarily small for all large enough

n; the other terms in Eifkgn [fn] can be treated similarly. We obtain

L) = 3 (AR @)+ F2 (@),

€L

F(@) = nm e (k) (@ (v + &) (@7 + )™ = @2 (@) (@)™ )
T (i (R) 2 () + P ()@ (2)) (G (2 — ea) (2] — 1)™ ! = @ () (@7) ™)

F2 () =0 Y N0 (G (@ +e) = 7 (2)) (@)
J#i
+ (w7 (B)Z] (2) + 97 (k)7 (2)) & (@5 (= — e5) — @5 (2)) (25)™ ] -
Note that for ¢/ € T,
|G (x £ ;) — g ()] < 1,
and ¢})(x) is the unscaled queueing process. We first consider FT(:Z.) (). We have

SoFR @) <m0 e k) (a (@ +e) (@ + 0" = @) 1)

+&i (H?(k)(i’? +np; —qi'(z)) +’Y?(k¢)df(a:)) (q*f(gg —e) (@ -1 = @)™ + |j?|m,1)} '

Note that

i—1 +
npi—<n—anj> =0.
j=1 |
By using the fact that a™ —b" =n(a — ), for a,b € R and n € [0, 1], we have
i1 17T i1 +1F
g'(x) = — |np; — <n—2npi) + |x; — (n—in/>
j=1 i i'=1
i—1
= () (npi = 20) +7(x) Y (5 = npy) (25)
j=1
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for the mappings 7;,7;: R%+— [0,1]%. By using (25) and Young’s inequality, we have

q:z(xiel)((j};nj:l)m—l (l,n)nb 1) < o |~n 'rn 1 +ZO |x/|m 1

/=1
1—1
G ()3 (x—e) (@ =)™ = @)™ < o(1F|™) + > o(lp™).
/=1
Therefore, applying inequalities in (17), we obtain
ZFTEIB(:B) < Chon™ ) fef, (). (26)

i€
where Cy is some positive constant, and € can be chosen arbitrarily small for large enough n. On
the other hand, since z}(x) <z, and §}(z) < zy for ¢ € Z, applying Young’s inequality, we obtain
2 —Q TL n ~n n|m-—
F2l @) < n= Y &GN R+ (1 (B) [+ v (R)D@E] +npy)) [

J#i (27)
Cllnm(l_a) + efn(l') )

IN

where C1; is some positive constant, and € can be chosen arbitrarily small for large enough n, and
the second inequality follows from (17). By Lemma 2, there exists n; > 0 such that for all z € X",
k € K and n > ny, we have

o . 1 R

Vi el@, k) > ivm,g(x) +0(1). (28)

We choose n, € IN satisfying n, > max{ng,n1,n;}. Thus, since 1 —a < 3, by (26) and (27) we have
shown (24). As a result, we have proved (20), which implies (18).
Let E** =E. By It6’s formula, we obtain

B [V 000 B [, 0.0 0)] =B [ [ 59060 as]
Then, using (18), we have, for Vn > n,,
—E [V5,(X7(0),77(0))] < T~ GuE [ / e ”(s),J”(s))ds] . (29)

Applying (28) and (29), we obtain that, for some positive constant C1o, and for all n > na,

/Z|X" ]mds]<012

i€

This proves (19). O

DEFINITION 7. Let w: Ri — Zi be a measurable map defined by

w(z) = <Lw1J7---7L$d1J7 [za] +Z(a¢i— L%J)) :
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DEFINITION 8. Let v™: R%— U be any sequence of functions satisfying v™(2"(z)) = eq, for all
x ¢ A", and such that z+— v™(2"(z)) is continuous. Define

nion w(({e,z) —n)*v™(3"(x))) for supcy | —np;| < kn,
q"["(2) =9 -,
q"(x) for sup;cs |z —npi| > kn,

where ¢"(x) is as in Definition 2, and « < inf;cz{p;}. Define the admissible scheduling policy
2 "(x) =z —q"[v")(2) .
We have the following lemma on stabilization of the diffusion-scaled queueing processes.

LeEMMA 3. The process (X", J™) governed by the scheduling policy z™ in Definition 8 is uniformly

exponentially ergodic (of any order m).

Proof.  Observe that for all n € IN, we have
(i) For i € Z, there exists a constant C' such that |¢"[v"](x +e;) — ¢"[v"](z)| < C;

(i) For i € Z, there exists functions €, €": R%+ [0, 1] such that

i—1

¢/ [v")(x) = € (@) (2 —np;) + & () Y (2 —nps) +O(n”).

=1
Hence the same proof as that of Theorem 4 may be employed to obtain the result. [
REMARK 3. Lemma 3 shows that any sequence of scheduling policies which satisfies (i) and (ii)

in the proof of Lemma 3 is “stabilizing”.

4. Asymptotic Optimality

4.1. Optimal solutions to the limiting diffusion control problems
The characterization of optimal control for the limiting diffusion follow from the known results:
the discounted problem in (Arapostathis et al. 2012, Section 3.5.2) and the ergodic problem in
(Arapostathis et al. 2015, Sections 3 and 4). We summarize these for our model.

We first introduce some notation for the limiting diffusion. For u € U, let £, : C*(R?) — C*(R® x
U) be the controlled generator of X in (9), defined by

Lof(x) =D bixw)dif(x)+ ) ai0;f (). (30)
€T ijET

where a;; == 1(a > 1)AT + 31 (« < 1)6;;, and a;; = 31 (o < 1)0;; for i # j. Recall that a control is
Markov if U(t) = v(t, X (t)) for a Borel map v on R, x R, and we say that it is stationary Markov
if v: R+ U. The set of stationary Markov controls is denoted by igy. We extend the definition
of b and R by using the relaxed control framework (see, for example, Section 2.3 in Arapostathis

et al. (2012)). Without changing the notation, for v € $lg\, we replace b; by

bi(z,v(x)) = /Ubi(:c,u)v(du|x), forieT,
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where v(du|z) denotes a Borel measurable kernel on U given z, and replace R analogously. A
control which is a measurable map from R to U is called a precise control. We say that a control
v € Ugy 18 stable if the controlled diffusion is positive recurrent, and the set of such controls is
denoted by Ussy. Let v, € P(R?) denote the unique invariant probability measure of (9) under the
control v € $ggy. Here, P(R?) denotes the space of Borel probability measures on R under the
Prokhorov topology. We define the corresponding ergodic occupation measure 7, € P(R? x U) by
7, (dz,du) == v, (dz)v(du|z). The set of ergodic occupation measures corresponding to all controls

in Uggy is denoted by G, and satisfies

G = {neP(]Rde): /}R Lo f (@) m(dz, du), erch(Rd)}.

dxU
This characterization of ergodic occupation measures follows by (Arapostathis et al. 2012, Lemma

3.2.2).

THEOREM 5. Vj is the minimal nonnegative solution in C2(R?) of

min £, Vy(z) + R(z,u)| = 9Vy(z).

uelU

Moreover, v € Usy is optimal for the ¥-discounted problem if and only if

(b(z,v(x)), VVy(2)) + Rz, 0(z)) = H(z, VVs(z)),

where

H(x,p) == min [(b(x,u),p) + R(z,u)] .

uclU
Proof. The result follows directly from Theorem 3.5.6 and Remark 3.5.8 in (Arapostathis et al.
2012, Section 3.5.2). O

THEOREM 6. There exists V € C2(RY) satisfying

min [EUV(JU) + R(z, u)] = 0..

u€elU

Also, v € Ugy is optimal for the ergodic control problem associate with R if and only if it satisfies

(b(z,v(2)), VV(2)) + R(z,v(z)) = H(z,VV(2)).
Moreover, for an optimal v € Mgy, it holds that

lim ~E [/0 R(X(s),0(X(s))| = 0., VxeR?.

T~>ooT z

Proof. This follows directly from Theorem 3.4 in Arapostathis et al. (2015). O
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If we restrict the ergodic control problem in (12) to stable stationary Markov controls, then the

problem is equivalent to

min / R(z,u) m(dz, du)
RexU

meSg
(see, for example, (Arapostathis et al. 2012, Section 3.2 and 3.4)). The next theorem shows the

existence of an e-optimal control, for any € > 0. This is proved via the spatial truncation technique.

THEOREM 7. For any € > 0, there exists a ball Br with R = R(e) >0, a continuous precise
control v, € Ussm which agrees with eq on BY,, and an associated invariant measure v, satisfying
R(z,v.(z))v(de) < 0. +e€.
R4

Proof.  This result follows from the proof of claim (5.14) in Arapostathis et al. (2015). O

4.2. Asymptotic optimality of the discounted cost problem

In this subsection, we first establish an estimate for X" by using an auxiliary process. Then,
following a similar approach as in Atar et al. (2004), we prove asymptotic optimality for the
discounted problem.

Given the admissible scheduling policy Un, let X" be a d-dimensional process defined by

23
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for i € 7, where WZ" is defined in (4). Recall the representations in (5). X" is a simpler process
(compare with X™ in (3)). Here we replace the state-dependent rates in the last two terms of (3)
by their averaged version. It is also worth noting that X" can be viewed as a continuous integral
mapping with inputs X "(0), /m, W and Un (see, for example, (Pang and Whitt 2009, Lemma
5.2)), while Xn may not have this representation. This auxiliary process X" is useful in showing

Theorem 1, the proof of which is given in Appendix A, and relies on the following two lemmas.

LEMMA 4. Asn— oo, X" and X" are asymptotically equivalent, that is, Xn—Xn converges to

the zero process uniformly on compact sets in probability.
The proof of Lemma 4 is given in Appendix B.

LEMMA 5. We have

E[IX"(0)1"] < Ca(t+£m)(1 + a|™) (2)

for some positive constants Cy and myg, with m defined in (10).
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Proof. Recall X" defined in (31). For t > 0, X"(t) — (e, X"(¢))TU"(t) satisfies the work-

conserving condition. Thus, following the same method in (Atar et al. 2004, Lemma 3), we have
E[IX"(0)1"] < Colt+7)(1 + o] ™)

for some positive constants Cy and mg. As a consequence, (32) holds by Lemma 4. [

Proof of Theorem 2. (Sketch) We first show that

liminf V*(X™(0)) > V(). (33)

n—oo

Lemma 5 corresponds to (Atar et al. 2004, Lemma 3), and Theorem 1 corresponds (Atar et al. 2004,
Lemma 4). By using Theorem 5, we can get the same result as in (Atar et al. 2004, Proposition
5). Thus, we can prove (33) by following the proof of (Atar et al. 2004, Theorem 4 (i)).

Next, we show that there exists a sequence of admissible scheduling polices U™ which attains
optimality (asymptotically). Observe from Atar et al. (2004) that the partial derivatives of Vy in
Theorem 5 up to order two are locally Holder continuous (see also (Arapostathis et al. 2012, Lemma
3.5.4)), and the optimal value Vy has polynomial growth. By (Atar et al. 2004, Theorem 1), there
exists an optimal control v, € LUgy for the discounted problem. Recall w defined in Definition 7.
Let

Ar = {reRL: (e,x) <z, VieI}, and X} = {2"(z): z€A}}.

Given X™, we construct a sequence of scheduling policies as follows:

. w({e, X™(t)) — n)Tu, (X" (1)) for X"(t) € X},

Q"(t) =1 o (34)
ZM(X™(t)) otherwise,

where Z" is the static priority policy defined in Definition 2. Here the value of the scheduling policy

outside X} is irrelevant for our purpose. For n € IN, let (X [N O LVALR U ,?) be a sequence of queueing

systems constructed by using (34), and K™ be the process defined by
K"(t) = (b(X5 (), Up (1), VVa (X5 (1)) + R(X; (), Up (1)) — H (X3 (), VVa (X3 (1))

It is easy to see that, for any y € R%, |w(y) — y| < 2d. Then, using Theorem 1 and Lemma 5, and

following the same proof as in (Atar et al. 2004, Theorem 2 (i)), we have
/ T K7 (s)ds = 0. (35)
0

Note that (35) corresponds to the claim (49) in Atar et al. (2004). Then, we follow the method in
(Atar et al. 2004, Theorem 4 (ii)) and obtain that

lim 35 (X7(0),07) < Vy(x).

n—roo

This completes the proof. [
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4.3. Proof of Theorem 3

In this section, we prove the asymptotic optimality for the ergodic control problem by establishing
the lower and upper bounds in Theorems 8 and 9, respectively. The techniques used in the proofs
differ from previous works. In the proofs of lower and upper bounds for the diffusion-scaled process
X" in (3), it is essential to analyze the term L, which in the presence of modulation is not a
martingale. Thus, the approach in Arapostathis et al. (2015) may not be applied directly, since the
proofs there rely on the martingale property. So we construct a martingale by adding a process to
L", and we establish results for this auxiliary process. Then, we show the same results hold for
Xn by asymptotic equivalence. On the other hand, in the proof of convergence of mean empirical
measures (these are formally defined later), we need to consider the convergence of scaled Markov-

modulated rates, while non-modulated systems do not have this issue.

4.3.1. Proof of the lower bound for the ergodic problem. We have the following theorem

concerning the lower bound.

THEOREM 8 (lower bound). It holds that

liminf V"(X™(0)) > o.(x).

n—oo

We first assert that X" is a semi-martingale. The proof of the following lemma is given in

Appendix B.

LEMMA 6. Under any admissible policy Z™, X" isa semi-martingale with respect to the filtration
Fr:={F: t >0}, where F]' is defined in Section 2.1.
t t

DEFINITION 9. Define the family of operators A}: C*(R? x U) — C*(R* x U x K) by

A f ) = S0 (b7, RO () + 507w, K)F (1))

i€T

where the functions b7, 07: R? x U x K+ R are defined by

b (w,u k) = 0 — i (k) (2 — (e, 2) Twi) =7 (k) e, 2) s,

K2

with
08 = TP [(A2 (k) = ni(k)) — npi (uf (k) — i (K))]
and n I
ol (x,u, k) = n'"u(k)p; + )\zgf) + pi (k) — (e:7) ;j;) HE B W

for i € 7 and k € K, respectively.
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Let G™ denote the k-dimensional process
Gp(t) = 1(J"(t)=k)—-1(J"(0)=k), t>0,
and B" denote the d-dimensional processes defined by

By () == N " (Ai(k) — paps()) [(G™(0))' Y], 120, (36)

kek

for i € 7, k € K, where §y := (1 - 3) — §. Then we have the following result, which shows that all
the long-run average absolute moments of the diffusion-scaled process are finite. The proof is given

in Appendix B.

LEMMA 7. Under any sequence of admissible scheduling polices {U" n € N} such that
sup,, 3" (X™(0),U™) < oo, we have

L on[ [T
sup lim sup TEU [/ |X”(s)]mds} < 00 (37)
0

nelN T—oo

for m defined in (10).

DEFINITION 10. Define the mean empirical measure ¢ € P(R* x U) associated with X" and U”

by

~ ~

(r(AxB) = %E [/o Laxs(X"(s),U(s))ds

for any Borel sets A C R? and B C U.
Note that the sequence {(}}} is tight by Lemma 7. The next lemma shows that the sequence {(}}
converges, along some subsequence, to an ergodic occupation measure associated with the limiting

diffusion process under some stationary stable Markov control.

LEMMA 8. Suppose under some sequence of admissible scheduling polices {ﬁ’L: n € N}, (37)

holds. Then 7t is in G, where t€ P(R¢ x U) is any limit point of (% as (n,T) — .

Proof. We construct a related stochastic process X" to prove this lemma. Let X" be the d-

dimensional process defined by

X":=X"+B", (38)
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where B is defined in (36). Applying Lemma 3.1 in Anderson et al. (2016) and Lemma 6, X" is
also a semi-martingale. We first consider the case with a < 1. Using the Kunita—Watanabe formula

for semi-martingales (see, e.g., Protter (2005), Theorem I1.33) with E = E”", we obtain
E[f(X"(T)) — f(X"(0))]

T
;E / S AP F(X7(s), 07 ()1 (J"(s)—k)ds]
0 kek
g L0 f(R7(s)) dLr -5 - "0, f(R7(s)) By )
+5 ZE; i Wf(X(s) AL (s)| + 7 XEI: i if (X7 (s))dB] (s)
+1g Z/ Dir f(X™(s))d[B, B3(s) +1E[pr(f(” s)]
T 7,1 'eT 0 ) Y T s<T ,
for any f € C°(R?), where
Df(X",s) = A Zaf (X" (s—))AX"(s) — = Z Divr f(X™(5=))AX(s)AX D (s)

for s> 0. Using (Anderson et al. 2016, Lemma 3.1), B"(s) 4+ L"(s) is a martingale, and hence the
sum of the second and third terms of (39) is equal to zero. By equation (8) in Anderson et al.
(2016) and the same calculation as in equation (10) of Anderson et al. (2016), the fourth term on

the r.h.s. of (39) can be written as

=103 / (k) = pops () (Ao () = pur i (K)) Ty (X7 ())1(T"(s) = k) dis

iiter” 0 kele’eIC

Note that for any f € CZ(R?),

limsup ~ E[/ FX(s), 07 (s ))(]I(J”(s):/c)—wk)ds]

(n, T)—>oo

= limsup ;IE [/O n~?f(X"(s),U"(s))d (/Osna/Q(]l(J"(u) =k) — ) duﬂ =0

(n, T)—o00
by the boundedness of f, (Anderson et al. 2016, Proposition 3.2) and (Jansen et al. 2017, Theorem
5.2). Thus, we can replace 1(J"(s) =k) by 7, for all k€ K in (39), when we let (n,T") — co.
We next prove that the last term on the r.h.s. of (39) vanishes as (n,T") — oco. Let

fles == sup (1) + 210 @]+ Y 10t (@)]).

z€RA i,j€T i,5,k€T

Since the jump size of X™ is of order n=%/2*% or n=8 then by Taylor’s formula, we have

Df(X", )| < Col /s 3 |AXI () AXE(s)] (40)

a/2
i3’ €T
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for some positive constant ¢, independent of n. By equation (2) in Anderson et al. (2016), and the

independence of Poisson processes, we obtain

= [Z i;I!AX?(S)AXﬁ(S)\}
= ;E[ OT ;Ck;é,;,;e,cék <Qkk’]l(=]n(3) =k)+ gl (J"(s) = kl)) (41)
+Z<MJH(S)) LI )Z0(s) %”(J”(S))Q?(S)> ds] ’

n2p n2p n2p

i€Z
where {¢;: k € K} are determined by the constants in (36). Using (37), the r.h.s. of (41) is uniformly
bounded over n € IN and T > 0. Therefore, by (36) and (40), the last term on the r.h.s. of (39)
converges to 0 as (n,T") — oo.

As in Definition 10, let (2 € P(R? x U) denote the mean empirical measure associated with xn

and U", that is,
- 1 T - R
C;(AXB) = TE|:/ ]leB(Xn(S)jUn(S))dS:|
0

for any Borel sets A C R? and B C U. Then, by (39) and the above analysis, for f € C>*(R?), we

have

limsup/ <ZAZ flz,u)m, +1(a<1) Z Oiixﬁii/f(x)> Cr(dz, du) = 0, (42)

(n,T)—o0 kek €T
where {0;: i,i’ € L} is defined in (8). Note that for each i € Z, the sums ), .. b}'(z,u, k)m; and
> wex O (@, u, k)my, converge uniformly over compact sets in R? x U, to b; (see (9)) and 21 (o > 1)AT,
respectively.

On the other hand, by the definition of B™, we have that
sup | X" (t) — X"(t)| < n="2C, (43)
t

for some positive constant Cy. By (37) and (43), we deduce that {@} is tight. Let (n;,7;) be any

sequence such that @ converges to 7, as (ng,T;) — oo. Hence, for any f € C>(RR%), we have

/ L,f(zx)nt(de xdu)=0 fora<1,
R xU

with £, defined in (30). Using (43), we deduce that ¢% and (7 have same limit points. Therefore,

as (n,T) — oo, any limit point 7t of (7 satisfies

/ L.f(x)m(de xdu)=0 for a<1.
R4XU

When a > 1, the proof is the same as above. This completes the proof. [
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Proof of Theorem 8. Without loss of generality, suppose V™ (X”Z(O)) for some increasing
sequence {n;} C IN converges to a finite value, as [ — oo, and Um e 4. By the definitions of V”,
and the mean empirical measure (7t in Definition 10, there exists a sequence of {7;} C R, with

T; — o0, such that
N, 1 "
V(X 1(0))-{-7 2/ R(z,u) (7} (dz, du).

R4 xU

By Lemma 7 and Lemma 8, {(; : [ € N} is tight and any limit point of (7! is in §. Thus

lim V™ (X™(0)) > / R(z,u) m(dz,du) > o..
R4 xU

l—o0

This completes the proof. [

4.3.2. Proof of the upper bound for the ergodic problem. We have the following the-

orem concerning the upper bound.

THEOREM 9 (upper bound). It holds that

limsup V"(X"(0)) < o.(z).

n—00

The following lemma is used in the proof of the upper bound. The lemma shows that under a
scheduling policy constructed from the e-optimal control given in Theorem 7, any limit of the mean
empirical measures of the diffusion-scaled queueing processes is the ergodic occupation measure of

the limiting diffusion under that control.
LEMMA 9. For any fized € >0, let {¢": n € N} be a sequence of maps such that

q')(z) = {w(<€,n5§c>+v(i)) for supiezyﬁyi‘ < wn'=8,

q"(n’z +np) for  sup;er |2 > knth.
with ¢* defined in Definition 2, k in Definition 8, and v = v. in Theorem 7. For & € R%, let
2] (2) =nPi 4+ np—q"v](2), and

() = {M i (ed @) >0,

eq otherwise.

Let @3 be the mean empirical measure defined by
. S . X
GaxB) = 187 | [ s (006wl (6) as
0

for Borel sets ACR® and B C U, where X" is the queueing process under the admissible scheduling
policy Z"(t) = 2"[v](X"(t)). Let 7, € P(R? x U) be the ergodic occupation measure of the controlled

diffusion in (9) under the control v. Then (7 has a unique limit point 7, as (n,T) — oc.
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Proof.  Applying Lemma 3, we obtain that é% is tight. Recall the definition of X™ in (38). Define

the mean empirical measure

(HAX B) = %E [/OT Laxp (X" (s),u"[v](X"(s))) ds}

for Borel sets ACR? and B C U. For any f € C>*(R? x U), we have
T
7B | @) = [ feodnda.
By (43), it is easy to see (7 is also tight, and (7 and 7 have same limits as (n,T) — oo. Thus, to
prove the lemma, it suffices to show that 5% has the unique limit point 7, as (n,T") — co.
Note that

sup |u"[v](Z) —v(Z)] - 0 asn— o0 (44)
2eRIND

for any compact set D C R?. Let 7™ be any limit point of 5;3 as T — co. We have

" (de,du) = v"(dx) Oun(yj(z)(u), where v"(A) = lim lIE [/o ]lA(f(”(s))ds}

T—o00
for AC R By Lemma 8, v" exists for all n and {v": n € N} is tight. We choose an increasing

sequence n € IN such that v" — v in P(R?). For each n, let A" be the operator defined by

Arf(z) =D AR flau"p)(@)m+ L(a <1) Y 0000 ().

kex i,i' €T
Recall £, defined in (30) for v € Hgy. Therefore, we have
]l”fdy"—/ L,fdv = / (le"f—ﬁvf)du"wL/ L,f(dv" —dv). (45)
R4 R4 R4 R4

By (44) and the convergence of A" in (42), we have A" f = L, f uniformly as n — co; thus the first
term on the r.h.s. of (45) converges to 0. By the convergence of v", the second term of (45) also
converges to 0. Applying Lemma 8, it holds that, for any f € C>(R? x U),
JZL"de" — 0 as n—o0.
RA
Therefore,

/ L,fdv =0, VfeC*R*xU),
R

which implies that v is the invariant measure of X defined in (9) under the control v. By (44),
we obtain d,n(y()(u) = dyy(u) in the topology of Markov controls. Define the ergodic occupation
measure 7, € P(R? x U) by m,(dz, du) := v(dz)d,)(u). Then, for g € C*(R? x U), we have

/]Rd Ug(x,u)(ﬂv(dm,du) —nn(dx,du))

/U ( /R 9@, u) (v(dz) - I/"(dx))) Sl (1)
/U < /Rdg (x’”)”(d$)> (Bur () (1) = By (1)) | -

<

+
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By the convergence of v™, the first term of (46) converges to 0 as n — co. Since v has a continuous
density, then applying (Arapostathis et al. 2012, Lemma 2.4.1), we deduce that the second term
of (46) converges to 0 as n — oo. Thus, " — 7, in P(R¢ x U). This completes the proof. [

Proof of Theorem 9. Let m = 2m with m defined in (10). Let Z™ be a scheduling policy such
that Z"(t) = 2"[v.](X"(t)) with v, (together with a positive constant R(e)) defined in Theorem 7
and 2" defined in Lemma 9. Note that

/ R(z,u)m,, (dz,du) < o, +¢,
RAxU

where 7, € P(R? x U) is the ergodic occupation measure defined by 7, (dz, du) := v (dz)d,, ) (w)-
Let z"(x) = 2"[v](2"(x)) for x € Z<%, and ¢y = R(e) in Definition 3. Then, by Lemma 3, there exits
np € IN such that

~ o~ ~
z

mé(ii’,k) < Cl _CQVﬁL’&(.%,k) V(Q,k) ex"x ]C, Vnzﬁo, (47)

n

for some positive constants C; and Cs. Using (47), we can select a sequence of {T,,: n € IN} such
that T,, — oo as n — oo, and

sup sup / 975%5(.%,/{5) C(dz, du) < oo.
R4 xU

n>ng T>Th

It follows that R(x — 5"[v.](z)) is uniformly integrable. Moreover, by Lemma 9, (? converges in
distribution to 7, . This completes the proof. [
Appendix A: Proofs of Theorem 1 and Lemma 1

Proof of Theorem 1. To prove (i), we fix 8 =1/2, and first show that X" is stochastically bounded (see
Definition 5.4 in Pang et al. (2007)). Recall the definition of X™ in (3). By (6) and (7), {f* +L7: n e N} is
stochastically bounded in (D, 7). The predictable quadratic variation processes of ST and R? are defined by

(ST)(t) = / P (J" ()20 (s)ds,  (RI)(t) = / V(T (5)Qr (s)ds,

respectively. By (2), we have the crude inequality

and thus, by (1), the analogous inequalities hold for Z* and Q". Thus, applying Lemma 5.8 in Pang et al.
(2007) together with (7), we deduce that {(S", R?): n € N} is stochastically bounded in (D, 7)2, and thus
{Wr: n e N} is stochastically bounded. For each u € U, the map

+

z ¢ (z—(e,x)Tu) +cale,z)Tu

has the Lipschitz property, where ¢; and ¢, are some positive constants. Then, by Assumption 1, we obtain

IX" @) < IIX"(O)II+||W"(lt)||+C/0 (141X (o)1) ds
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for ¢ > 0 and some constant C. Therefore, applying Gronwall’s inequality, and using the assumption on X (0)
and Lemma 5.3 in Pang et al. (2007), it follows that {X™: n € IN} is stochastically bounded in (D?, 7). Then,
applying the functional weak law of large numbers (Lemma 5.9 in Pang et al. (2007)), we have

NG
for ¢ > 0. This implies X" = p in (D%, J) as n — co. By (1) and Assumption 2, we have (e, Q") = ({e, X") —
)t =0in (D,J) as n — co. Since Q" >0, it follows that Q™ = 0 and Z" = p, both in (D%, J) as n — oo.

=X"-p=0 in (D"J) as n—oo,

We next prove (ii). For i € Z and t > 0, A? can be written as
AR W/t . >_ w@)/t (g — )
A (t) =n <Am <n§c s 1(J™(s)=k)ds ngc A 1(J"(s)=k)ds
y (Jansen et al. 2017, Theorem 5.1) and Assumption 1, we have
ZA?T(]C)/]I(J”(S) =k)ds =25 ATe(r), as n— oo,
kek 0
for i € T, =23 denotes uniform convergence on compact sets in probability, and e(t) ==t for all ¢ > 0. Thus,
by the FCLT of Poisson martingales and a random change of time (see, for example, (Billingsley 1999, Page
151)), we have
A" = 1(a> 1)A

V2

where W is a d-dimensional standard Brownian motion. Similarly, applying Theorem 1 (i), (Jansen et al.

2017, Theorem 5.1) and Assumption 1,

S (k) [ 20" =Ry ds = St ) [ (276) = p)nrn () = ) s

Wy in (DY,J) as n— o0,

ek kex
+Zul / (J"(s)=k)ds =25 ATe(), as n— o0,
keK
and
Z’Yz /Q (s)=k)ds =245 0, as n— oo,

kek
for ¢+ € Z and t > 0. Thus, we obtain

5 = (o> 1)A

V2

with a d-dimensional standard Brownian motion W5, and

Wy in (DY, J) as n— o0,

R*"=0 in (D)J) as n—oo.

Since the Poisson processes are independent and the random time changes converge to deterministic functions,

the joint weak convergence of (ﬁ",A”,gn,R") holds. Note that W, W3 and Wy are independent, and thus
Wr =W in (D,J) as n—oo.

This completes the proof of (ii).
It is easy to see that ¢7, u"(k) and 47 (k) are uniformly bounded in i, k and n. The rest of the proof of
(iii) is same as (Atar et al. 2004, Lemma 4(iii)).
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Finally, we prove (iv). Note that un may not have a limit in the space D?. So to establish the weak limit,
we need to assume U™ is tight in D?. By the representation of X" in (31) together with Theorem 1 (ii) ,
and the continuity of the integral representation (see (Pang et al. 2007, Theorem 4.1) for one-dimension and
(Jansen et al. 2017, Lemma 4.1) in the multi-dimensional case), any limit of X" is a unique strong solution
of (9). Applying Lemma 4, we deduce that the limit X of X™ is also a strong solution of (9).

Recall that 77(t) is defined in Definition 1. For r > 0, we observe that

Wi (t+r) =W () =W (r" () +r) = W (7" (t)
Wt r) = W (" (1) +r) + W (1) = W (7 (1)) -
It is easy to see that as n — oo, 7™(t) = t. By the random change of time lemma in (Billingsley 1999, Page

151), we have
Wt +r) = W (" () +r) + W' (6) =W (" () = 0 in R,

and thus
W™ (t) 4+7) =W (" (b)) = Wi(t+7)—Wi(t) in R.

Thus, by Definition 1, and following the proof of Lemma 6 in Atar et al. (2004), we deduce that U™ is
non-anticipative. [

Proof of Lemma 1. Note that
(a£1)™ —a™ = +ma™ ' +0(a™?), acR.

Recall the definition of 2™ in Definition 3. We obtain

L fule) = 3o & (A (maplay =2 + 0(2 "))

i€l

+ R E (map|E R+ 0(F | R) + A (—mar | 4+ 0(F ) ).

Let
FO@) = &N+ s +3ar ) ol |™2).
i€T
and
FO(@) = &\ -z =50 Jmay a2
1€T

It is easy to see that
Lo folz) = FV(2) + F (x).
From Definition 2 and Assumption 1, we have
FO(@) < 36 (N + s +57: ) 072
€T

= (A A E ) + A7 (@ +np) O (48)

i€L

< Y- (omoqar2)+ o).

€T
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Next, we consider F(?)(z). By using the balance equation " = Z" — g + p""n, we obtain

FO (@) = S (- + X — ipim — (37 — )@ map |72

i€l

By Assumption 1, we have
A= pm=0(n"). (49)

Let ¢, =sup, ;|77 (k) — 7 (k)|, and ¢, be some positive constant such that

inf  {pi (k)7 (k)} > ¢ > 0.

i€Z,keZ,nclN

We choose
& =1, and fz—d—m/rglmlfz fori>2,
where ¢, = 85512 . Then, by using (25) and (49), we obtain
FP(z) <y [=m&((1—mi(@)iy +mi()y7) ™
1€T
i1
+& (00" = (7 = @)a(e) 3 & Ymar|ar ] (50)

j=1

< 0w @) - g e,

1€T
where the proof for the second inequality of (50) is same as the proof for the claim (5.12) in Arapostathis
et al. (2015). Using Young’s inequality and since 5 > 1/2, we have

O(n)O(|z7™2) < e(O(|Z7 ™))" " + -2 (0(n)) ™

(51)
~n|m— ~n|m— m/m—1 —m m
O(n”)o(|z ™) < e(0(z7|™")) +el 7 (0(n”))
for any € > 0. Therefore, by (48), (50), and (51), we have
L f.(x) < Cin™ = Caf,(z), Vre Z‘j_.
This completes the proof. [
Appendix B: Proofs of Lemma 4, Lemma 6, and Lemma 7
Proof of Lemma 4. For ¢€Z and t >0, we have
t t
X0 - X700 = - [ n ) - m) X ds+ [ () - Xr(9) ds
0 0
t
[ @) =B =7 9) + ) e X (6) U2 (s) ds 62
0

(@ - / (e, X7 ()" — (e, X7 (5)) ") O (s) ds.
For any a,b€ R, a™ —b" =n(a —b) with n € [0,1]. Then, the last term of (52) can be written as
/0 (e, X())* — (e, X7 (s))*) D (s) ds = / (X" (), X7 (5)) (e, X7(5) — X() )07 (s) ds

where 7j(x,y): (z,y) € R2+— [0,1]. Note that U (t) € [0,1] for all i € Z and ¢ > 0. By the continuous integral
mapping ((Pang and Whitt 2009, Lemma 5.2)), if the first and third terms of (52) converge to the zero
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process uniformly on compact sets in probability, then X" — X™ must converge to the zero process uniformly
on compact sets in probability. The first term of (52) can be written as
=S k) /t R X7 (s) d(n“/z / (1(T" () = k) — m,) du) .
kek 0 0

Note that 1 — 8 —a=min{0, (1 — a)/2}. Applying Theorem 1 (i), we have n~*/>X" converges to the zero
process uniformly on compact sets in probability. Similarly, since U;’(s) is bounded, by Theorem 1 (i), we
obtain that n=/2(e, X" (s))T)Ur(s) converges to the zero process uniformly on compact sets in probability.
Then, the asymptotic equivalence of X" and X" follows as in the proof in (Jansen et al. 2017, Lemma 4.4).

0

Proof of Lemma 6. For m € N and i € Z, define the processes Mg = {Mg (t): t > 0} and Mz =
[M, () 120} by

Mg (t):=S;,(t)—t, and My =R, (t)—t,

respectively. It is obvious that Mg and M} are square integrable martingales with respect to the filtration

generated by the processes ST, and R ;. Define the d-dimensional processes 7 and Ty by

(1) = / p(T(8) Z0(s)ds,  and (1) = / (T ()@ (s) ds

respectively. It is easy to see that {t},: i €Z,j € {1,2}} have continuous nondecreasing nonnegative sample

paths. For z; € R% and z, € R, we obtain
(T?(t) S l‘l,Tg(t) §x2) S Hn<.'1,'1,$2),
where
H" (21, @2) = {57 (s1,4), R (52,:), X7"(0): i €L, 51 Sy, 82 <2}
Va{Al(s),J"(s),Z]'(s): s>0,i €T} VN.

This implies that (t7(t),T5(¢)) is H"-stopping time, where H" := {H"(x1,22): 21 € R%, 2, € R%}. Since
X7 (t) < X(0)+ A2 (t) for i € T, we observe that
E [77:(8)] < max{p;(k) (X} (0) + E[A} ()] + 1) < o0,
E[S7,(7) ()] < max{pu:(k)}t(X}(0) +E[A](£)] +n) < oo,
Similarly, we have that E[t3 ()] and E[R] (15 ,(t))] are finite. Thus, applying Lemma 3.2 in Pang et al.
(2007) and Theorem 8.7 on page 87 of Ethier and Kurtz (1986), and using the decomposition in (3) and

Lemma 3.1 in Jansen et al. (2017), we conclude that X"isa semi-martingale with respect to the filtration

Fm = {Fr: ¢t >0}, where
Fr = o{Sr(s), RM(s), X'(0): i € T, s <t} Vo {A¥(s),J"(s), Z(s): i €L, 5> 0} VI,

and N is a collection of P-null sets. Since the processes A™(t), J™(t) and Z"(t) are adapted to F*, we can
replace F~ by the smaller filtration F™. This completes the proof. [
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Proof of Lemma 7. Define the function g € C*(R?) by g(z) =, ; g:(x;) with g; € C*(R) defined by
gi(x) =|z|™ for |x| > 1 and ¢ € Z. Recall A} defined in Definition 9. Applying the Kunita-—Watanabe formula
to X" with E=E”" and the fact ﬁ” + B! is a martingale, we have

E[g(X"(t))] = E[g N+ E U A g(X(s),Um(s))1(J"(s) = k) ds}

ke
> Dg(X",s)

s<t

1z€I 0

] (53)

for t >0, where Dg(X™, s) is defined analogously to (39). By Assumption 1 and Young’s inequality, we have
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and thus, for all k € I, we obtain
7
Ag gla,u) < 261 (14 ({e,2)7)™) — gealel™, (54)

where ¢; and ¢, are some positive constants independent of n. Following the same analysis for the fourth

term on the r.h.s. of (39), and using Young’s inequality, we have
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Since the jump size is of order n=% or n=*/?T% _ we can find a positive constant ¢ such that

sup g ()] < es(14 |a;|™2)
|z;—zf|<1
for each x; € R. Then, applying the Taylor remainder theorem, we obtain
v n ! % n v n 1 n
Agi(X7(s)) = gi(XP(s)AX](s) < 5 sup g/ (a)|[(AX](s))?,
o} — X1 (s—)|<1
for each i € Z. Following a similar analysis as in (41), and using Young’s inequality, we obtain

E[Z Dgi(X",s)] <E

s<t

> a1+ X0 (s-)m2) (Ams)f]

s<t

(56)
' = = v +\™ Co T m
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0
for some positive constants ¢, and é. Thus, by (53)—(56), we obtain

E U;IX'”(S)I"L ds] < &E[g(X"(0))] +ert+GE Uot«e, X" (s))F)™ ds} (57)

for some positive constants ¢, i € {6,7,8}. Using (43), we see that (57) also holds if we replace X™ with X,
Therefore, under any sequence satisfying sup,, 3*(X"(0),U) < co, we have established (37). This completes
the proof. [
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