J. Math. Pures Appl. 124 (2019) 169-219

Contents lists available at ScienceDirect 2
Journal de Mathématiques Pures et Appliquées VATHRNTIQUES
www.elsevier.com /locate/matpur
Strict monotonicity of principal eigenvalues of elliptic operators )
in R? and risk-sensitive control

Ari Arapostathis®*, Anup Biswas ", Subhamay Saha ¢

# Department of ECE, The University of Texas at Austin, 2501 Speedway, EER 7.824, Austin, TX 78712,

USA

b Department of Mathematics, Indian Institute of Science Education and Research, Dr. Homi Bhabha

Road, Pune 411008, India

¢ Department of Mathematics, Indian Institute of Technology Guwahati, Assam 781039, India

ARTICLE INFO

ABSTRACT

Article history:
Received 24 September 2017
Available online 13 June 2018

MSC:
primary 35P15, 93E20
secondary 35B40, 35Q93, 60J60

Keywords:

Generalized principal eigenvalue
Recurrence and transience

Viscous Hamilton—Jacobi equations
Risk-sensitive control

Ergodic control

Semi-linear eigenvalue problems

* Corresponding author.

This paper studies the eigenvalue problem on R? for a class of second order,
elliptic operators of the form £/ = a0,,0,, + b'0s, + f, associated with non-
degenerate diffusions. We show that strict moﬁotonicity of the principal eigenvalue
of the operator with respect to the potential function f fully characterizes the
ergodic properties of the associated ground state diffusion, and the unicity of the
ground state, and we present a comprehensive study of the eigenvalue problem
from this point of view. This allows us to extend or strengthen various results
in the literature for a class of viscous Hamilton—Jacobi equations of ergodic type
with smooth coefficients to equations with measurable drift and potential. In
addition, we establish the strong duality for the equivalent infinite dimensional
linear programming formulation of these ergodic control problems. We also apply
these results to the study of the infinite horizon risk-sensitive control problem
for diffusions, and establish existence of optimal Markov controls, verification of
optimality results, and the continuity of the controlled principal eigenvalue with
respect to stationary Markov controls.

© 2018 Elsevier Masson SAS. All rights reserved.

RESUME

Cet article étudie le probléme des valeurs propres sur R? pour une classe
d’opérateurs elliptiques du second ordre L£f = a¥dz;0x; + b'Ox; + f, associés
a des diffusions non-dégénérées. Nous montrons que la monotonicité stricte de
la valeur propre principale de l'opérateur par rapport 4 la fonction potentielle
f caractérise les propriétés ergodiques de la diffusion de I’état fondamental, et
I'unicité de I’état fondamental, et nous présentons une étude compléte du probléeme
des valeurs propres de ce point de vue. Cela nous permet d’étendre ou renforcer des
divers résultats trouvés dans la littérature pour une classe d’équations visqueuses
Hamilton—Jacobi du type ergodique avec des coefficients lisses aux équations avec
des coefficients mesurables. En outre, nous établissons la dualité forte pour la
formulation équivalente de programmation linéaire infini-dimensionnelle de ces
problémes de controéle ergodiques. Nous appliquons également nos résultats a I’étude
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du probléeme de controéle du type sensible au risque & I’horizon infini ; nous établissons
ainsi D'existence de contrdoles Markoviens optimaux, la vérification des résultats
d’optimalité, et la continuité de la valeur propre principale contrélée par rapport
aux controles Markoviens stationnaires.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper we study the eigenvalue problem on R for non-degenerate, second order elliptic operators
L7 of the form

< 0% 9y
£l = i b= . 1.1
v ;jila duion; ;:1 e, T/ (1.1)

Here b, f € LS (RY), a € Cloo’i (R%) and a, b satisfy a linear growth assumption in the outward radial
direction (see (A2) in Subsection 1.1). In other words, a and b satisfy the usual assumptions for existence

and uniqueness of a strong solution of the It6 equation

t t
X; = m+/b(Xs)ds+/c5(Xs)dWs, with a:= %GGT, (1.2)
0 0

where W is a standard Brownian motion.

We focus on certain properties of the principal eigenvalue of the operator £/ which play a key role
in infinite horizon risk-sensitive control problems. When D is a smooth bounded domain, and a, b, f
are regular enough, existence of a principal eigenvalue and corresponding eigenfunction under a Dirichlet
boundary condition can be obtained by an application of Krein—-Rutman theory (see for instance [1,2]).
This eigenvalue is the bottom of the spectrum of —£/ with Dirichlet boundary condition. For non-smooth
domains, a generalized notion of a principal eigenvalue was introduced in the seminal work of Berestycki,
Nirenberg, and Varadhan [3]. An analogous theory for non-linear elliptic operators has been developed by
Quaas and Sirakov in [4]. The principal eigenvalue plays a key role in the study of non-homogeneous elliptic
operators and the maximum principle (see [3-6]). For some other definitions of the principal (or critical)
eigenvalue we refer the reader to the works of Pinchover [7] and Pinsky [2, Chapter 4].

For unbounded domains, principal eigenvalue problems have been recently considered by Berestycki and
Rossi in [5,8]. Not surprisingly, certain properties of the principal eigenvalue which hold in bounded domains
may not be true for unbounded ones. For instance, when D is smooth and bounded it is well known that
for the Dirichlet boundary value problem, the principal eigenvalue is simple, and the associated principal
eigenfunction is positive. Moreover, it is the unique eigenvalue with a positive eigenfunction. But if D is
unbounded and smooth, then there exists a constant X = X*(f) such that any A € [X, 00) is an eigenvalue
of £/ with a positive eigenfunction [5, Theorem 1.4] (see also [6] and [9, Theorem 2.6]). The lowest such
value X serves as a definition of the principal eigenvalue when D is not bounded. The principal eigenvalue
is known to be strictly monotone as a function of the bounded domain D (the latter ordered with respect
to set inclusion), and also strictly monotone in the coefficient f when the domain is bounded (see [5] and
Lemma 2.1 below). These properties fail to hold in unbounded domains as remarked by Berestycki and Rossi
[5, Remark 2.4]. Strict monotonicity of f +— X*(f) and its implications are a central theme in our study. We
adopt a probabilistic approach in our investigation. One can view X'(f) as a risk-sensitive average of f over
the diffusion in (1.2). More precisely, since (1.2) has a unique solution which exists for all ¢ € [0, 00), then
we can define
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1 :
Ex(f) = limsup T log E, {eJOT f(XS)dS] , xz€R?, (1.3)

T—o00

with ‘log’ denoting the natural logarithm. As shown in the proof of Lemma 2.3 in [10] we have X*(f) < €,(f),
and equality is indeed the case in many important situations, although strictly speaking it is only a heuristic.
This heuristic is based on the fact that for a bounded f, the operator £/ is the infinitesimal generator of a
strongly continuous, positive semigroup with potential f, see for instance [11, Chapter IV]. If f is a bounded
continuous function, and if the occupation measures of {X;} obey a large deviation principle, then one can
express &, (f) in terms of the large deviation rate function. This is known as the variational representation
for the eigenvalue. See for instance the article by Donsker and Varadhan [12] where this representation is
obtained for compact domains. But large deviation principles for {X;} are generally available only under
strong hypotheses on the process (see [13]). In this paper we rely on the stochastic representation of the
principal eigenfunction which can be established under very mild assumptions. This approach has been
recently used by Arapostathis and Biswas in [10] to study the multiplicative Poisson equation when f is
near-monotone (which includes the case of inf-compact f). By an eigenpair of £f we mean a pair (¥, \),
with ¥ a positive function in WQ”C’ (R9), for all p € [1,00), and A € R, that satisfies

lo
LI = a0,V + b0,V + fU = \U. (1.4)

We refer to A as the eigenvalue, and to ¥ as the eigenfunction. In (1.4), and elsewhere in this paper, we
adopt the notation 0; = aa—xi and 0;; = %817_ for 4,7 € N, and use the standard summation rule that
repeated subscripts and superscripts are summed from 1 through d.

As mentioned earlier, such a pair (¥, \) exists only if A > X*(f) (see Corollary 2.1). Given an eigenpair
(T, \), the associated twisted diffusion Y (a terminology used in [14]) is an It6 process as in (1.2), but with
the drift b replaced by b + 2aV(log ¥). It is not generally the case that the twisted process has a strong
solution which exists for all time. If A > X*(f) the twisted diffusion is always transient (see Lemma 2.6).
When A = X(f), the eigenfunction is denoted as U* and is called the ground state [2,15]. The corresponding
twisted diffusion, denoted by Y™, is referred to as the ground-state diffusion.

Let CH(R?) (CF(R?)) denote the class of non-zero, nonnegative real valued continuous functions on R?
which vanish at infinity (have compact support). We say that X(f) is strictly monotone at f if there exists
h € CH(RY) satisfying X (f — h) < X(f). We also say that X(f) is strictly monotone at f on the right if
X(f +h) > X(f) for all h € CH(R?). In Theorem 2.1 we show that strict monotonicity at f implies strict
monotonicity at f on the right. Our main results provide sharp characterizations of the ground state U*
and the ground state process Y* in terms of these monotonicity properties. Assume that f: R? — R is a
locally bounded, Borel measurable function, satisfying essinfra f > —o0, and that X*(f) is finite. We show
that strict monotonicity of X*(f) at f on the right implies the simplicity of X(f), i.e., the uniqueness of the
ground state U*  and that this is also a necessary and sufficient condition for the ground state process to
be recurrent (see Lemma 2.7 and Theorem 2.3). Another important result is that the ground state diffusion
is exponentially ergodic (see Definition 2.2) if and only if X(f) is strictly monotone at f. These results
are summarized in Theorem 2.1 in Section 2. Other results in Section 2 provide a characterization of the
eigenvalue in terms of the long time behavior of the twisted process and stochastic representations of the
ground state (see Lemmas 2.2, 2.3 and 2.7, and Theorem 2.6).

In [2], Pinsky uses the existence of a Green’s measure to define the critical eigenvalue of a non-degenerate
elliptic operator. This critical eigenvalue coincides with the principal eigenvalue when the boundary of the
domain and the coefficients of £ are smooth enough. He shows that for any bounded domain, and provided
that the coefficients are in C1:®(R%), a > 0, and bounded, there exists a critical value A, such that for any
A > A, we can find a Green’s measure corresponding to the operator £/~ [2, Theorem 4.7.1]. The result
in Theorem 2.3 in Section 2 extends this to R? without assuming much regularity on the coefficients.
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Continuous dependence of X* on the coefficients of £ has also been a topic of interest. It is not hard to
ioc (R4) topology for f. Continuity of this map is also
established in [5, Proposition 9.2] with respect to the L>(R?) norm of f. In Theorem 2.6 and Remark 4.1
we study the continuity of X(f) for a class of functions f under the L _(R?) topology. We also obtain a

see that f — X(f) is lower-semicontinuous in the L]

pinned multiplicative ergodic theorem which is of independent interest, and show that &,(f) = X(f) for a
large class of problems.

We next discuss the connection of this problem with a stochastic ergodic control problem. Defining
¢ == log U* we obtain from (1.4) that

a0, + 600 — (Vih, aVY) = a¥ 800 + b0 + min [2(au, V) + (u,au)] = f—X(f).  (1.5)
It is easy to see that (1.5) is related to an ergodic control problem with controlled drift b+ 2au and running
cost (u,au) — f(x). The parameter X(f) can be thought of as the optimal ergodic value; see Ichihara [16].
Note then that the twisted process defined above corresponds to the optimally controlled diffusion. We refer
to Ichihara [16,17] and Kaise and Sheu [9] for some important results in this direction. For a potential f
that vanishes at infinity, Ichihara [16,18] considers the ergodic control problem in (1.5), with a more general
Hamiltonian and under scaling of the potential. When f is nonnegative, it is shown that the value of the
ergodic problem with potential 8f, § € R, equals the eigenvalue X(8f), and Vi¢* is the optimal control
when the parameter S exceeds a critical value (., while below that critical value a bifurcation occurs.
Analogous are the results in [19] for viscous Hamilton—Jacobi equations with @ the identity matrix and a
Hamiltonian which is a power of the gradient term. Most of the above results are obtained for bounded,
and Lipschitz continuous a, b, and f. In Theorems 2.7 and 2.8 we extend these results to measurable b and
f, and possibly unbounded a and b.

Optimality for the ergodic problem is shown in [16,18] via the study of the optimal finite horizon problem
(Cauchy parabolic problem). Inevitably, in doing so, optimality is shown in a certain class of controls. To
overcome this limitation, we take a different approach to the ergodic control problem in (1.5). As well known,
ergodic control problems can be cast as infinite dimensional linear programs [20,21]. Consider a controlled
diffusion, with the control taking values in a space U with extended generator 4, where the ‘action’ u € U
enters implicitly as a parameter in A. Let R: U — R denote the running cost. The primal problem then can
be written

= {inf / R(z,u) n(dz,du) : A*n=0, TCGP(RdeU)}.

R xU

Here P(R? x U) denotes the class of probability measures on the Borel o-field of R? x U. Its elements are
called ergodic occupation measures (see [20]). The dual problem takes the form

a = sup {CGR: ilel% [Ag(z,u) + R(z,u)] > c, gGD(A)},

where D(A) denotes the domain of A. In other words the dual problem is a maximization over subsolutions
of the Hamilton—Jacobi-Bellman (HJB) equation. For non-degenerate diffusions with a compact action
space U, under the hypothesis that R is near-monotone, or under uniform ergodicity conditions, it is well
known that we have strong duality, i.e., a,, = a. To the best of our knowledge, this has not been established
for problems with non-compact action spaces. In Theorem 2.9 we establish strong duality for the ergodic
problem in (1.5). In this result, the coefficients b and f are bounded and measurable, and a is bounded,
Lipschitz, and uniformly elliptic. Moreover, we establish the unicity of the optimal ergodic occupation
measure, and as a result of this, the uniqueness of the optimal stationary Markov control. The methodology
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is general enough that can be applied to various classes of ergodic control problems that are characterized
by viscous HJB equations.

The results in [9,17] are obtained for smooth coefficients (C%%), and under an assumption of exponential
ergodicity (see (3.12) below). We provide a sufficient condition in (H2) under which strict monotonicity of the
principal eigenvalue holds. It is also shown that the exponential ergodicity condition of [9,17] actually implies
(H2); thus (H2) is weaker. Moreover, (3.12) cannot hold for bounded coefficients a and b. See Remark 3.4
for details. In Theorem 3.3 we cite a sufficient condition under which strict monotonicity of X(f) holds even
when a and b are bounded. Let us also remark that the method of proof [9,17] utilizes the smoothness of
the coefficients a, b and f. This is because a gradient estimate (Bernstein method) is required, which is not
available under weaker regularity. But this amount of regularity might not be available in many situations,
for instance in models with a measurable drift which are often encountered in stochastic control problems.
Let us also mention the unpublished work of Kaise and Sheu in [22] that contains some results similar to
ours, in particular, similar to the results in Section 3 and the pinned multiplicative ergodic theorems. These
results are also obtained under sufficient smoothness of the coefficients a, b, and f.

In Section 4 we apply the above mentioned results to study the infinite horizon risk-sensitive control
problem. We refer the reader to [10] where the importance of these control problems is discussed. Unfortu-
nately, the development of the infinite horizon risk-sensitive control problem for controlled diffusions has not
been completely satisfactory, and the same applies to controlled Markov chain models. Most of the available
results have been obtained under restrictive settings, and a full characterization such as uniqueness of the
solution to the risk-sensitive HJB equation, and verification of optimality results is lacking. Let us give a
quick overview of the existing literature on risk-sensitive control in the context of controlled diffusions which
is relevant to our problem. Risk-sensitive control for models with a constant diffusion matrix and asymp-
totically flat drift is studied by Fleming and McEneaney in [23]. Another particular setting is considered
by Nagai [24], where the action space is the whole Euclidean space, and the running cost has a specific
structure. Menaldi and Robin have considered models with periodic data [25]. Under the assumption of
a near-monotone cost, the infinite horizon risk-sensitive control problem is studied in [10,26,27], whereas
Biswas in [28] has considered this problem under the assumption of exponential ergodicity. Differential games
with risk-sensitive type costs have been studied by Basu and Ghosh [29], Biswas and Saha [30], and Ghosh
et al. [31]. All the above studies, have obtained existence of a pair (V, X) that satisfies the risk-sensitive
HJB equation, with X* the optimal risk-sensitive value, and show that any minimizing selector of the HJB
is an optimal control. The works in [24,25] address the existence and uniqueness of a solution to the HIB
equation, in their particular set up, but do not contain any verification of optimality results. Two main
results that are missing from the existing literature, with the exception of [10], are (a) uniqueness of the
solution to the HIJB equation, and (b) verification for optimal control.

Following the ergodic control paradigm, we can identify two classes of models: (i) models with a near-
monotone running cost and finite optimal value, and no other hypotheses on the dynamics, and (ii) models
that enjoy a uniform exponential ergodicity. Near-monotone running cost models are studied in [10,24,26,27];
however, only [10] obtains a full characterization without imposing a blanket ergodicity hypothesis. Studies
for models in class (ii) can be found in [23,28,29,31].

In this paper we study models in class (ii). The results developed in Sections 2 and 3 enable us to
obtain a full characterization of the risk-sensitive control problem in Section 4. The main hypotheses are
Assumptions 4.1 and 4.2. Another interesting result that we establish in Section 4 is the continuity of the
controlled principal eigenvalue with respect to (relaxed) stationary Markov controls (see Theorem 4.3).
This facilitates establishing the existence of an optimal stationary Markov control for risk-sensitive control
problems under risk-sensitive type constraints. Let us also remark that this existence result is far from being
obvious, since the controlled risk-sensitive value is lower-semicontinuous with respect to Markov controls
and the equality X(f) = (f) is not true in general. Moreover, the usual technique of Lagrange multipliers
does not work in this situation, because of the non-convex nature of the optimization criterion.
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To summarize the main contributions of the paper, we have established several characterizations of the
property of strict monotonicity of the principal eigenvalue, and extended several results in the literature on
viscous HJB equations with potentials f vanishing at infinity, and smooth data, to measurable potential
and drift (Theorems 2.1, 2.2, 2.6 to 2.10 and 3.2). We have also studied a general class of risk-sensitive
control problems under a uniform ergodicity hypothesis, and established the uniqueness of a solution to
the HJB equation and verification of optimality results (Theorems 4.1 and 4.2). Equally interesting are
the continuity results of the controlled principal eigenvalue with respect to stationary Markov controls
(Theorems 4.3 and 4.5).

The paper is organized as follows. Subsection 1.1 states the assumptions on the coefficients of the operator
L, and Subsection 1.2 summarizes the notation used in the paper. The first three subsections of Section 2
contain the main results on the principal eigenvalue under minimal assumptions, while Subsection 2.4 is
devoted to operators with potential f which vanishes at infinity. Section 3 improves on the results of
Section 2, under the assumption that (1.2) is exponentially ergodic. Section 4 is dedicated to the infinite
horizon, risk-sensitive optimal control problem.

1.1. Assumptions on the model

The following assumptions on the coefficients of £ are in effect throughout the paper unless otherwise
mentioned.

(A1) Local Lipschitz continuity: The function 6 = [6%]: R? — R%*? s locally Lipschitz in z with a
Lipschitz constant Cr > 0 depending on R > 0. In other words, with ||| := y/trace(co’), we have

lo(z) o)l < Crlz—yl  Va,y€Br.

We also assume that b = [bl, e ,bd]T : R? — R? is locally bounded and measurable.
(A2) Affine growth condition: b and ¢ satisfy a global growth condition of the form

(b(z),z)" + ||(5(ac)||2 < C’o(l + |x|2) Ve RY,

for some constant Cy > 0.
(A3) Nondegeneracy: For each R > 0, it holds that

d
> a(2)&¢ = CRMEP Va € Bg,
i,j=1

and for all £ = (&1,...,&;)" € R, where, as defined earlier, a = %GGT.

Let us remark that the assumptions (A1)—(A3) are not optimal, and can be weakened in many situations.
2(d+1)
loc

(R9), then (2.1) has a unique strong
solution (see [32]). The results in this paper can be extended to this setup as well.

For instance, if ¢ is continuous and its weak derivative lies in L

1.2. Notation

The standard Euclidean norm in R? is denoted by |-|, and (-,-) denotes the inner product. The set of
nonnegative real numbers is denoted by R, N stands for the set of natural numbers, and 1 denotes the
indicator function. Given two real numbers a and b, the minimum (maximum) is denoted by a A b (a V b),
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respectively. The closure, boundary, and the complement of a set A C R% are denoted by A, A, and A°,
respectively. We denote by 1(A) the first exit time of the process {X;} from the set A C R?, defined by

T(A) = inf {t>0: X; ¢ A}.

The open ball of radius r in RY, centered at the origin, is denoted by B,, and we let 1, := 1(B,), and
1. = 1(BY).

The term domain in R? refers to a nonempty, connected open subset of the Euclidean space R?. For a
domain D C R%, the space C*(D) (C>=(D)), k > 0, refers to the class of all real-valued functions on D
whose partial derivatives up to order k (of any order) exist and are continuous. Also, CF(D) (C£°(D)) is
the class of functions whose partial derivatives up to order k (of any order) are continuous and bounded
in D, and C¥(D) denotes the subset of C*(D), 0 < k < oo, consisting of functions that have compact
support. In addition, C,(R?) denotes the class of continuous functions on R¢ that vanish at infinity. By
CF(RY) and C} (R?) we denote the subsets of C.(R?) and C,(R?), respectively, consisting of all non-trivial
nonnegative functions. We use the term non-trivial to refer to a function that is not a.e. equal to 0. The
space LP(D), p € [1,00), stands for the Banach space of (equivalence classes of) measurable functions f
satisfying [, |f(z)|P dz < oo, and L*(D) is the Banach space of functions that are essentially bounded in
D. The standard Sobolev space of functions on D whose generalized derivatives up to order k are in LP (D),
equipped with its natural norm, is denoted by W*P(D), k > 0, p > 1. For a probability measure y in P(R?)
and a real-valued function f which is integrable with respect to p we use the notation

Fom) = p(f) = / f() u(dz)

In general, if X is a space of real-valued functions on @), X}, consists of all functions f such that fo € X
for every ¢ € C2°(Q). In this manner we obtain for example the space leo’z (Q).
We often use Krylov’s extension of the It6 formula for functions in WIQO’?(Rd) [33, p. 122], which we refer

to as the It6—Krylov formula.
2. General results

Let (9,5, {&:},P) be a given filtered probability space with a complete, right continuous filtration {§;}.
Let W be a standard Brownian motion adapted to {§:}. Consider the stochastic differential equation

t t

X, = Xo+/b(Xs)ds+/0(Xs)dWS. (2.1)
0 0

The third term on the right hand side of (2.1) is an It6 stochastic integral. We say that a process X =
{X¢(w)} is a solution of (2.1), if it is Fi-adapted, continuous in ¢, defined for all w € Q and ¢ € [0, 00), and
satisfies (2.1) for all ¢ € [0, 00) a.s. It is well known that under (A1)—(A3), there exists a unique solution of
(2.1) [34, Theorem 2.2.4]. We let E,, denote the expectation operator on the canonical space of the process
with X = x, and P,, the corresponding probability measure. Recall that t(D) denotes the first exit time of
the process X from a domain D. The process X is said be recurrent if for any bounded domain D we have
P, (1(D¢) < 00) = 1 for all z € D¢. Otherwise the process is called transient. A recurrent process is said to
be positive recurrent if B, [t(D¢)] < oo for all € D°. It is known that for a non-degenerate diffusion the
property of recurrence (or positive recurrence) is independent of D and z, i.e., if it holds for some domain
D and x € D¢, then it also holds for every domain D, and all points x € D¢ (see [34, Lemma 2.6.12 and
Theorem 2.6.10]). We define the extended operator £: C?(R?) — L (RY) associated to (2.1) by

loc
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Lg(z) = a"(x) 0ij9(x) + b (x) Oig(z) . (2.2)

Let f: R — R be a locally bounded, Borel measurable function, which is bounded from below in R,
i.e., infga f > —00. We refer to a function f with these properties as a potential, and let £/ := £ + f.

2.1. Risk-sensitive value and Dirichlet eigenvalues

The following lemma summarizes some results from [3-5] on the eigenvalues of the Dirichlet problem for
the operator £/. For simplicity, we state it for balls B,., instead of more general domains.

Lemma 2.1. For each r € (0,00) there exists a unique pair (‘flr,j\r) € (W2’p(BT) N C’(BT)) x R, for any

loc

p € [1,00), satisfying T, >0 on B,, ¥,. =0 on dB,, and ¥,.(0) = 1, which solves
LU, (z) + f(2)Vp(z) = A, Up(z)  ae x€B,, (2.3)
with £ as defined in (2.2). Moreover, A\ has the following properties:

(a) The map r — N\, is continuous and strictly increasing.
(b) In its dependence on the function f, A\, is nondecreasing, convex, and Lipschitz continuous (with respect
to the L* norm), with Lipschitz constant 1. In addition, if f < f’, then () < M (f).

Proof. Existence and uniqueness of the solution follow by [4, Theorem 1.1] (see also [3]). Part (a) follows
by [5, Theorem 1.10], and (iii)—(iv) of [5, Proposition 2.3], while part (b) follows by [3, Proposition 2.1]. O

We refer to (\TJT, 5\,.) as the eigensolution of the Dirichlet problem, or the Dirichlet eigensolution of £f
on B,.. Correspondingly, A, and W, are referred to as the Dirichlet eigenvalue and Dirichlet eigenfunction,
respectively.

Lemma 2.1 (a) motivates the following definition.

Definition 2.1. Let f be a potential. The principal eigenvalue X(f) on R? of the operator £/ given in (1.1)
is defined as X (f) = lim, 00 An(f).

For a potential f we also define

&:(f) = limsup % logE, {efoT f(XS)dS}, and &(f) == inf &.(f). (2.4)

T—0c0 zER4

We refer to E(f) as the risk-sensitive average of f. This quantity plays a key role in our analysis.
We also compare Definition 2.1 with the following definition of the principal eigenvalue, commonly used
in the pde literature [5].

loc

Af) = inf{)\eR: Jp e W2AURY), o > 0, Lo+ (f — N <0, ae. ian}. (2.5)

The following hypothesis is enforced throughout Section 2 without further mention, and it is repeated
only for emphasis.

(H1) f is a potential, and X*(f) is finite.



A. Arapostathis et al. / J. Math. Pures Appl. 124 (2019) 169-219 177

Lemma 2.2. The following hold

~ ~

(i) For anyr > 0, the Dirichlet eigensolutions (¥,,, A,) in (2.3) have the following stochastic representation
U, (2) = B, |l VXU G (X )1 ooy| Ve e B, \B,, (2.6)

for all large enough n € N.

(ii) It holds that X (f) = A(f).

(iii) Let ¥* be any limit point of the Dirichlet eigensolutions (\/I\/n, :\n) as n — 0o, and B be an open ball
centered at 0 such that X(f — h) + supge |h| < X(f) < 0o for some bounded function h. Then, with T
denoting the first hitting time of B, we have

U (z) = B, |elolf(Xo-X(#)dt \P*(X%)]l{koo}} Ve Be. (2.7)

Proof. Part (i) follows from [10, Lemma 2.10 (i)].
Turning to part (ii), suppose that X*(f) is finite. Then it is standard to show that there exists a positive
¥ e W24R?) which satisfies

loc
LY+ fU = X(f)¥ ae onRe. (2.8)

See [10,26] for instance. It is then clear that X(f) > A(f).
To show the converse inequality, suppose that a pair (p, A) € Wf’d

ocC

x R, with ¢ > 0, satisfies
Lo+ (f=Ne <0, and A>A(f). (2.9)

~

We claim that X(f) < A. If not, then we can find a pair (¥, A;) as in by Lemma 2.1, satisfying (2.3) and
Ar > A. By the Ito-Krylov formula [33, p. 122] we have

gﬂ(l’) Z Ew |:ef(;T [F(Xe)=A)dt (p(XrET) 1{’:r<oo} . (2.10)

Since ¢ is positive, (2.6) and (2.10) imply that we can scale it by multiplying with a constant £ > 0 so that
@ — W, attains it minimum in B, and this minimum value is 0. Combining (2.3) and (2.9), we obtain

L(kp — \/I}r) —(f- S‘T)i(’f@ —U,) < —(f=A)T (ke - \/I}T) + (*5‘7’ +Arp < 0 in B,.
It then follows by the strong maximum principle [35, Theorem 9.6] that ko — \TIT = 0 in B,, which is not
possible since ¢ > 0 on R?. This proves the claim. Since A\ was arbitrary, this implies that A(f) > X(f),
and thus we have equality.

It remains to prove (2.7). We follow the same argument as in [10, Lemma 2.10]. We fix B = B,.. Letting
n — oo in (2.6) and applying Fatou’s lemma we obtain

U (z) > E, [efg[f(x’f)_x(f)] 4 (Xz) ]l{f<oo}] : (2.11)
Thus, with U* denoting a solution of (2.8), with f replaced by f —h and A = X(f — h), we also have
() > E, {efémxt)—h(xn—x<f—h)] 4G (X) ]l{%<oo}] ,

which implies that
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E, [emxa—hw—x<f—h>1dtn{m}} <o VazeBe, (2.12)
since ¥* > 0 in R%. We write (2.6) as
U,(x) < E, [efg[f(x‘)fx"]dt ‘I’*(Xf)]l{krn}] + (S%p|‘1’* ‘Tfn|> E, [efg[f(Xt)*x"] ery |- (213)

Note that since A, ,* X(f), the first term on the right hand side of (2.13) is finite by (2.12) for all large
enough n. Let

woi= (inf ©)  sup 00— By .
K (1% b%p | ’
The second term on the right hand side of (2.13) has the bound
(sup ’\Il* — @n|> E. [efj[f(xt)_j‘”] d ﬂ{km}] < Kkp Ey [efj[f(Xt)—xn} dt \fln(X,;.) ]l{%<rn}} = Knp @n(x)
B

By the convergence of (I\!n — U* as n — 0o, uniformly on compact sets, and since \fln is bounded away from
0 in B, uniformly in n € N, by Harnack’s inequality, we have x,, — 0 as n — oo. Therefore, the second term
on the right hand side of (2.13) vanishes as n — co. Also, since \,, is nondecreasing in n, and A,, X (f),
we obtain

E, oJolf (Xe)=An] dt U™ (X5) ]1{%<rn}] — % E, ololf (Xe)=X ()] dt U™ (Xz) ﬂ{‘f<oo}i| 7 (2.14)
n—oo

by (2.12) and dominated convergence. Thus taking limits in (2.13) as n — oo, and using (2.11) and (2.14),
we obtain (2.7). This completes the proof. O

Combining Lemma 2.2 (ii) and [5, Theorem 1.4] we have the following result.
Corollary 2.1. There exists a positive ¥ € WIQO”C’ (R%), p > 1, satisfying
LU+ fU =AU qe onR?, (2.15)
if and only if X > X(f).

As also mentioned in the introduction, throughout the rest of the paper, by an eigenpair (¥, \) of £/ we
mean a positive function ¥ € lec;g (R%) and a scalar A € R that satisfy (2.15). In addition, the eigenfunction
U is agsumed to be normalized as ¥U(0) = 1, unless indicated otherwise. When A is the principal eigenvalue,
we refer to (¥, \) as a principal eigenpair. Note, that in view of the assumptions on the coefficients, any
U € Wi (R?) which satisfies (2.15) belongs to WP (R%), for all p € [1,00). Therefore, in the interest of

notational economy, we refrain from mentioning the function space of solutions ¥ of equations of the form
2,d

loc (R%). Moreover, since these are always strong solutions,

(2.15), and any such solution is meant to be in W
we often suppress the qualifier ‘a.e.’, and unless a different domain is specified, such equations or inequalities

are meant to hold on R<.
2.2. Summary of the results
A major objective in this paper is to relate the properties of the eigenvalues X in (2.15) to the recurrence

properties of the twisted process which is defined as follows. For an eigenfunction ¥ satisfying (2.15) we let
¥ :=1log ¥. Then we can write (2.15) as
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L+ (Vip,aV) + f = . (2.16)
The twisted process corresponding to an eigenpair (¥, \) of £/ is defined by the SDE
dYs = b(Y5)ds + 2a(Y5)Vu(Ys) ds + o(Ys) dWs . (2.17)

Since ¢ € WP (RY), p > d, it follows that V1) is locally bounded (in fact it is locally Holder continuous),

loc <
and therefore (2.17) has a unique strong solution up to its explosion time. We let £¥ denote the extended

generator of (2.17), and ]Ef the associated expectation operator. The reader might have observed that the
twisted process corresponds to Doob’s h-transformation of the operator £(f=" with h = ¥.

With U* denoting a principal eigenfunction, i.e., an eigenfunction associated with X(f), we let ¢* =
log ¥*, and denote by Y* the corresponding twisted process. A twisted process corresponding to a principal
eigenpair is called a ground state process, and the eigenfunction ¥* is called a ground state.

Recall that Cf (R?) denotes the collection of all non-trivial, nonnegative, continuous functions which
vanish at infinity. We consider the following two properties of X(f).

(P1) Strict monotonicity at f. For some h € CF(R?) we have X(f — h) < X(f).
(P2) Strict monotonicity at f on the right. For all h € Cf (R%) we have X (f) < X(f + h).

It follows by the convexity of f +— X(f) that (P1) implies (P2).
Later, in Section 3, we provide sufficient conditions under which (P1) holds. Also, the finiteness of X*(f)
and X(f — h) is implicit in (P1). Indeed, since for every positive ¢ € W>*(R) and A € R we have

loc

Lo+ (f=A=|hllec)p < Lo+ (f=h=Np < Lo+ (f - Ny,

it follows that X (f —h) and X(f) are either both finite, or both equal to +oo. It is also clear that X (f—h) <
X(f) always hold. As shown in Theorem 2.2, (P1) implies that X (f — h) < X(f) for all h € CF(R9).
We introduce the following definition of exponential ergodicity which we often use.

Definition 2.2 (exponential ergodicity). The process X governed by (1.2) is said to be exponentially ergodic
if for some compact set B and § > 0 we have E, [65 T((BC)] < 00, for all x € Be.

The main results of this section center around the following theorem.

Theorem 2.1. Under (H1), the following hold:

(a) A ground state process is recurrent if and only if X(f) is strictly monotone at f on the right, in which
case the principal eigenvalue X (f) is also simple, and the ground state W* satisfies

() = E, [efé’ [F(X)=X () ds @*(Xf)n{h@}] Vze B, Vr>0. (2.18)

(b) The ground state process is exponentially ergodic if and only if X(f) is strictly monotone at f.
(¢) If X\ > X(f), the twisted process (2.17) corresponding to any solution ¢ of (2.16) is transient.

Proof. Part (a) follows by Lemma 2.7, Theorem 2.3, and Corollary 2.3. Part (b) is the statement of Theo-
rem 2.2, while part (c) is shown in Lemma 2.6. O

Theorem 2.1 should be compared with the results in [17, Theorem 2.2] and [9, Theorem 3.2 and 3.7].
The results in [9,17] are obtained under a stronger hypothesis (same as (3.12) below) and for sufficiently
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regular coefficients. For a similar result in a bounded domain we refer the reader to [2, Theorem 4.2.4],
where results are obtained for a certain class of operators with regular coefficients.

We remark that (P1) does not imply that the underlying process in (2.1) is recurrent. Indeed consider a
one-dimensional diffusion with b(z) = 3z and 6 = 1, and let f(z) = 22. Then (2.15) holds with ¥(z) = e
and A = —1. But b(z) + 2aV1) = —3x, so the twisted process is exponentially ergodic, while the original
diffusion is transient.

The proof of Theorem 2.1 is divided in several lemmas which also contain results of independent interest.

These occupy the next section.
2.8. Proof of Theorem 2.1 and other results

In the sequel, we often use the following finite time representation. This also appears in [10, Lemma 2.4]
but in a slightly different form. Let T4, := lim,,_, T,, Where T,, denotes the exit time from the ball B,,. Recall

= . .
that if (¥, \) is an eigenpair of £/, and ¢ = log ¥, then E, denotes the expectation operator associated
with the twisted process Y in (2.17).

Lemma 2.3. If (U, \) is an eigenpair of £, then

~v _ T _
U(2)E, [g(Y7) U (Y7) Lirary] = Ea [efo (FEXO)=ALAE (X ) VT >0, VazeR?e, (2.19)

and for any function g € C.(R?), where Y is the corresponding twisted process defined by (2.17).

Proof. The equation in (2.19) can be obtained by applying the Cameron—-Martin—Girsanov theorem [36,
p. 225]. Since ¢ and f are not bounded, we need to localize the martingale. We use the first exit times
1, from B, as localization times. It is well-known that assumption (A2) implies that 1, — 0o as n — o
P,-a.s. Applying the It6—Krylov formula and using (2.16), we obtain

T ATy, TNty

B(Xrne,) — (x) = / Lop(X,) ds + / (Vi(X.), 6(X,) V)
0 0
TAT, TN,
- / (A= F(X0) — (Vi aP0)(X.)) ds + / (V(X.), 0(X)dW,) . (2.20)
0 0

Let g be any nonnegative, continuous function with compact support. Then from (2.20) we obtain

E, |:ef0TAT7L [f(Xs)—=A]lds g(XT/\Tn)} =E, |:9(XT/\TW,) exp <1/)(XT/\T") + 1,[1(33)

TAT, TAT,
+ [ weexgam) - [ <w,aw>(xs)ds)]
0 0
— U(2)E, [90VTre,) O (Yoae,)] s (2.21)

where in the last line we use Girsanov’s theorem. Given any bounded ball B, by Itd’s formula and Fatou’s
lemma, we obtain from (2.15) that

T —1
E, [efo [f(Xt)_’\]dt]lg(XT)] < (i%f fo) U(z) VYT>0, VzeR?, (2.22)
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Therefore, if we write
T Aty _ s Tn _ s
E, |elo " /(X:)-A1d g(XTmn)} — E, [efo [F(Xs)=Ald Q(Xrn)]l{Tzrn}}

T
+E, [ejo D=5 g (X ) gy 4],

we deduce that the first term on the right hand side is equal to 0 for all n sufficiently large since g is
compactly supported, while the second term converges as n — oo to the right hand side of (2.19) by (2.22)
and dominated convergence. In addition, since g has compact support, the term inside the expectation in the

right hand side of (2.21) is bounded uniformly in n. Since also Iﬁf [9(Y2,) U~1(Yz,)] = 0 for all sufficiently
large n, letting n — oo in (2.21), we obtain

n—o0

B, [l VDN gx)) = tim W (@) By [(Vr) 0N (Vr) Liras,
= V@) By [oVr) VT (V) Lrarny| VT >0,
This proves (2.19). O
Recall that T, := lim,_.o Tn. An immediate corollary to Lemma 2.3 is the following.

Corollary 2.2. With (U, \) as in Lemma 2.3, we have

V()BT <12) = E, [l UMty (x7)]  yT>0, VreRd

Proof. Choose a sequence of cut-off functions g,, that approximates unity from below. Then (2.19) holds
with g replaced by ¢, ¥. Thus the result follows by letting n — oo and applying the monotone convergence
theorem. 0O

We are now ready to prove uniqueness of the principal eigenfunction.

Lemma 2.4. Under (P1) there exists a unique ground state W* for Lf, i.e., a positive U* € Wfo’f(]Rd),
U*(0) = 1, which solves

LU+ fU* = X(f)T*. (2.23)

Proof. Let U* be a solution of (2.23) obtained as a limit of ¥, (see Lemma 2.2). Thus by Lemma 2.2 (iii)
we can find an open ball B such that

\I’*(I) = E, [efg[f(XS)_)‘*(f)] ds \If*(Xf) ]1{%<oo}} , T E Be s

with T = 1(B¢). Suppose that ¥ is another principal eigenfunction of £f. By the Ité6-Krylov formula and
Fatou’s lemma, and since ¥* is positive on B, we obtain

Y

¥(z) > E, {e,fj[.f(xg—x*(f)] ds §i( X5) ]1{%@0}]

Y

(m_in \I',I') U™ (z) Ve BC. (2.24)
B

It is clear by (2.24) that if ¥ > U* on B, then U — ¥* > 0 on R% Therefore, we can scale U* by multiplying
it with minz \pi so that W touches ¥* from above in B at the points arg minz % Denoting this scaled ¥*



182 A. Arapostathis et al. / J. Math. Pures Appl. 124 (2019) 169-219

also as U*, it follows from (2.24) that U — U* is nonnegative in R?, and its minimum is 0 and attained in
B. On the other hand, we have

* * /T * * + /5 *
LU =) = (f=X(f) (- = —(f=X(f) (¥ -¥") < 0.
Thus ¥ — U* = 0 by the strong maximum principle [35, Theorem 9.6], and this proves the result. O
We next show that (P1) implies the exponential ergodicity of Y*.

Lemma 2.5. Assume (P1). Let U* be the ground state of L5, and * = log W*. Then the ground state process
Y* governed by

AYF = b(Y)ds + 2a(Y)Ve* (V) ds + o(YF) AW, (2.25)

S

is exponentially ergodic. In particular, Y™ is positive recurrent.

Proof. We first show that the finite time representation of U* holds. Let X := X(f — k), and B be a ball
as in Lemma 2.2 (iii). Recall that A, — X(f) as n — oo, and therefore, we have A, > X + supg.|h| for all
sufficiently large n. Consider the following equations

~

LU, + fU, = \U,, ¥,>0 0,00 =1, ¥, =0 ondB,,
LU 4 (f— h)b* = Xb*, B(0)=1.

Choose n large enough so that B C B,,. We can scale U* by multiplying it with a positive constant, so that
U* touches W,, from above. Next we show that it can only touch ¥, in B. Note that in B, \ B we have

LU —T) = (f=h=X) (I —T,) = —(f—h—X) @ —V,)— A, =X —h)T, < 0.
Therefore, by the strong maximum principle, if (U* — @n) attains its minimum in B,,\ B, then (¥* —\Tln) =0
in B, which is not possible. Thus ¥* touches ¥,, in B. Thus, applying Harnack’s inequality we can find a
constant s such that r;U* > U, for all sufficiently large n. On the other hand, by the It6-Krylov formula
and Fatou’s lemma we know that

E, [efoT[f<Xs>—h<Xs>—3*1 g (x| < I @) VT >o0. (2.26)
Applying the It6—Krylov formula to (2.3) we have
U,(z) = E, {efoT[f(Xs)*;\n]ds \/I\/n(XT)]l{Tcrn}} 7
and letting n — oo, using (2.26) and the dominated convergence theorem, we obtain

U*(z) = E, {e.foT[f(Xs)—A*]dS @*(XT)} ,

where U* is the unique solution of (2.23). This proves the finite time representation. Thus it follows from
Corollary 2.2 that (2.25) is regular, i.e., ﬁf (Too < 00) = 0.

If we define @ := $ , a straightforward calculation shows that

LY® = LD+ 2(aVY*, VD) = (X(f —h)—X(f) +h)® < Clg — e (2.27)
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for some positive constants C' and e. Recall B from Lemma 2.2 (iii). It is easy to see from (2.7) that

- F(X)—h(X) =X (f—h)] d ~
ming & Em[e.fom )=h(X)=X (f—h)] t]l{%<oo}} ming ¥

" = > - VzeB°.
maxp ¥ E, [ejo[f(Xt)—A*(f)] dt ]l{%<oo}} maxgp ¥

O(z) >
Thus @ is uniformly bounded from below by a positive constant. Since Y* in (2.25) is regular, the Foster—
Lyapunov inequality in (2.27) implies that Y* is exponentially ergodic. O

We denote the invariant measure of (2.25) by p*. The following lemma shows that the twisted process is
transient for any A > X(f).

Lemma 2.6. Let U be an eigenfunction of L for an eigenvalue X > X (f). Then the corresponding twisted
process Y is transient.

Proof. Let ¢ = log V. If I@f(‘coo < o0) > 0, then there is nothing to prove. So we assume the contrary.
Hence from Lemma 2.3 we have

W(2) B [g(vr) O (vr)] = E, [l Ux0=Nat (x| vT >0, (2.28)

for any continuous g with compact support. Let g € C (R%). By the It6-Krylov formula and Fatou’s lemma,
we have

Ew[e]bT[f(Xt,)—A*(f)]dtg(XT)} < (sup X Ew[ejf[f(Xt)—/\*(f)}dt\I;*(XT)} < (sup L) o*(a).
Rd \II* Rd \I]*

Thus, for 6 = A — X(f) > 0, we obtain
E, {efoT[f(Xﬂ*“ dtg(XT)} < (Sup %) T (z), T>0. (2.29)
]Rd

Combining (2.28) and (2.29), we have

< sup \Il>
support(g)

Therefore, Y is transient. 0O

1 *®

v [ = 1 -
/Ez [g(Y)] dt < /EI ECIEES- (Sup \I’i) U (2) U ().
0 0

Rd

Theorem 2.2. The following are equivalent.

(i) The process Y*, defined in (2.25), corresponding to some principal eigenpair (\I/*,/\*(f)) is exponen-
tially ergodic.
(ii) It holds that X*(f — h) < X(f) for all h € CH(R?).
(iii) It holds that X (f — h) < X(f) for some h € C (R?).

Proof. (iii) = (i) follows from Lemma 2.5, and (ii) = (iii) is obvious.
We show that (i) = (ii). If Y* is exponentially ergodic, then there exists a ball B and ¢ > 0 such that
=" ot 2 S(Mmce
E, [¢7] < oo, T=1(B°).

x
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Mimicking the calculations in the proof of Lemma 2.3, we obtain that
T A% oy ) " " ~p* < x
Eq [e'fo [F(Xe) =X ()] ds Q(XT/\%)‘I} (XT/\%) ]1{%<oo}] =V (x) E, [eé(TM)g(YT/\%ﬂ vT >0,

for g € C.(RY). We apply this equation to an increasing sequence {g,,} C C.(R?) which converges to 1, and
let first m — oo, and then T"— oo, using Fatou’s lemma and the exponential ergodicity of Y*, to obtain

E, [efg[f(XS)_’\*(fH‘s] ds ]l{%<oo}] < oo, e B (2.30)

Let i € Cf (R?). Since h is bounded, it is easy to see that X‘(f —h) is finite. Let f := f —h, and (¥*, X(f))
be a solution of

LU+ (f —h)T* = X(f)T*, ¥* >0, (2.31)

which is obtained as a limit of Dirichlet eigensolutions as in Lemma 2.2. If X*(f) = X(f), then in view of
(2.30) and the calculations in the proof of Lemma 2.2 (iii), we have

\i/*(a:) = E, [ejg[f(Xt)ih(X‘)i)‘* (Hat \i/*(X%) ]1{‘?<oo}:| Va e Be. (2.32)
Applying the It6-Krylov formula and Fatou’s lemma to (2.23), we obtain
\I/*(LL‘) > E, {efg[f(xs)—/\*(f)] ds \II*(X‘f)]}-{‘f<oo}:| . x€ B (233)

It follows by (2.32) and (2.33) that we can multiply ¥* with a suitable positive constant so that ¥* — ¥*
attains a minimum of 0 in B. On the other hand, from (2.23) and (2.31) we have

LT —U*) — (f = X(f)) (T* —07) = —(f—/\*(f))Jr(\I/*—\Il*)—h\i/* <0. (2.34)

Thus by strong maximum principle we have U* = ¥*. This, in turn, implies that A ¥* = 0 by (2.34). But

this is not possible. Hence we have X(f) < X*(f), and the proof is complete. O

We define the Green’s measure Gy, A € R, by
Gi(g) = Eq [/ elolf(Xa)=A] ds g(Xy)dt| forall ge C’j(Rd).

The density of the Green’s measure with respect to the Lebesgue measure is called the Green’s function.
Existence of a Green’s function (and Green’s measure) is used by Pinsky [2, Chapter 4.3] in his definition
of the generalized principal eigenvalue of £/. A number A € R is said to be subcritical if G possesses a
density, critical if it is not subcritical and £f~*V = 0 has a positive solution V', and supercritical if it is
neither subcritical nor critical.

The lemma which follows is an extension of [2, Theorem 4.3.4] where, under a regularity assumption
on the coefficients, it is shown that a critical eigenvalue \ is always simple. This result establishes several
equivalences of the notion of criticality of .

Lemma 2.7. The following are equivalent.

(i) The twisted process Y corresponding to the eigenpair (¥, \) is recurrent.
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(ii) Gx(g) is infinite for some g € CH(R?).
(iii) For some open ball B, and with T =1(B), we have

\IJ(ZL') = E,; efg[f(XS)ix] ds \II(XT) ]l{‘f<oo}:| y T E @c’
where ¥ is an eigenfunction corresponding to the eigenvalue .

In addition, in (ii)—(ii{) “some” may be replaced by “all”, and if any one of (i)—(iii) holds, then X is a
simple eigenvalue.

Proof. The argument of this proof is inspired from [10, Theorem 2.8]. By Corollary 2.1 we have A > X(f).
Assume that (i) holds for some A > X(f). Let (¥, \) be an eigenpair of £/. Then for any g € CF(R?) we
have from Lemma 2.3 that

U(a)E [g(Yr)¥~Y(Yr)] = E, {efoT[f(Xﬂ**l g (Xp) VT >0. (2.35)

On the other hand, if Y is recurrent, then

Combining this with (2.35) we have Gx(g) = co. Hence (ii) follows.
Next suppose that (ii) holds, i.e., Gi(g) = oo for some g € CF(R?) and A > X(f). Applying the
It6-Krylov formula to LU + (f — A\)¥ = 0, we have

1
ming W

1
ming ¥

< U () (2.36)

Em[e.[g[f(xs)—x]ds]lg(Xt)} < Em[efg[f(XS)_)‘]ds\I!(Xt)} <

for all ¢t > 0, and for any bounded ball B. Define F,,(z) := f(z) — A — «, and

oo

T, = E [/ elo Fa(Xo) ds 9(Xt) dt] ,
0

for a > 0, and some g € C(R9). From (2.36) we have I',, < oo for all a > 0. Moreover, 'y, — 00 as a \, 0
by hypothesis. Choose ng large enough so that support(g) C By,. Following [10, Theorem 2.8] we consider
the positive solution @q n € W2P(B,) N C(B,) of

loc
Loon+ Foam = —T3'g inB,, ©Yan=0 ondB,, (2.37)
for n > ng. Since for every fixed n we have

T T
E, [efd Fa(Xs)ds (Pa,n(XT)]l{Tg‘cn}} < (n]lgax @a,n) e ol | [efo Fo(X,)ds ]lB,,,(XT)]l{Tgr"}] —— 0

—00
by (2.36), applying the It6-Krylov formula to (2.37), we obtain by [10, Theorem 2.8] that

Tn
Yan(0) = TZ1E, [/efé Fa(Xs)dsg(Xt)dt] < D70, =1. (2.38)
0
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Since I',;! is bounded uniformly on « € (0,1) by hypothesis, we can apply Harnack’s inequality for a class
of superharmonic functions [37, Corollary 2.2] to conclude that {van,n € N} is locally bounded, and
2’p(BR), p > d, for any R > 0. Thus, we have that ¢, , = @, weakly
in WIQO’Z (R?) along some subsequence, and that ¢, satisfies

therefore also uniformly bounded in W%

Loo+ Fopa = —Ttg in R? (2.39)

by (2.37). Let B be an open ball centered at 0 such that support(g) C B. Applying the It6-Krylov formula
to (2.37) we obtain

INT

@a,n(x) = E, {efo Fo(Xs)ds @a,n(X%/\T) ]l{’“c/\T<‘cn}:| , T € B, \ @, VT > 0,

with T = T(B€). As in the derivation of (2.38), using (2.36) and a similar argument we obtain

Yan(z) = E, [efo‘ Fa(X.)ds %,n(Xf)n{an}} . zeB,\B. (2.40)

Letting n — oo along some subsequence, and arguing as above, we obtain a function ¢, which satisfies
(2.39) and

palt) = Bo[eh 04 o (X 1], w € B, (2.41)

where (2.41) follows from (2.40). From (2.38) we have ¢,(0) =1 for all a € (0, 1). Now applying Harnack’s
inequality once again and letting o\, 0, we deduce that ¢, converges weakly in Wi;f: (R%), p > d, to some
positive function ¥ which satisfies LU + Fy ¥ = 0 in R?, and

\Il(w) =E, [e.fg Fo(Xs)ds \II(X{:) :U-{‘T:<oo}j| . zc€ Be.

This implies (iii).
Lastly, suppose that (iii) holds. In other words, there exists an eigenpair (¥, A) and an open ball B such
that

V() = E, [engO(Xs)ds\IJ(X%)]l{kOO}}7 € BC. (2.42)

We first show that A is a simple eigenvalue, which implies that there is a unique twisted process Y corre-
sponding to A. To establish the simplicity of A consider another eigenpair (\il, \) of £/. By the Ito-Krylov
formula we obtain

U(z) = E, {efg FolXa)ds g1 (Xy) ]1{%<oo}] , T € B

Thus using (2.42) and an argument similar to Lemma 2.4 we can show that ¥ = ¥. Then (iii) = (i) follows
from [10, Lemma 2.6].

Uniqueness of the eigenfunction ¥ follows from the stochastic representation in (2.42) and the proof of
(iii) = (i). O

As an immediate corollary to Lemmas 2.6 and 2.7 we have the following.
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Corollary 2.3. Let (¥, \) be an eigenpair of L/ which satisfies
U(a) = B [ ODN0G(X) 1 jry] Ve B,
for some bounded open ball B in R, Then A\ = X(f), and it is a simple eigenvalue.

Theorem 2.3 below is a generalization of [2, Theorem 4.7.1] in R?, which is stated in bounded domains,
and for bounded and smooth coefficients. It is shown in [2] that for smooth bounded domains, the Green’s
measure is not defined at the critical value X [2, Theorem 3.2]. But by Theorem 2.3 below we see that this
is not the case on R%. In fact, [2, Theorem 4.3.2] shows that A* could be either subcritical or critical in the
sense of Pinsky. We show that the criticality of A\* is equivalent to the strict monotonicity of X*(f) on the
right, i.e., X(f) < X(f + h) for all h € C (R?).

Theorem 2.3. A ground state process is recurrent if and only if X (f) < X (f + h) for all h € CH(R?).

Proof. Suppose first that a ground state process corresponding to X(f) is recurrent. Then Gx(g) = oo for
all g € CF(R?) by Lemma 2.7. Let f=f+hand X := X(f+h). Suppose that X = X. Let ¥ be a principal
eigenfunction of £, i.e.,

LU+ fO = X0, (2.43)

Writing (2.43) as LU + (f — X)¥ = —hW¥, and applying the It6-Krylov formula, followed by Fatou’s lemma,
we obtain

T
E, [elo F(Xa)=XTds @(XT):| +/]Ew {e.fé[f(Xs)—k*]ds h(Xt)\i/(Xt)} dt < W(z),
0

which contradicts the property that G (g) = oo for all g € CF(R?). Therefore, X(f) < X(f + h) for all
h € CF(RY).

To prove the converse, suppose that Y* is transient. Then for ¢ € C:F(R?%) with B; C support(g) we
have Gx(g) < oo. Following the arguments in the proof of (ii) = (iii) in Lemma 2.7, we obtain a positive ®
satisfying

LO+(f-X)D = —Ty'g. (2.44)
Let ¢ = Iy ' ming, £. Then from (2.44) we have
LD+ (f+elp, —X)P < 0.

This implies that X(f + elp,) < X(f) by Lemma 2.2 (ii). Thus X(f + elp,) = X(f). Therefore, if
X(f) < X(f +h) for all h € CF(R?), then Y* has to be recurrent. This completes the proof. O

It is well known that a (null) recurrent diffusion {X;} with locally uniformly elliptic and Lipschitz
continuous a, and locally bounded measurable drift, admits a o-finite invariant probability measure v which
is a Radon measure on the Borel o-field of R? [38]. This measure is equivalent to the Lebesgue measure and
is unique up to a multiplicative constant. Theorem 8.1 in [38] states that if g and h are real-valued functions
which are integrable with respect to the measure v then
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m JgXxndt  fug@)ve))
P, <T1%o T h =T, h(x)y(dx)> = 1. (2.45)

Suppose ¢g: R? — R, is a non-trivial function. Select h as the indicator function of some open ball. Then it
is well known that the expectation of Y;* := f(f h(X:) dt tends to co as t — co. Adopt the analogous notation

Y7, and let o = 21;((“]}3). Let M > 0 be arbitrary, and select ty large enough such that E[Ytﬂ > 2M. Then of

course we may find a positive constant « such E [Y;’g Ty <K}] > M. Since Y} and Y} are nondecreasing in
<
t, it follows by (2.45) that

P, (tlgj& (V7 = a¥)) Tpypany > 0) = 0.

This of course implies, using dominated convergence, that liminf;_, IE[Ytg Liyp <,i}} > aM. Since M was
o<

arbitrary, this shows that ]E[Yﬂ — 00 as t — 00, or equivalently that fooo E.[g(X:)]dt = oo. Using this
property in the proof of Theorem 2.3 we obtain the following corollary.

Corollary 2.4. For X(f) to be strictly monotone at f on the right it is sufficient that there exists some
non-trivial Borel measurable bounded function g: R® — R, with compact support satisfying X (f + eg) >
X(f) for all e > 0.

2.8.1. Minimal growth at infinity

We next discuss the property known as minimal growth at infinity [5, Definition 8.2]. As shown in [5,
Proposition 8.4], minimal growth at infinity implies that the eigenspace corresponding to the eigenvalue
X(f) is one dimensional, i.e., X*(f) is simple. We start with the following definition, which is a variation of
[5, Definition 8.2].
Definition 2.3. A positive function ¢ € Wi;f(Rd) is said to be a solution of minimal growth at infinity of
LFp — \p = 0, if for any 7 > 0 and any positive function v € Wi;g(Rd \ B,) satisfying £Lfv — Av < 0 a.e.,
in By, there exists R > r and k > 0 such that kp < v in B%.

Define the generalized principal eigenvalue of £/ in the domain D by

M(f,D) = inf {)\ c 3 eW2UD), 9> 0, Lo+ (f—Ng < 0ae. in D}.
Note that Ay (f,RY) = A(f) = X(f). It is also clear from this definition that for D; C Dy we have

A (f, D1) < Ai(f, Da).
Tt is shown in [5, Theorem 8.5] that the hypothesis

(A1) lim, 0o Mi(f, BE) < X(f)

implies that the ground state ¥* of £/ is a solution of minimal growth at infinity.
On the other hand, the following result has been established in [39, Theorem 2.1].

Theorem 2.4. The ground state V* of LF is a solution of minimal growth at infinity of LSU* — X (f)¥* =0
if and only if X(f) is strictly monotone at f on the right.

It thus follows by the above results that (A1) is a sufficient condition for strict monotonicity of X(f) on the
right. It turns out that (A1) is equivalent to strict monotonicity and, moreover, the map r — A1 (f, BS)—X(f)
is either negative on (0, 00) or identically equal to 0. This is the subject of the following theorem.
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Theorem 2.5. The following are equivalent.

(a) 3r>0: A (f,BS) < M\i(f,RY).
(b) X(f) is strictly monotone at f.
(C) )\1(f, Bf) < )\1(f, Rd) Vor > 0.

Proof. It easily follows by Lemma 2.5 and Theorem 2.2 and the definition of A; that (b)=-(c). Thus it
remains to prove that (a) = (b). Suppose that A = \; (f, BE) < A1(f, R?) = X(f) for some 7 > 0. Using the
Dirichlet eigenvalues for the annulus B, \ By, for r > 7, and letting 7 — 0o, we can construct a solution
(NS W?O‘g(ég) of Lt + fib = \p on BE, with ¢ > 0 on BE, and 1 = 0 on dB;. Then 1+ is bounded away
from 0 on 9B, for all v’ > r. Using any v’ > r, we extend ¢ smoothly inside B, to obtain some function

PN leo’g(Rd) which is strictly positive on R? and agrees with ¢ on BS. Let h == Ap — Ly — fip, and

f=rf+ %. Then Lo + fo = A, and therefore, we have

X(F+E5) < X)) <A < X(),
which implies strict monotonicity at f, and completes the proof. O
2.4. Potentials f vanishing at infinity

Let B,(R?) denote the class of bounded Borel measurable functions which are vanishing at infinity, i.e.,
fl =0, and BS (RY) the class of nonnegative functions in B,(R?) which are not

satisfying limp_,oc sup B,
a.e. equal to 0.

Theorem 2.6 which follows is a (pinned) multiplicative ergodic theorem (compare with [22, Theorem 7.1]).
Note that the continuity result in this theorem is stronger than that of [5, Proposition 9.2]. See also Re-
mark 4.1 on the continuity of X (f) for a larger class of f. We introduce the eigenvalue \”’(f) defined
by

N(f) = inf {)\ - 3p € WEIRY), inf o> 0, Lo+ (f = Ny < Oae in Rd}. (2.46)

Theorem 2.6. Let f € B,(RY). If the solution of (2.1) is recurrent, then X' (f) = N'(f) = &(f). In addition,
if the solution of (2.1) is positive recurrent with invariant measure p, and f]Rfl fdu >0, the following hold:

(a) for any measurable g with compact support we have
E, oo Lf(Xo)=X(f)] ds g(XT)} — C, " () (2.47)
—00

for some positive constant Cy. Moreover, the corresponding twisted process Y™ is exponentially ergodic.
(b) If f, is a sequence of functions in Bo(RY) satisfying sup,,|| fnllec < 00, and converging to f in Li (R?),
and also uniformly outside some compact set K C RY, then X (f,) — X(f).

Proof. Applying the It6—Krylov formula to Lo+ (f— ) < 0, it is easy to see that E(f) < N(f). Also, from
[10, Lemma 2.3] we have X'(f) < &(f). Thus we obtain X(f) < E(f) < N'(f). If X(f) > limz00 f(2),
then by [5, Theorem 1.9 (iii)] we have X*(f) = A’(f) which in turn implies that X(f) = £(f) = A’(f). On
the other hand, if X(f) < lim|;0 f(2), then f is near-monotone, relative to X*(f), in the sense of [10].
Applying [10, Lemma 2.1] we again obtain X(f) = E(f) = \'(f).

We now turn to part (a). Applying Jensen’s inequality it is easy to see that E(f) > [ fdp > 0. Therefore,
X(f = f*) <0< X(f). Taking h = f* and mimicking the arguments of Theorem 2.1 we see that Y* is
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exponentially ergodic. Let p* be the unique invariant measure of Y*. Then (2.47) follows from (2.28) and
[40, Theorem 1.3.10] with Cy = [ & dp*.

Next we prove part (b). By the first part of the theorem we have X(f,) = &(f,) for all n, and by the
lower-semicontinuity property of X it holds that lim inf, .o X (f) > X(f). Let h € CH(R?) and f = f—h.
Then by Theorem 2.2 we have 28 := X(f) — X(f) > 0. Choose a open ball ‘B, containing K, such that
SUpepe | fn— f| < d and X(fn) > X(f) — ¢ for all sufficiently large n. Let (¥, X(f,)) denote the principal

eigenpair. Then
LU + [, U = X(fn) V). (2.48)
We can choose B large enough such that
U (z) = E, [efrf[fMXt)***(an e @;(Xf)} , zeB° VYneN, (2.49)

where T = 1(B). Suppose limsup,,_, ., X (fn) = A. It is standard to show that for some positive ¥, it holds
that ¥ — ¥ weakly in WQ’p(Rd), p > d, as n — 00, and therefore, from (2.48) we have

loc
LU+ fU¥ =AW,
Therefore, A > X(f). Note that on B¢ we have
Fo=X(fa) S FH6=X(fa) < F=X()+20 = f=X(f)

for all n sufficiently large. Since E, [efg[f(xf)_’\*(f)] 4] < oo, passing to the limit in (2.49), and using the
dominated convergence theorem, we obtain that

U(z) = E, [efé[ﬂxt)*Al dt \I'(Xf)} . zeBe.
Therefore, A = X(f) by Corollary 2.3. This completes the proof. O
We pause for a moment to provide an example where (P2) holds but (P1) fails.

Example 2.1. Let d = 2 and £ = A. If f = 0, then the ground state is a constant function, and in turn, the
ground state diffusion is a two dimensional Brownian motion, hence recurrent. It follows that X is strictly
monotone on the right at 0. Now let f a non-trivial non-negative continuous function with compact support.
It is clear that X(8f) < 0 for § < 0. On the other hand, by Theorem 2.6, we have X'(5f) = E(Bf) for all
B € R. Therefore, for 3 < 0, we have

0> X(57) = &(8f) = lmsup - log B, [ell #7051 4]

T—o0

Vv

T
lim sup %E[/ﬂf(Xs)ds} = 0.
0

T—o0

Thus X(8f) = 0 for all 8 <0, which implies that X* it is not strictly monotone at 0.

In the rest of this section we show how the previous development can be used to obtain results analogous
to those reported in [16], without imposing any smoothness assumptions on the coefficients. With ¢ =
—log U* = —¢*, we have
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~a99;; —b' 0 + (,ad) + f = X(f). (2.50)
Note that (2.50) is a particular form of a more general class of quasilinear pdes of the form
~a" 09 + H(w, Vi) + f = X(f), (2.51)

where the function H(z,p), with (z,p) € RY x R?, serves as a Hamiltonian. Let f be a non-constant,
nonnegative continuous function satisfying lim,| o f(x) = 0, and define Ag := X' (5f), # € R. Then by
[5, Proposition 2.3 (vii)] we know that 8 +— Ag is non-decreasing and convex. For the diffusion matrix a
equal the identity, Ichihara studies some qualitative properties of Ag in [16] associated to the pde (2.51),
and their relation to the recurrence and transience behavior of the process with generator

Alg = Ag— (V,H(x,V), Vg), g€ C2(R?).

It is clear that if H(z,p) = —(b(z),p) + (p, a(x)p), then A¥ is the generator of the twisted process Y*
corresponding to U*. One of the key assumptions in [16, Assumption (H1) (i)] is that H(z,p) > H(x,0) =0
for all x and p. Note that this forces b to be 0.

Let

B = imf {BER: Ay >BEIPOOA,3}.

It is easy to see that 3. € [—o0, 00]. The following result is an extension of [16, Theorems 2.2 and 2.3] to
measurable drifts b and potentials f.

Theorem 2.7. Let f € BF (RY). Then the twisted process Y* = Y*(3) corresponding to the eigenpair (5, Ap)
is transient for f < fB., exponentially ergodic for B > B., and, provided f = 0 a.e. outside some compact
set, it is recurrent for 8 = B.. In addition, the following hold.

(i) If £ is self-adjoint (i.e., £O = 9;(a";)), with the matriz a bounded, uniformly elliptic and radially
symmetric in RY, and the solution of (2.1) is transient, then 8. > 0. Also Ag >0 for all 3 € R.
(ii) Provided that the solution of (2.1) is recurrent, then B. < 0 if it is exponentially ergodic, and B. =0
otherwise.
(iii) Assume that B > B., and that (2.1) is recurrent in the case that Ag < 0. Let W} and pj denote the
ground state and the invariant probability measure of the ground state diffusion, respectively, corre-
sponding to Ag. Then it holds that

Ag = pi(Bf —(VY5,aVyp)), (2.52)

where, as usual, 1/)2% = log \I/;g

Proof. The first part of the proof follows from Theorems 2.1 and 2.3, and Corollary 2.4. Next we proceed to
prove (i). Suppose 5. < 0. Then Y* = Y*(0), i.e., the twisted process corresponding to Ag, is exponentially
ergodic. By [5, Theorem 1.9 (i)—(ii)] we have Ag = £(0) = 0. Moreover, ¥§ = 1 is a ground state. Therefore,
the twisted process must be given by (2.1), which is transient by hypothesis. This is a contradiction. Hence
Be > 0. Since 8 — Ag is convex, it follows that Ag is constant in (—oo,3.] > 0. Hence Ag = Ay = 0 for
B < .. This proves (i).

We now turn to part (ii). By Theorem 2.6 we have Ag = £(8f). We claim that if the solution of (2.1) is
recurrent then A*(8f) > 0, whenever 8 > 0. Indeed, arguing by contradiction, if A*(5f) = 0 for some 8 > 0,
then LV = —3f¥% on R?, which implies that \I/Z,(Xt) is a nonnegative supermartingale, and since it is
integrable, it converges a.s. Since the process X is recurrent, this implies that 7 must equal to a constant,
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which, in turn, necessitates that f = 0, a contradiction. This proves the claim, which in turn implies that
if the solution of (2.1) is recurrent then 3, < 0. Now suppose that 8. is negative. Then the twisted process
corresponding to B = 0 is exponentially ergodic by Theorem 2.1. Since ¥} = 1, the ground state diffusion
for 8 = 0 agrees with (2.1), which implies that the latter is exponentially ergodic.

Next, suppose that X, and therefore also Y*(0) is exponentially ergodic. It then follows from Theorem 2.2
that 8 +— Ag is strictly monotone at 0. This of course implies that 8. < 0. The proof of part (ii) is now
complete.

Next we prove part (iii). We distinguish two cases.

Case 1. Suppose Ag > 0. Let U = ¥y == (T5)~" and ¢ == log W. Then V¥ satisfies

LV = (Bf —Ag) V. (2.53)

Since Bf € Bo(R?), there exists €, > 0 and a ball B such that 8f — Ag < —e, for all x € B°. Applying
the Feynman-Kac formula, it follows from [10, Lemma 2.1] that infga ¥ = ming W. Thus ¥ is bounded
away from 0 on R?. Let Y* denote the ground state process corresponding to the eigenvalue Ag. Simplifying

the notation we let IEZ = Efﬁ . By the exponential Foster-Lyapunov equation (2.53) we have that (see [34,
Lemma 2.5.5])

E,[T(Y)] < Co+T(x)e "  Vi>0. (2.54)

Using this estimate together with the fact that infga ¥ > 0, we obtain

Jm SEL 7)) = 0. (2.55)
Next, we show that
Jim B [0(Vi,)] = E.[0(Y)], (2.56)

where T denotes the exit time from the ball Bg. First, there exists some constant kg such that (Bf—Ag) ¥ <

ko on R?. Thus ]E: [\T/(Yt*)] < kot + U(z) by (2.53), and of course also I~E: [V (Yyhe,)] < kot + ¥ (z) for all
R > 0. Let

I(R,m) = {x € 9Bg : ()| > m} for m>1.

Then

~%

E, [0(Y7) Liseny] < mPo(t > tr) +E, [(Yy) Lrgrm) (Yey) Liseny)

IN

IA

mﬁ’i(t > 1) + (kot + \T/(x)) sup g
I(Rm) U

~% m ~
< mP,(t>1R) + e (kot + ¥ ()) .
Taking limits as R — oo, and since m € R is arbitrary, it follows that

lim B, [((Y7) Lysey] = 0. (2.57)

R—o0

Write
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~ ~ %

E, [0(Vie)] = By [0V Licany] + B [0(Y7) Lisen] - (2.58)

Without loss of generality we assume ¥ > 1. Since |1Z| < (I/l, an application of Fatou’s lemma shows that

E, [0(v)] < liminf B, [$(5) Ljrcen]
< limsup B, [G0) Lpan] < B [007)]
We use this together with (2.57) and (2.58) to obtain (2.56).
We write (2.50) as
0 = a0 + b1 + 521]@ [2(au, V) + (u,au)] — Bf + Ag

= @900 + V00 — 2V, aVe) + (V,aVi) — B + Ag
= LY54 + (Vih,aVh) — Bf + Ag. (2.59)
Let F == (Vi),aVip) — Bf = (Vi aVys) — Bf. Applying the It6-Krylov formula to (2.59), we obtain

tATR

E, [4(Yie,)] — d(x) +EZ[/ F(Y:)ds] + AGE, [t AtR] = 0. (2.60)

Letting R — oo in (2.60), using (2.56), then dividing by ¢ and letting ¢ — oo, using (2.55) and Birkhoff’s
ergodic theorem, we obtain

which is the assertion in part (iii).

Case 2. Suppose Ag < 0 and (2.1) is recurrent. The case Ag = 0 is then trivial, since Vi)§ = 0, so we assume
that Ag < 0. Then (2.1) is exponentially ergodic by part (ii), and thus ¥} is bounded below in R? by [10,
Lemma 2.1]. With ¢* = Y5 = log ¥, in analogy to (2.59) we have

LV — (V" aVy™) + Bf — Ag = 0. (2.61)
We claim that
1 ~% ~ % ~%
Jm SE )] =0, and i B[00 (V)] = B[] (2.62)

where as defined earlier, E; = Ef , and Y* denotes the ground state process. Assuming (2.62) is true, we
first apply the It6—Krylov formula to (2.61) to obtain the analogous equation to (2.60), and then take limits
and use Birkhoff’s ergodic theorem to establish (2.52).

It remains to prove (2.62). Choose € > 0 so that 8 > 8 — e > [, and let Uh . denote the ground state
corresponding to Ag_.. We choose a ball B such that

eflx) < %(AB —Ag_e) Ve BC. (2.63)

Since f vanishes at infinity, and Ag > Ag_., there exists a constant o > 1 and a ball also denoted as B,
such that
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a(Bf(x)—Ag) < (B—e€)f(z) — Ap—c Ve BC. (2.64)

Since the ground state processes corresponding to the principal eigenvalues Ag and Ag_. are ergodic we
have from Lemma 2.7 that

\I/E (SL’) = [efo Bf(Xs)—Aplds U3 (X‘f) ]]-{T<oo}:| )
% (2.65)
U5 () = E, [e.fo[(ﬁ—e)f(xs)—/\aﬂ] gt (Xy) ]l{%<oo}]
for all z € B¢, where T = 1(B°). By (2.27), the function ¥, := qj‘%ge satisfies
LYW, = (Ap_e —Ap+ef) T, (2.66)

Applymg the Feynman Kac formula to (2.66), using (2.63), it follows as in [10, Lemma 2.1] that infga U, =
ming .. Thus ¥, 1s bounded away from 0 on R?.

Let k = ming W' Then by (2.64) and (2.65) we obtain

Vo(a) > q,;(x) el TR0 (W (X)) W ey |
K i - S \Ty* @ " a—1 c
> 5 (B [ 1709 0 (X Ty | ) 2 0 (W5() Va e B

Therefore, for some constant x; we have

1 ~
P < K1+ T log¥, onR?. (2.67)
o —

Let €, = %(Af — Ag_). From (2.63) and exponential Foster-Lyapunov equation (2.66) we deduce that
(2.54) holds for U,. Thus the first equation in (2.62) follows directly from (2.54) and (2.67) and the fact that
infga ¥* > —o0, while the second one follows by repeating the argument leading to (2.57). This completes
the proof. O

Remark 2.1. The assumption that (2.1) is recurrent in the case that Ag < 0 in Theorem 2.7 (iii) is equivalent
to the statement that X(0) = 0. Note that as shown in [18, Theorem 2.1], unless X*(0) = 0, then (2.52) does
not hold if Ag < 0.

If (2.1) is not recurrent, then it is possible that 5. < 0 and also that Ag < 0 for 6 > 0. Consider a diffusion
with d = 1, b(z) = 2, and 6(z) = v/2. Then, we have Lo = —¢ for p(z) = Le=*". Thus Ay < —1, where
Ao denotes the eigenvalue in (2.5) for f = 0. Thus X(0) < —1 by Lemma 2.2( ) Since the twisted process
corresponding to ¢ is exponentially ergodic, we must have X*(0) = —1 by Theorem 2.1 (c), and thus ¢ is
the ground state. Theorem 2.1 (b) then asserts that 5 — Ag is strictly increasing at § = 0. Thus 5. < 0.
Observe that the ground state diffusion is an Ornstein—Uhlenbeck process having a Gaussian stationary
distribution of mean 0 and variance 1/2. An easy computation reveals that /L*(—<v1/}*, aVzﬁ*)) = —2 which
is smaller than X*(0).

The conclusion of Theorem 2.7 (iii) can be sharpened. Consider the controlled diffusion
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Here v: R? — R is a locally bounded Borel measurable map. Let iAlSM denote the class of such maps.
These are identified with the class of locally bounded stationary Markov controls. Let QSSM C LAISM be the
collection of those v under which the diffusion in (2.68) is ergodic, and denote by fi, the associated invariant
probability measure. We let A, := £ + 2(av, V), and use the symbol I@Z to denote the expectation operator
associated with (2.68).

In order to simplify the notation, we use the norm ||v||q := /{0, av). For v € tlgy we define

Fy(2) = |lv(2)l3e) - BF(2),
T

J.(v) = limsup %I@Z [/ FU(ZS)ds} ,

T—o0
0

and J, = inf g dx(v).
Theorem 2.8. Assume that f € B3 (R?) and 8 > B.. Then the following hold

(a) If Ag > 0, then we have

Jo = 3.(VY3) = —Ag  VaxeR% (2.69)

In addition, if v € Usy satisfies J.(v) = 3, then v = Vi ae.

(b) If Ag < 0 and (2.1) is recurrent then (2.69) holds, and v = Vi is the a.e. unique control in Hssm
which satisfies J,(v) = J,.

(¢) If Ag <0 and (2.1) is not recurrent, then J, = 0 for all x € R<.

Proof. We start with part (a). By Theorem 2.7 (iii), we have J,(V¢j5) = —Ag in both of cases (a) and

(b). It suffices then to show that if J,(v) < —Ag for some v € sy, then v = Vi ae. in R?. Let

such a control v be given. Then (2.68) must be positive recurrent under v, for otherwise we must have
~vU

Jz(v) > limsupy_, o, =E, UoT —Bf(Zs)ds] > 0. Therefore,

Ja(v) = /Fv(z) fy(dz) < —Ag < 0, (2.70)
Rd
where [i,, as defined earlier, denotes the invariant probability measure associated with A, = £ + 2(v,aV).

Thus, J..(v) does not depend on z, and dropping this dependence in the notation we let J(v) = J,(v). Since
f € Bo(R%), it follows by (2.70) and the definition of F), that there exists a ball B such that

) — Fola) < —%Aﬂ <0 Veese. (2.71)

By (2.71), and since v is locally bounded, and F, is integrable with respect to fi,, we can assert the existence
2,d

2 (RY) to the Poisson equation

of a solution ¢ € W
Lo(x) + 2(a(z)v(z), VE(@)) + Fo(x) = 3(v), (2.72)

which is bounded below in R? (see Lemma 3.7.8 (d) in [34]). It follows by (2.72) that ® = e?, ¢ = —,
satisfies

Lo+ (Bf — v —Vel2) @ = —3(v) . (2.73)
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This shows that (®,—J(v)) is an eigenpair for LF | with F = Bf — |lv — Vl||2. The corresponding twisted
process with generator £ = £ 4 2(aVp, V) then satisfies

Lo+ lv = Vel = Bf = 3(v). (2.74)

Since ¢ is bounded below in R? and J(v) < 0, (2.74) shows that the twisted process is positive recurrent. We
claim that —g(v) is the principal eigenvalue of £ Indeed, if X' (F)) < —J(v) then by the proof of Lemma 2.3
and for any g € C (R?) we obtain

=¥ — * ~y~ " (F v * *\ — *
(@) E; [g(Vr) @7 (V) hrae,y] = (@) By [ IO (v (0) " (Vi) e, |

< U*(x) (sﬂgf %)ep\*(i‘)-h’i(v)]T

for all sufficiently large n, where 1,, denotes the first exit time from B,,. By first letting n — oo, and then
integrating with respect to T" we obtain

[E e @) d < .
0

But this contradicts the positive recurrence of the twisted process corresponding to L. Therefore, —J (v)
must be the principal eigenvalue of L% which implies that

=) = X(Bf —Ilv = Vel7) < As. (2.75)

Thus we have shown that J,(v) = J(v) = —Ag. The strict monotonicity of X at 8f together with (2.75)
imply that v = Vi a.e. in R% In turn, (2.73) and the uniqueness of the ground state imply that ® = U¥,
up to a multiplication by a positive constant. Therefore, we have v = sz_} a.e. in R?, and this completes
the proof of part (a).

We continue with part (b). The case Ag = 0 is trivial, so assume that Ag < 0. Then (2.1) is exponentially
ergodic by Theorem 2.7(ii). Thus W% is bounded away from 0 in R? by [10, Lemma 2.1]. Let v € QSM, and

v

¢ = —1j. We have
L+ 2(v,aVe) — v+ V|2 + F, = —Ag. (2.76)

Since 1 is bounded above in RY, it follows from (2.76) by a standard argument that

We next show uniqueness in ﬁSSM of the optimal control ng. Let v € QSSM and suppose J,(v) = —Ag.
In other words, fi,(F,) = —Ag. By the It6-Krylov formula and Fatou’s lemma and since 1Z is bounded
above, we obtain from (2.76) that

E, [¢(Z)] — ¢(x) - E, [/ GU(ZS)ds} +E, U Fv(Zs)ds} > —thy, (2.77)
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with

= ((v() + V§(2)), a(2) (v(2) + Vi(2)) ) -

Dividing (2.77) by t and taking limits as ¢ — oo, we obtain —fi,(G,)+J(v) > —Ag. Therefore, i, (G,) =
since G, is nonnegative. Thus G, = 0 a.e. in R%, and since /i, has a density, this implies that v = V’LZ
Vi a.e. in RY.

We now turn to part (c). It is evident that under the control v = 0, since the diffusion in (2.68) is
transient and f vanishes at infinity, we have lim;_yoo 1 7 IE [FO(Zt)] = 0. It is also clear that under any

control v € LISM \LISSM we have lim;_, 1 B [F (Zt)] > 0. Suppose that under some v € QSSM, we have

NP =N
htrglorgf 7 E,[Fo(Z)] = d.(v) < 0.
Then there exists a solution ¢ to the Poisson equation (2.72) which is bounded below in R%. Thus following
the proof of Case 1 in part (a) we obtain by (2.75) that J,(v) > —Ag which is a contradiction. We have
therefore shown that J,(v) > 0 for all v € ilgy;, which implies that 0 is the optimal value in the class of
controls Ugyi. O

Remark 2.2. The assumption that f is nonnegative can be weakened to f € B,(R?). From the proof of
Theorem 2.2 we note that if X(f + h) < X(f) for some h € B,(R9), then the ground state diffusion
corresponding to X(f) is geometrically ergodic. Moreover, due to [5, Proposition 2.3 (vii)] the function
B = X(Bf) is convex for every f € B,(R?). Instead of the critical value 3., we can define a critical value ..
by A == infger Ag. Then if we replace the condition 5 > . by Ag > A. as done in [18], it is evident that
X(Bf) is strictly monotone at Sf and the results in Theorem 2.7 (iii) and Theorem 2.8 still hold, provided
Ag # 0, and the proofs are the same.

The results in Theorem 2.8 (b) can be also stated for nonstationary controls. Consider the controlled
diffusion

Here U = {U,;} is an R%valued control process which is jointly measurable in (t,w) € [0,00) x €, and is
nonanticipative: for t > s, W, — Wy is independent of

§s = the completion of Ny~ o (Xo, W, U, : < y) relative to (F,P).

Let f € Bo(R%), not necessarily nonnegative. Assume that Ag > A, Ag < 0, and (2.1) is recurrent (see
Remark 2.2). Suppose that under U, the diffusion in (2.78) has a unique weak solution. We claim that

T
3.(U) = hmsup — ]E {/ (Us,a(Z - Bf(Z )] > —Ag.
T—o0
0
We can prove this as follows. By (2.59) we obtain
L(2) + 2w, aV) + Fu(2) > —Ag

for all u, z € R%, and we apply the Ito-Krylov formula and Fatou’s lemma (using the fact that 1[) is bounded
above) with u = U; to obtain analogously to (2.77) that
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t

E, [4(2)] - ¥(z) + By [/FUS(ZS)ds} > tAs. (2.79)

0

Dividing (2.79) by t and letting t — oo, we obtain

t

lim inf %I/['f [/FUS(ZS) ds} > —Ag,

t—o00
0
thus proving the claim.

2.4.1. Strong duality
The optimality result in Theorem 2.8 can be strengthened. Consider the class of infinitesimal ergodic
occupation measures, i.e., measures T € P(R? x R?) which satisfy

/ Aug(z)n(de,du) = 0 Vge CP(RY), (2.80)

R4 xR4

with A, = £ + (2au, V) Disintegrate these as n(dz,du) = n,(dz) v(du | z), and denote this disintegration
as T =1, ®v. Let 0(z) = [wov(du|z). Since [|ul*n(dz)v(du|z) > [|i(x)]*n(dz), and n(dz)dym) (du) is
also an ergodic occupatlon measure, it is enough to consider the class of infinitesimal ergodic occupation
measures Tt that correspond to a precise control v, i.e., a Borel measurable map from R? to R?. We denote
this class by M. Thus for T =17, ® v € M, (2.80) takes the form [, A,g(z)n,(dz) = 0. Note that v is not
necessarily locally bounded, so this class of controls is, in general, larger than LALSSM.

In Theorem 2.9 below we use the following simple assertions which are stated as remarks.

Remark 2.3. If n, has density p, € Lli/)(cd*l)(Rd), and v € L?(R%;n,), then

loc

/ Aug(@)mu(dz) = 0 Vg e WEIRY) N Co(RY).

This can be proved as follows. We mollify g with a smooth mollifier family {x,., 7 > 0}, so that (2.80) can
applied to the function g * x,., where ‘*’ denotes convolution. Then we separate terms, and applying the
Holder inequality on U Lg—L(g*xr) pv| and using the convergence of £(g * x,) to £g in LL (R), we
deduce that this term tends to 0 as r N\, 0. Similarly, we apply the Hoélder inequality in the form

< /|2av|2pv /|V(Q—Q*Xr)|2pv~

Then the first integral on the right hand side is bounded, and the second integral vanishes as r \, 0 since

2

‘/@aw V(g —9g*xr))po

g * X, converges to g uniformly on compact sets.

Remark 2.4. Suppose that the drift b in (2.1) has at most affine growth. It is then well known that the map
x +— E;[1(B°)] is inf-compact for any open ball B, provided of course that (2.1) is positive recurrent. This
fact together with the stochastic representation in (2.18) and Jensen’s inequality, imply that if f € B,(R?),
Ap < 0, and (2.1) is recurrent, then the ground state ¥} is inf-compact, and this of course renders (2.1)
positive recurrent. An analogous argument using the ground state diffusion shows that, if b+ aVW¥j has at

most affine growth, and Ag > max{0, A\.} (see Remark 2.2), then U= (0%)~" is inf-compact.
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The theorem that follows shows that there is no optimality gap between the primal problem which consists
of minimizing [ F,(x)n(dz, du) subject to the constraint (2.80), and the dual problem which amounts to a
maximization over subsolutions of the HJB equation, as described in Section 1. This theorem is stated for
f € Bo(R?) which is not necessarily nonnegative as discussed in Remark 2.2.

Theorem 2.9. Assume that f € Bo(R?), Ag > A, and that one of the following conditions holds.

(i) Ag > 0, the coefficients a and b are bounded, and a is uniformly strictly elliptic.
(if) Ag <0, (2.1) is recurrent, and b has at most affine growth.

Then any T =1n, ® v € M, such that fRd F,dn, < oo, satisfies

/ Fydn, = —As + / o — 312 dp - (2.81)
Rd

Rd

In addition, if T = n, ® v € M is optimal, i.e., if it satisfies fRd Fydn, = —Ag, then v = Vi a.e. in R4
and 1y = .

Proof. We first consider case (i). Since a, b, and f are bounded, it follows that Vi)j is bounded by [10
Lemma 3.3]. Then —¢7 is inf-compact by Remark 2.4. Recall that A, = £ + 2(av, V> We have

— Ao = llv = VY3la + Fo = —Ag. (2.82)

Let x be a convex C?(R) function such that y(z) = = for > 0, x(x) = —1 for * < —1, and ', x” are
positive on (—1,0). Define xr(x) = —R + x(z + R), R > 0. Then we have from (2.82) that

—Auxr(¥5) + XeWHIVYEIE = Xe(Wh)llv = VE5IE + XR(W5)Fy = —XR(15)As (2.83)

Since [A,gdn, = for all g € C*(R?), an application of [41, Theorem 2.1] shows that 7, has a density
Py € Llé(cd Y (R%). Note that this does not require a or b to be bounded. Therefore, since Xr(¥j) + R+1 has
compact support, we have [p, Ay xr(¥5) no(dz) = 0 by Remark 2.3. Thus letting R — oo in (2.83), using
monotone convergence, we obtain (2.81).

We next show uniqueness. Let T = 1, ®v € M be optimal, and ®, = 7, ®v, denote the ergodic occupation
measure corresponding to v, = V. Here, 1, = pj. Let p« denote the density of n,. Define 7 := l(771) +14)
and v = (v + (s, with ¢, and (. given by (, = o +p and (, = o +p ,
to verify, using the fact that the drift is affine in the control, that 1 =7 ® v is in M.

respectively. It is straightforward

By optimality, we have

02 [R@no)+ [F@nldo) -2 [ Fi) i)

R4 Rd Rd
- 2/ (Gol@) 0@ 20y + @) [0 @2y = [|Go@)0(@) + Col@on (@)%, ) ()

Rd
_ [ @) oy @2 da
- [pv(x)m*(x) () = vu(@) lage) de (2.84)

Since p. is strictly positive, (2.84) implies that p, |[v — v.| = 0 a.e. in R?, and thus v = v, on the support of
1y- It is clear that if v is modified outside the support of 7,,, then the modified 7, ® v is also an infinitesimal
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ergodic occupation measure. Therefore 7, ® v, € M. The uniqueness of the invariant measure of the diffusion
with generator A, then implies that 7, = 7., which in turn implies that v = V5 a.e. in R4,
We now turn to case (ii). By Remark 2.4, ¢ is inf-compact. Also, as shown in case (i), 7, has a density

pv € L)/ Y (RY). We write (2.76) as

loc
At = |lv+ VP2 + F, = —Ag, (2.85)

with ¢ = —1p%. Then we have from (2.85) that

Axr(®) = XR@D)IVEIE = Xp@) 0+ VOIZ + Xr(W)Fs = —Xp($)As . (2.86)

Using the inequality [|v+V||2 < 2[|v]|242|| V4|2, then integrating (2.86) with respect to 1, and rearranging
terms we obtain

/ (Xh(8) + 2xa(D)) V]2 dy < / (@) (Fy + 26f) dn, — / 1) g, (2.87)

Thus letting R — oo in (2.87), using monotone convergence, we obtain the energy inequality

2 / V32 dn, < / (F, +28f)dn, — Ag < oo (2.88)

Then (2.81) follows by letting R — oo in (2.87), using again monotone convergence and (2.88). Uniqueness
follows as in case (i). This completes the proof. O

Remark 2.5. The proof of Theorem 2.9 provides a general recipe to prove the lack of an optimality gap in
ergodic control problems. Note that the model in [16] is such that Vi is bounded, and a is also bounded.
Therefore,

[a@Ivilzan, —— o.
—00
and the proof of Theorem 2.9 goes through even for the more general Hamiltonian H (z,p) in [16].

Remark 2.6. If Az > A, and under some nonanticipative control U the diffusion (2.78) has a unique weak
solution, it was shown in the discussion following Remark 2.2 that J,(U) > —Ag, provided Ag < 0 and
(2.1) is recurrent. The same conclusion can be drawn if Ag > 0 and under the hypotheses of Theorem 2.9.
Define the set of mean empirical measures {&J,, t > 0} of (2.78) under the control U by

1
/ h(xu).f J(dz,du) = 7

t
U
/ 2 [h(Z:,Uy)] Vh € Cp(R? x RY) .
R4 x R4 0

If Ag > 0, then F,(z) — Ag is bounded away from zero for all « outside some compact set, and one can follow
the arguments in the proof of [34, Lemma 3.4.6] to show that every limit point in P(R? x R?) (the set of
Borel probability measures on the one-point compactification of R? x R?) of a sequence of mean empirical
measures {53’0{;” , n € N} as ¢, — oo takes the form ém + (1 — §)To,, where T is an infinitesimal ergodic
occupation measure and T, ({o0}) = 1. Using this property, one can show, by following the argument in the
proof of [34, Theorem 3.4.7], that if J,(U) < —Ag, then the mean empirical measures are necessarily tight
in P(R% x R?) and § = 1 in this decomposition. This of course implies that J,(U) = —Ag. This argument
establishes optimality over the largest possible class of controls U.
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2.4.2. Differentiability of Ag

Differentiability of the map 8 — Ag for all 8 > f. is established in [18, Proposition 5.4] under the
hypothesis that the coefficients a, b, and f are Lipschitz continuous and bounded in R?, but for a more
general class of Hamiltonians (see (A1)—(A3) in [18]). These assumptions are used to show that Vi* is
bounded in R, and this is utilized in the proofs.

In the next theorem we demonstrate this differentiability result for the model in this paper which assumes
only measurable b and f, in which case it is not possible, in general, to obtain gradient estimates and follow
the approach in [16,18,19]. The first assertion in this theorem should be compared to [18, Proposition 5.4].
Recall the definition U, = \P\I‘?ge after (2.65), and let ¢, = log V..

Theorem 2.10. Suppose f € BT (R?), and that 3 > B.. Then for all ¢ > 0 such that B — € > B., we have

% < M= Maoe = wilef — VR, (280
K
In addition, we have

dA .

d—ﬂﬂ = Uﬁ(f)' (2.90)

Proof. Fix some €; > 0 such that 8 —2¢; > S, and consider (2.66). As argued in the proof of Theorem 2.7,

the function ¥, is bounded away from 0 on RY for all € € (0,e1]. We recall the notation IE%[~] = IE*[]
Applying the It6-Krylov formula and Fatou’s lemma to (2.66) we obtain

T

1 ~x ~

T E| [ (= s ef 7)) B0y o] > 0,
0

from which the left hand side inequality of (2.89) follows by an application of Birkhoff’s ergodic theorem.
Also the analogous estimate to (2.54) holds for ¥., which implies that

Jim ) VY] =0 Vee (0,6]. (2.91)
The second equality in (2.89) then follows by first using the technique in the proof of Theorem 2.7 and
(2.91) to establish (2.56) for v, € € (0,e1), and then applying the It6—Krylov formula to the log-transformed
equation corresponding to (2.66) as in (2.60), and taking limits at ¢ — oc.
Using the convexity of 8 — Ag, we write (2.89) as

*((f )) < Aﬁ _eAﬂ—e < Aﬂ-i-ee_ Aﬂ < M2+e(f>' (2.92)
Hg

Fix an open ball B C R, such that
Ag_oe, —Ag_e + (261 — ) f(x) < =5 < 0O Vee€ [—e,e], Ve BC. (2.93)
This is clearly possible since € — Ag_. is nonincreasing, Ag_a2c, < Ag_c,, and f vanishes at infinity. Let

T = 1(B°). Since the ground state process corresponding to Ag_. is exponentially ergodic for ¢ < €; by
Theorem 2.7, we have
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Vs (z) = E, [ejg[(ﬁ_e)f(x‘“)_j\ﬁ’ﬁ]ds Ui (Xe) Ttcooy Ve € [—e,e] (2.94)

by Lemma 2.7. Since Vj__ and its inverse are bounded on B, uniformly in € € [—€1,2€1], it follows from
(2.93) and (2.94) that there exists s such that ¥ < kWj ,  for all € € [—e€1,€1]. Therefore, since the
collection {\112‘376, € € [—e1,e]}, is bounded in CL¥(B), o > 0, we can use (2.94) and the dominated

loc
convergence theorem to conclude that ¥, — 1 as € \, 0. Thus, one more application of the dominated

convergence theorem shows that pj(f \I/E) — w5(f) and ME(‘T’E) — 1 as € \( 0. This shows that

lim ———=— = us(f). (2.95)

We next study the term pj +e(f). Let IEZG denote the expectation operator for the ground state diffusion
corresponding to Ag4.. Since

~ -
Lwﬁ%% = (Aﬂ—Qﬁl - AB+€ — (2e1 + 6)f) e )

*
B+e \I,BJre

it follows by an estimate similar to (2.93) that ]Eze[e"ﬁ] < %(x) for all € B¢ (see also Theorem 3.1
B+e

in Section 3).
We claim that

inf . (B) > 0. 2.96
661[101,61] MB+5( ) ( )

Indeed, let B be a larger ball such that B C B. It suffices to exhibit the result for B. For some positive
constants §;, 1 = 1,2, 3, we have

*
kL€

. _ Wy o,
sup sup E, [f] < k7' sup sup 52t (z) = 6§ < o0,
€€[0,e1] zcoB €€[0,e1] 2€0B pe

and (see [34, Theorem 2.6.1])

0<d < inf sup E, [1(BY)] < sup sup E, [t(B%)] < 63 < oo.
e€l0,e1] 2cHB €€[0,e1] z€IB

We use the inequality pj +E(@) > 516T253’ which follows from the well-known characterization of invariant
probability measures due to Has'minskil [34, Theorem 2.6.9], and which establishes the claim.

It follows from (2.96) that the corresponding densities N5 are locally bounded and also bounded away
from 0 uniformly in € € [0, 1] by the Harnack inequality (see proof of equation (3.2.6) in [34]). Therefore,
standard pde estimates of the Fokker—Planck equation show that this family of densities is locally Holder
equicontinuous [35, Theorem 8.24, p. 202]. Given any 0 € (0, 1) we may enlarge B so that p5(B) > 1 -6 and
|f] < 6 on BC. Let 7z be the (uniform) limit of 53, on B along some subsequence €, 0. Since V¢5__ is
Holder equicontinuous on B, uniformly in € € [—e1, €1] as argued earlier, it follows that 73 is strictly positive
on B. It is straightforward to show then that 7g is a positive solution of the Fokker—Planck equation for
the (adjoint of the) operator £ + 2(aVj, V). By the uniqueness of the invariant probability measure we
have g = Cnj; for some positive constant C'. Since Jnp(x)de < 1, we have C' < (1 —6)~*. Thus, since
SUPce(0,e,] 1M51clloo < 00, and [f[ < 6 on B¢, by Fatou’s lemma we obtain

n—oo

limsup pj,., (f) < limsup /f(x)n;+en (x)dz +6
n—oo
B
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< / f(2)7ip(z) dz +
B

IN

1-6)"! /f(x)ngderG

B
< (1-0)" wi(f) +96.

Since 6 can be selected arbitrarily close to 0, we obtain from (2.92) that lime\ o M < p3(f). Combining
this with (2.94) and (2.95) we obtain (2.90). O

3. Exponential ergodicity and strict monotonicity of principal eigenvalues

In this section we show that exponential ergodicity of (2.1) is a sufficient condition for the strict mono-
tonicity of the principal eigenvalue. In [9,17] exponential ergodicity is used to obtain results similar to
Theorem 2.1. In these studies the coefficients a, b, and f are assumed to be C?, and this assumption seems
hard to waive as the technique used relies on a gradient estimate (see [17, Theorem 3.1] and [9, Lemma 2.4])
which is not available for less regular coefficients. Our approach has allowed us to obtain the results in
Section 2 under much weaker hypotheses on the coefficients. Under some additional hypotheses, we show
in this section that X(f) = &(f). Recall the definition of A/ (f) in (2.46). It is straightforward to show that
N'(f) = E(f). We present an example where X(f) < &(f), and therefore also X(f) < AN'(f).

Example 3.1. Let ¢ : R — R, be a smooth function which is strictly positive on [—1,1] and satisfies
d(z) = e~ 217l for |z| > 1. Define

Then f(z) = 2 for |z| > 1, and
¢"(x) +sign(z) ¢'(z) + f(z)p(z) = ¢(x). (3.1)
Consider the one-dimensional controlled diffusion

dX; = sign(X,;)dt +V2dW;. (3.2)

From (3.1) and Lemma 2.2 (ii) we have X(f) < 1. It is clear that (3.2) is a transient process. Therefore, for
any initial data x

Hence X(f) < &(f).

Remark 3.1. Example 3.1 presents a case where the conclusion of [5, Theorem 1.9] fails to hold. Since the
operator £ in this example is uniformly elliptic, has bounded coefficients, and d = 1, the only aspect that
makes it different from the class of operators in part (i) of [5, Theorem 1.9], is that it is not self-adjoint.

Let us start by summarizing some equivalent characterizations of exponential ergodicity.
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Theorem 3.1. The following are equivalent.

(a) For some ball B, there exists 6, > 0 and x, € BE such that B, [e? *(P)] < co.

(b) For every ball B there exists § > 0 such that E,[e® " )] < 0o for all x € BE.
2,d

loe (R%), with infga V > 0, and positive constants

(c) For every ball B, there exists a positive function V € W
ko and 6 such that

LV(z) < kolg(x) —dV(z) VazeRe (3.3)
(d) Equation (2.1) is recurrent, and X(1ge) < 1 for every ball B.

Proof. We first show that (a) = (d). It is clear that (a) implies that (2.1) is positive recurrent, and that it
is enough to prove that X(1sc) < 1 for any B C B,. Let f = 1g., and consider the Dirichlet eigensolutions
(., An) in (2.3). Tt is easy to see that A, < 1 for all n. We claim that X(f) < 1. If not, then A, /1 as
n — oo, and U,, converges to some ¥ € WIQ(;]C”(Rd), p > d, which satisfies L¥ = 13V on R? and ¥(0) = 1.
The same argument used in the proof of Lemma 2.2 then shows that ¥(z) = E, [\I'(Xt(gg)] Therefore, ¥
attains a maximum on B,, and by the strong maximum principle it must be constant. Thus £¥ = 0 which
contradicts the fact that ¥(0) = 1.

Next we show that (d)=(c). If X(f) < 1, for f = 1z, then any limit point ¥ of the Dirichlet eigen-

functions ¥,, as n — oo satisfies
LU = T30 — (1-X()) ¥ < (sup \11)11@ — (1= X)W,
B

Also by [10, Lemma 2.1 (c¢)], we have infga ¥ = ming ¥ > 0. Thus (c¢) holds with § = 1 — X*(f).
That (¢) = (b) is well known, and can be shown by a standard application of the It6—Krylov formula to
(3.3), by which we obtain

(1]15}‘ V) E, |:e§(T(‘BC)/\TR):| _ ’\7(33) < E, |:65(T(EC)/\TR)'\7(XT(BC)/\TR):| _ '\7(3:)
(B°)Atr
< Ew[ / (6e‘”\7(Xt) +e5tm7(Xt)) dt} < 0.
0

The result then follows by letting R — oo, and this completes the proof. 0O
We introduce the following hypothesis.

(H2) There exists a lower-semicontinuous, inf-compact function £ : R? — [0, 00) such that () < oo, where
&(+) is as defined in (1.3).

Lemma 3.1. Under (H2), we have E(£) = X(¢), and there exists a positive V € WIQ(;’C’(Rd), p > d, with
infra V > 0, and V(0) = 1, satisfying

LV LV = X(O)V ae inRY. (3.4)

In particular, the unique strong solution of (2.1) is exponentially ergodic.
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Proof. By (2.4) we have

£.(0) > limsup %Ew { / E(Xs)ds} (3.5)

T—o00
0

Since €(¢) = infra €,(¢), (3.5) implies that

T
1
limsup = E, [/E(Xs)ds} < o0
T—o0 T 0

for some z € R%. The inf-compactness of ¢ then implies that the unique strong solution of (2.1) is positive
recurrent. That E(¢) = X*(¢), and the existence of a solution V' then follow by Theorem 1.4 and Lemma 2.1
in [10], respectively. Exponential ergodicity then follows from (3.4), using Theorem 3.1. O

An application of the Ito6—Krylov formula to (3.4), followed by Fatou’s lemma, shows that
E, [ef (X0 =X ()] dtV(Xf)} < V(z) VzeBS, Vr>0, (3.6)

where T, as defined earlier, denotes the first hitting time of the ball B,.
The next result shows that (H2) implies (P1).

Theorem 3.2. Assume (H2), and suppose that f is a potential such that £ — f is inf-compact. Then for any
continuous h € CF(R?) we have

X(f—h) < X(f) = &.(f) VzeR?.

Proof. Let h € CH(R?), and f := f — h. It is easy to see that &(f) and &(f) are both finite. It is shown in
[10,28] that the Dirichlet eigensolutions (¥,., S\T) in (2.3) converge, along some subsequence as r — 00, to
(U*, X(f)) which satisfies

LU* + fU* = X(f)T* onRY,  and X(f) < &€.(f) VzeR?. (3.7)
It is also clear that Lemma 2.2 (i) holds for (\T/n, An). Now choose a bounded ball B such that

(1 @)+ [p(@)]) +sup (A (H)] + A D) + X (O) +1 < L(z) Vae B
This is possible since £ — f is inf-compact. In view of (3.6) we note that (2.12) holds with f —h — X(f — h)
replaced by £ — X (£). Thus with the above choice of B, we can justify the passing to the limit in (2.14), and
therefore, we obtain

U (z) = E, [ef(f[ﬂxt)—**(fﬂ at \IJ*(X%)] Ve B, (3.8)

with T = 1(B¢). Recall the definition of (\i/*, X (f)) in (2.31). A similar argument also gives

¥*(2) = E, [elﬁ[ﬂxtH’*(fﬂ dt \if*(xf)] Ve Be. (3.9)

In fact, the above relations hold for any bounded domain D D B with T = t(D°).
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Suppose that X(f) = X(f). Then

fl@) = h(x) = X(f) < fz) = X(f).

Thus if we multiply U* with a suitable positive constant such that U* — U* is nonnegative in B and attains
a minimum of 0 in B, it follows from (3.8) and (3.9) that ¥* — ¥* is nonnegative in R?. Since (2.34) holds,
and we conclude exactly as in the proof of Theorem 2.2 that X(f) < X(f).

Next we show that X(f) = &,(f) for all z € R%. We have already established the strict monotonicity of
X(f) at f, and therefore, Theorem 2.1 applies. Hence for any continuous g with compact support we have

from [40, Theorem 1.3.10] that

_x w9
E, [efoT[f(Xt) Xl g x] = wt(a) B {g( T)

= \I/*(Yif)] P \I/*(x),u*(i) > 0, (3.10)

where z* denotes the invariant measure of the twisted process Y* satisfying (2.25). Let B be a ball such
that f(z) — X (f) < £(x) — X(£) for € BC. Thus from (3.4) we obtain

LV + (f=X(f))V < wlg, (3.11)

with £ = maxg (| f| + [¢] + |X| 4+ X(£)) V. Applying the It6-Krylov formula to (3.11) followed by Fatou’s
lemma we obtain

(“%Ln V) E, [els VXO=X(1at] < |, [efa FXO-X D1ty ()]

IN

T
K /]Ex [ef(f [f(Xe)=X(f)] dt 1 (Xr)] dt + V(z)
0

IN

KT+ V(z),
for some constant k', where in the last inequality we have used (3.10). Taking logarithms on both sides of
the preceding inequality, then dividing by 7', and letting T — 0o, we obtain X (f) > &,(f) for all z € R

Combining this with (3.7) results in equality. O

Remark 3.2. Continuity of h is superfluous in Theorem 3.2. The result holds if A is a non-trivial, nonnegative
measurable function, vanishing at infinity.

Corollary 3.1. Under the assumptions of Theorem 3.2, for any potential f S f, we have X(f) < X(f).

Proof. Note that for any cut-off function y we have X(f) < X(xf+ (1 —x)f). Then the result follows from
Theorem 3.2 and Remark 3.2. 0O

Remark 3.3. In Theorem 3.2 we can replace the assumption that f is bounded from below in R? by the
hypothesis that £ — | f| is inf-compact.

Let us now discuss the exponential ergodicity and show that this implies (H2).
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Proposition 3.1. Let £ : R — R be inf-compact, and suppose ¢ € Wi;g(Rd) is bounded below in R* and
satisfies

Lo+ (Vp,aVep) = —L, (3.12)
then €,(f) < oo for all x € R%.
Proof. Let ®(x) = exp(¢(x)). Then infra @ > 0, and (3.12) gives
Le+0D = 0. (3.13)
Now apply the It6—-Krylov formula to (3.13) followed by Fatou’s lemma to obtain
E, |eh {X)dsg(X7)| < ®(z).
Taking logarithm on both sides, diving by 7" and letting T' — oo, we obtain €,(¢) < co. O
Example 3.2. Let a = 11 and b(z) = by (z) + B(z) where B is bounded and
(b1(x),z) < —k|z|*, for some a € (1,2].

Then we take ¢(x) = 0 |z|* for |x| > 1,0 € (0,1). It is easy to check that for a suitable choice of 6 € (0, 1),
(3.12) holds for £(x) ~ |z|?>~2.

Remark 3.4. Equation (3.12) is a stronger condition than strict monotonicity of X(f) at f. In fact, (3.12)
might not hold in many important situations. For instance, if a and b are both bounded, and a is uniformly
elliptic, then it is not possible to find inf-compact ¢ satisfying (3.12). Otherwise, we can find a finite principal
eigenvalue for the operator £, by a same method as in (3.7), which would contradict [5, Proposition 2.6].

Even though (3.12) does not hold for bounded a and b, strict monotonicity of X (f) at f can be asserted
under suitable hypotheses. This is the subject of the following theorem.

Theorem 3.3. Let V € W2’d(Rd) such that infra V > 0, satisfying

loc
LY < kolg —9V  on RE, (3.14)

for some compact set X and positive constants ko and . Let f be a nonnegative bounded measurable function
with limsup,_, ., f(z) <. Then for any h € CF(RY), we have X (f — h) < X (f) = &.(f) for all x € R<.

Proof. Let f = f — h. Suppose X (f) = X(f). Applying an argument similar to (3.7) we can find ¥* and
U* that satisfy
LU + f U = X(f) U,
LE (BT = X (.

Let Ko D X be any compact set such that f < v on X§. If T denotes the first hitting time to the compact
set Ko, then by an application of the It6—Krylov formula to (3.14) we obtain

E,[e7] <00, ze€X§.
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We next use the fact that if £ corresponds to a recurrent diffusion and f is nonnegative then X*(f) > 0.
Indeed, in this case we have LU* < X (f)T*. If X(f) < 0, this implies that ¥*(X;) is a nonnegative
supermartingale and since it is integrable, it converges a.s. Since the process is recurrent, this implies that
U* must equal to a constant, which, in turn, necessitates that X(f) = 0 (and f = 0). Thus, since X*(f) > 0,
an argument similar to the proof of Lemma 2.2 (ii) shows that

V() = E, [efémxt)—xundt @*(X%)} :

U*(z) = E, [efg[f(Xt)ff\*(f)]dt @*(Xf)} :
for x € X§. Therefore, applying the strong maximum principle as in Theorem 3.2, we obtain h U* = 0 which
is a contradiction since h # 0 and ¥* > 0. Thus we have X(f — h) < X(f). That X(f) = €.(f) for all

x € R? follows by an argument similar to the one used in the proof Theorem 3.2. O

Example 3.3. Suppose a = %I , where I denote the identity matrix, and
(b(x),z) < —|z|, outside a compact set K; .

With V(z) = exp(|z|) for |z| > 1, we have

Ly = (d_1+3—M)v < <d_1 l)v for x| > 1.

2z 2 |z 2z 2
4. Risk-sensitive control

In this section we apply the results developed in the previous sections to the risk-sensitive control prob-
lem. As mentioned earlier, we establish the existence and uniqueness of solutions to the risk-sensitive HJB
equation, and use this to completely characterize the optimal Markov controls (see Theorems 4.1 and 4.2).
Another interesting result is the continuity of the controlled principal eigenvalue with respect to the sta-
tionary Markov controls. This is done in Theorem 4.3. We first introduce the control problem.

4.1. The controlled diffusion model

Consider a controlled diffusion process X = { X, t > 0} which takes values in the d-dimensional Euclidean
space R%, and is governed by the It equation

dX; = b(Xt, Ut) dt + G(Xt) dW; . (41)
All random processes in (4.1) live in a complete probability space (2, F,P). The process W is a d-dimensional
standard Wiener process independent of the initial condition Xgy. The control process U takes values in a

compact, metrizable set U, and Uz(w) is jointly measurable in (t,w) € [0,00) x Q. The set 4 of admissible
controls consists of the control processes U that are non-anticipative: for s < t, W; — Wy is independent of

§s = the completion of Ny~ 0{Xo,U,, W,, r < y} relative to (§,P).

We impose the following standard assumptions on the drift b and the diffusion matrix ¢ to guarantee
existence and uniqueness of solutions.
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(B1) Local Lipschitz continuity: The functions b: R? x U — R? and o: R? — R4 are continuous, and
satisfy

|b(z,u) = by, w)| + [lo(z) —o(y)ll < Crlz -yl  Va,yecBr, Vuel,

for some constant C'r > 0 depending on R > 0.
(B2) Affine growth condition: For some Cy > 0, we have

sup (b(z,u),z)* + [lo(2)||> < Co(1+ |z]?) Yz cRY.
uel

(B3) Nondegeneracy: Assumption (A3) in Subsection 1.1 holds.
Tt is well known that under (B1)—(B3), for any admissible control there exists a unique solution of (4.1)

[34, Theorem 2.2.4]. We define the family of operators £, : C?(R?) — C(R?), where u € U plays the role of
a parameter, by

Lof(z) = aij(x)aijf(x)—&—bi(x,u)(?if(x), uwel.

The risk-sensitive criterion Let € denote the class of functions c(x,u) in C(R? x U, R, ) that are locally
Lipschitz in & uniformly with respect to u € U. We let ¢ € € denote the running cost function, and for any
admissible control U € i, we define the risk-sensitive objective function €Y (c) by

1
eY(c) = limsup T logE, elo e(XsUs)ds| (4.2)

T
T—o0

We also define A%, = infyey EY(c).
4.2. Relaxed controls

We adopt the well-known relazed control framework [34]. According to this relaxation, a stationary
Markov control is a measurable map from R? to P(U), the latter denoting the set of probability measures
on U under the Prokhorov topology. Let gy denote the class of all such stationary Markov controls. A
control v € $lgy; may be viewed as a kernel on P(U) x R, which we write as v(du|x). We say that a control
v € $lgy is precise if it is a measurable map from R? to U. We extend the definition of b and ¢ as follows.
For v € Ugy we let

by(z) = /b(gc,u)v(du|ac)7 and c,(x) = /c(x7u)u(du|x) for v € P(U).
U U

It is easy to see from (B2) and Jensen’s inequality that

sup (by(z),2)T < Co(1+ |z|*) Vo e RY.
vEism

For v € Ugn, consider the relaxed diffusion
dXt = bv(Xt) dt + G(Xt) th . (43)

It is well known that under v € gy (4.3) has a unique strong solution [42], which is also a strong Markov
process. It also follows from the work in [41] that under v € Llgn, the transition probabilities of X have
densities which are locally Hélder continuous. Thus £, defined by
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Lof(w) = a"(x)0;;f(x) + bl (z) dif(x), v € ism,

for f € C%(R?), is the generator of a strongly-continuous semigroup on Cj(R?), which is strong Feller. We
let P denote the probability measure and E. the expectation operator on the canonical space of the process
under the control v € $lgy, conditioned on the process X starting from = € R? at t = 0. We denote by
Ussm the subset of gy that consists of stable controls, i.e., under which the controlled process is positive
recurrent, and by u, the invariant probability measure of the process under the control v € Lggn.

Definition 4.1. For v € $gy; and a locally bounded measurable function f: R — R, we let X: (f) denote the
principal eigenvalue of the operator £/ := £, + f on R? (see Definition 2.1).
We also adapt the notation in (2.4) to the control setting, and define

1 T
€x(f) = lmsup — 1og1E;[efo f<Xs>dS}, and E°(f) = inf €°(f), v € sn.

T— 00 zERY

We refer to EV(f) as the risk-sensitive average of f under the control v.

Recall the risk-sensitive objective function €Y defined in (4.2) and the optimal value A*. We say that a
stationary Markov control v € $lgy is optimal (for the risk-sensitive criterion) if €Y(c,) = A%, for all z € R,
and we let 4g,; denote the class of these controls.

4.8. Optimal Markov controls and the risk-sensitive HJB

We start with the following assumption.

Assumption 4.1 (uniform exponential ergodicity). There exists an inf-compact function ¢ € C(R?) and a
2’d(Rd), satisfying infga V > 0, such that

loc

positive function V € W

sup L,V < Flg — 0V a.e. on R, (4.4)
uelU

for some constant K, and a compact set XK.

It is easy to see that for ko, = #dv we obtain from (4.4) that
R

sup L,V+ (¢ —k,)V < 0,
uel

and therefore, applying the It6-Krylov formula, we have €%(¢) < R, for any stationary Markov control
v € Ugpm, and all z € R%.

Example 4.1. Let 6 be bounded and b : R? x U — R? be such that
(b(x,u) —b(0,u),z) < —kl|z|*, forsomea € (1,2], (z,u)cRIxT.

Then as seen in Example 3.2, V(z) = exp(@ |x|*), for |z| > 1, satisfies (4.4) for sufficiently small § > 0, and
{(z) ~ |z|?>*~2. Note that @ = 2 and 6 = I is considered in [23].

We introduce the class of running costs C; defined by

Co = {c e () — max e(+,u) is inf—compact} .
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The first important result of this section is the following.

Theorem 4.1. Suppose Assumption 4.1 holds, and ¢ € Cy. Then X* = N, does not depend on x, and there
exists a positive solution V € C?(R?) satisfying

L.V +c(u)V] = AV onRY,  and V(0) =1. (4.5)

min
uelU

In addition, if HUgm C Usn denotes the class of Markov controls v which satisfy
L,V +e,V = mi% L.V + c(-,u)V] a.e. in RY,
ue
then the following hold.

(a) Usm C Usn, and it holds that X (cy) = N for all v € Usni;
(b) Uy C Usm ;
(c) Equation (4.5) has a unique positive solution in C2(RY) (up to a multiplicative constant).

Proof. Using a standard argument (see [10,26,28]) we can find a pair (V, ) € C2(R?) x R, with V > 0 on
R?, and V(0) = 1, that satisfies

min [£,V 4 c(,u)V] = AV, A < inf A, (4.6)
uel z€R4

This is obtained as a limit of Dirichlet eigensolutions (V,, A,) € (ngo’f:’(Bn) NC(B,)) x R, for any p > d,
satisfying V,, > 0 on B, V,, =0 on 9B, V,,(0) = 1, and

mei%l [Euf/n(x) + ce(z,u) ‘A/n(x)] = A\ V() a.e.r € B,.

For v € $lgy; we have
LV + ¢,V = a9,V 4 (b,,VV) + ¢,V = AV onR?. (4.7)

By Corollary 2.1 we obtain A > X;(c,). Also by Theorem 3.2 we have X,(c,) = €%(c,) for all z € R%
Combining these estimates with (4.6) we obtain
A*

x

< &Y ey) = X (cw) < A < inf A Vo eR?.
xT v ze]Rd z

This of course shows that A = X (¢,) = A%, for all z € R?, and also proves part (a).
We continue with part (b). By Theorem 3.2 we have

X (coy—h) < Xo(c,) VheCI(RY, Vveisy. (4.8)

In turn, by Lemma 2.4 there exists a unique eigenfunction ¥, € Wiﬁ(Rd) which is associated with the

principal eigenvalue X, (c,) of the operator L& = £, + ¢,. Since A = X;(c,) for all v € gy by part (a), it
follows by (4.7) that

V=19, Vv EQSM. (4.9)
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By (4.8) and Lemma 2.2 (ii), and since (4.3) is recurrent, we have
U, (x) = EY [efé[%(Xs)*A*}ds \pv(X%)] Vo e B, Ve, (4.10)

and all sufficiently large balls B centered at 0, where T = 1(B°), as usual.
Since the Dirichlet eigenvalues satisfy A < A=A forallne N, the Dirichlet problem

meig [Lupn(x) + (clz,u) — X) @ (z)] = —an1s(z) a.e. x € B, on =0 on 0B,, (4.11)

with o, > 0, has a unique solution ¢, € Wi?(B,,) N C(B,), for any p > 1 [4, Theorem 1.9] (see also [43,
Theorem 1.1 (ii)]). We choose «, as follows: first select &, > 0 such that the solution ¢, of (4.11) with
oy, = &y satisfies ¢, (0) = 1, and then set o, = min(1, &y). Passing to the limit in (4.11) as n — oo along
a subsequence, we obtain a nonnegative solution ® € W2? (R9) of

loc

znéﬁr} [L.®(z) + (c(z,u) — A) (z)] = —als(z), z e Re. (4.12)

It is evident from the construction that if & = 0 then ®(0) = 1. On the other hand, if & > 0, then necessarily
® is positive on R%. Let © € gy be a selector from the minimizer of (4.12). If a > 0, then (4.12) implies that
there exists h € C(R?) such that X;(c; + h) < A*. Since X;(cs) = €2(c;y) for all x € R? by Theorem 3.2,
and €2(cy) > A, then, in view of Corollary 2.1, this contradicts (4.8) and the convexity of X;,. Therefore,
we must have o = 0. Let v € 4l&,,. Applying the It6-Krylov formula to (4.11) we obtain

B o e 5 Tl (X)) A*
QDn($) < EZ, [efo [e0 (Xa) =/ ds ‘Pn(X’t) ]1{1“7<T/\‘rn}] + ]E:v [efo leo (Xa) =] ds Pn (XT) ]1{T<‘T7/\‘tn} VT >0,
and for all z € B, \ B, where T = 1(B°). Using the argument in the proof of [10, Lemma 2.11], we obtain
o(z) < EY [efg[cﬁ(xs)"\*]dsé()(%)} Voe B, VoeUly. (4.13)

Comparing (4.10) and (4.13), it follows that, given any v € 4L§,;, we can scale Uy by a positive constant so
that it touches ® from above at some point in B. However, v satisfies

Li®+c;® > N D a.e. in R?
by (4.12). Thus we have
Lo(Uy —®) — (c5 —A) (T —®) <0  ae inR?,

and it follows by the strong maximum principle that ® = W5 for all v € 45,,. Since sy C & by part (a),
it then follows by (4.9) that V' = Uy for all v € Ug,;. Thus we have

L{,V + C{)V = L{,\I’{) + C{)\I’{) = X%(C{,)\I/{, = A*V = mlg [ﬁuV + C(',’LL)V] .
ue
This proves the verification of optimality result in part (b).
Suppose now that V € C?(R?) is a positive solution of
min [£,V +c(u)V] = AV on RY. (4.14)

uelU

Let 9 € Usy be a selector from the minimizer of (4.14). We have X;(c;) = €Z(c5) > A* for all z € RY by
Theorem 3.2 and the definition of A*, and X;(c;) < A* by Corollary 2.1. Thus €%(c;) = A* for all z € R,
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which implies that ¢ € 4g,;. Then V = U5 by the uniqueness of the latter. Therefore, V = Wy = V by part
(b). This completes the proof. O

As mentioned in Remark 3.4 the existence of an inf-compact £ in Assumption 4.1 is not possible when a
and b are bounded. So we consider the following alternative assumption.

Assumption 4.2. There exists a function V € W2’d(Rd), such that infra V > 0, a compact set K, and positive

loc
constants xg and 7, satisfying

max LNV(z) < kolx(z) —yV(x), x€ R?,
ue

limsup sup c(z,u) < 7.
|x|—o0 u€el

A similar assumption is used in [26] where the author has obtained only the existence of the solution V'
to the HJB, and an optimal control. Also it is shown in [26] that there exists a constant 77, depending on =,
such that if ||¢||c < 71, then (4.15) below has a solution. We improve these results substantially by proving
uniqueness of the solution V', and verification of optimality.

Theorem 4.2. Under Assumption 4.2, there exists a positive solution V € C?(R?) satisfying

meig L.V +c(,u)V] = AV (4.15)

Let Usy C Usy be as in Theorem 4.1. Then (a) and (b) of Theorem 4.1 hold, and (4.15) has a unique
positive solution in C*(R%) up to a multiplicative constant.

Proof. Part (a) follows exactly as in the proof of Theorem 4.1.
By Theorem 3.3 and Lemma 2.7 for any v € $lgy there exists a unique eigenpair (¥,, A) for L. In
addition,
U, (x) = EY [eféTMXs)—AZ]dS U, (Xy)|, weBe.
The rest follows as in Theorem 4.1. O

4.4. Continuity of the risk-sensitive value

It is known from [34] that the set of relaxed stationary Markov controls gy is compactly metrizable
(see also [44] for a detailed construction of this topology). In particular v, — v in gy if and only if

[ 1@ [owmounas —— [ 1) [ gte,0)vldulz) da
Rd U R4

U

for all f € LY(R%) N L%(RY) and g € Cp(R? x U). For v € sy we denote by (¥, X (f)) the principal
eigenpair of the operator L{j, ie.,

L, (x) + f(2) Ty(z) = X, (f)Uy(z), Vu(z)>0, zeR?.

When f = ¢,, we occasionally drop the dependence on ¢, and denote the eigenvalue as X, = X (c,).
The next result concerns the continuity of X; with respect to stationary Markov controls, and extends the
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result in [5, Proposition 9.2]. The continuity result in [5, Proposition 9.2] is established with respect to the
L™ norm convergence of the coefficients, whereas Theorem 4.3 that follows asserts continuity under a much
weaker topology.

Theorem 4.3. Assume one of the following.

(i) Assumption 4.1 holds, and ¢ € Cgy for some 8 € (0,1).
(ii) Assumption 4.2 holds.

Then the map v — X, is continuous.

Proof. We demonstrate the result under (i). For case (ii) the proof is analogous. Let v, — v in the topology
of Markov controls. Let (¥,,, Xt)) be the principal eigenpair which satisfies

Lo U (z) 4 ¢y (2)Tp(z) = X, Uu(x), zcRY and X, =& (cp,), (4.16)
where the equality X, = £""(c,,, ) is a consequence of Theorem 3.2 and Proposition 3.1. It is obvious that
X, > 0 for all n.

Since £(-) —maxyey ¢+, u) is inf-compact, we can find a constant k1 such that max,cy c(x,u) < k1 +£(z).
Recall that £(¢) < K, for all v € Ugy (as shown in the paragraph after Assumption 4.1), and this implies
that X, < k1 + Ko for all n. Thus {X;, : n > 1} is bounded. Therefore, passing to a subsequence we may
assume that X, — X as n — oco. To complete the proof we only need to show that X = Xi. Since ¥,,(0) =1
for all n, and the coefficients b,,, , and ¢,,, are uniformly locally bounded, applying Harnack’s inequality and
Sobolev’s estimate we can find ¥ € WiP(R%), p > 1, such that ¥,, — ¥ weakly in W;*(R?). Therefore, by
[34, Lemma 2.4.3] and (4.16), we obtain

LU(z) +cp(x)U(z) = XU(z), z€RY T>0. (4.17)

By Corollary 2.1 we have X* > X .
Let B D X be an open ball such that |e(x,u) — N*| < B€(z) for all (z,u) € B¢ x U, and R > 0 be large
enough so that B C Br. Let T = 1(B°). Applying the It6-Krylov formula to (4.17), we obtain

INTRAT

U(r) = EY [efo [0 (Xs)=XT ds qf(XmRAT)} . 2 €B°N By, (4.18)
for any 7' > 0. Since

EY [efg[c,,(xs)fx] ds } < E {efg BU(X,) ds }

IN

(E'; [efé Z(Xas)dSDﬂ < oo forx € B, (4.19)
and ¥ in bounded in BN Bg, for every fixed R, letting T'— oo in (4.18) we have

U(z) = EY [ef;MR[C“(XS)_’\*]dS\I/(Xfm.R)} , 2eB°NBg. (4.20)

Equation (4.19) which also holds, possibly for a larger ball B, if we replace v and X* with v,, and X,

respectively, shows that, for some constant &, we have ¥, (z) < /%(V(x))ﬁ for all » € N, and = € B°.
Therefore, ¥(z) < /%(V(x))ﬁ for all x € Be.
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We write

By [eh ™ O] = B e X g ] BT A g ] (4.21)

The left hand side of (4.21) and the first term on the right hand side both converge to E. [efg UX) ds] ag
R — 00, by monotone convergence. Thus we have

v R ;) ds
EY [efo 6(Xs)d ]l{er}} —— 0. (4.22)
On the other hand Assumption 4.1 implies that

]Ex [eféR €(X,) ds ’V(XTR) ]l{TR<‘f}] S V(l‘) Ve BR \ 'BC, VR>0.

We proceed as in the proof of Theorem 2.7. Let I'(R,m) = {x € dBgr: ¥(x) > m} for m > 1. Since
_1
U < VP8 on B, we have V3~1 < (%)1 ? on B¢, and, therefore,

Ulpgm < RVVP  pgm < #7m'™ 3V on dBg. (4.23)
Thus, using (4.23), we obtain
EY oo lev(Xa)=2"Tds () ﬂ{rR<%}} < mE! [eJaR £(X,)ds 1{1R<%}}

v R S
+ Ea: |:ef0 HX.)d \IJ(XTR) ]IF(R,m) (X‘CR) ]I{TR<‘TT}:|

IA

mE; |:eJ‘OR U(Xs)ds ]l{TR<’f}:|
+ IZ:% ml_% E; {efSR 6(Xs) ds V(XTR)]I{TR<{}}
< mE [l D0y o] 5Fm! V() (4.24)

and by first letting R — oo, using (4.22), and then m — oo, it follows that the left hand side of (4.24)
vanishes as R — co. Therefore, letting R — oo in (4.20), we obtain

U(z) = EY [efé[%(Xs)*X‘l ds sz(Xf)] , zEB°.
It then follows by Corollary 2.3 that X = X!, and this completes the proof. O

Remark 4.1. Following the proof of Theorem 4.3 we can obtain the following continuity result which should
be compared with [5, Proposition 9.2 (ii)]. Consider a sequence of operators £/ with coefficients (a,, bn, fn),
where b,,, f, are locally bounded uniformly in n, and inf,, (infga f,,) > —oo. The coefficients a,, and b,, are

assumed to satisfy (A1)—(A3) uniformly in n. Assume that a,, — a in Cjoc(R?), and b, — b and f, — f

1
loc

weakly in L{ (R?). Moreover we suppose that one of the following hold.

(a) There exists an inf-compact function £ € C(R%) and V € W2Y(R?), with infgaV > 0, such that

loc
£,V < Elgx — £V ae. on R? for some constant &, and a compact set K. In addition, 8¢ — sup,, f,, is

inf-compact for some 3 € (0,1).



216 A. Arapostathis et al. / J. Math. Pures Appl. 124 (2019) 169-219

(b) The sequence £,, satisfies (3.14) for all n, lim, ool f;, lloo = ||/ ||oo, and

limsup sup fn(x) + || f oo < 7-

|z] 500 n
Then the principal eigenvalue X(f,,) converges to X(f) as n — oo.

As an application of Theorem 4.3 we have the following existence result for the risk-sensitive control
problem under (Markovian) risk-sensitive type constraints.

Theorem 4.4. Assume one of the following.

(i) Assumption 4.1 holds, and ¢,r1,...,rm € Cge for some g € (0,1).
(ii) Assumption 4.2 holds, and ry,...,r, € € satisfy

max {limsup max ri(m,u)} < 7.
i=1,...,m || — 00 uel

In addition, suppose that K;, i =1,...,m, are closed subsets of R, and that there exists 0 € gy such that
&(ri0) € K; for all i, where we use the usual notation r; ,(z) == r;(z,v(x)).
Then the following constrained minimization problem admits an optimal control in Ugn

minimize over v € Ugy - E%(cy),  subject to E°(rip) € K, i=1,...,m.

Proof. Let v,, € Lgy be a sequence of controls along which the constraints are met, and £V (c,,, ) converges
to its infimum. Since gy is compact under the topology of Markov controls, we may assume, without loss
of generality, that v, converges to some 0 € gy as n — oo. By Theorem 4.3 we know that v — X, (c,),
and v — X (r;,), ¢ = 1,...,m, are continuous maps, and that €%(c,) = X, (c,), and €¥(r; ) = Xi,(r;,) for
i =1,...,m. It follows that the constraints are met at v. Therefore, v is an optimal Markov control for the
constrained problem. 0O

Another application of Theorem 4.3 is a following characterization of X* which provides a positive answer
to [5, Conjecture 1.8] for a certain class of a,b and f. In Theorem 4.5 below, we consider the uncontrolled
generator £ in Section 3. Let us introduce the following definition from [5]

N(f) =sup{r: Jpe WEHRY) N LP(RY), 0 > 0, Lo+ (f —A)g > 0ae. in R%}.

loc

Recall the definition of A in (2.46). From [5, Theorem 1.7], under (A1)—(A2), we have X'(f) < XN (f) < X'(f)
whenever f is bounded above. It is conjectured in [5, Conjecture 1.8] that for bounded a, b, and f, one has
N(f) = N'(f). It should be noted from Example 3.1 that X(f) could be strictly smaller than \”(f). The
following result complements those in [5, Theorems 1.7 and 1.9].

Theorem 4.5. For a potential f the following are true.

(i) Suppose that E;(f) < co. Then under (A1)-(A3) we have

X(f) < N(f) < &(f) < N'(f).

(if) Let £,V and ~y satisfy (3.14), and suppose that supga(f + || f " |lec) < v. Then X(f) = N'(f)
(iii) Let £, V and ¢ satisfy (4.4), and suppose that ¢ — f is inf-compact for some § € (0,1
X(f)=X"(f).

). Then
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Proof. We first show (i). By [5, Theorem 1.7 (ii)] we have X*(f) < XN (f). Let ¢ € ngo’f(]Rd) NL>(RY), p > 0,
be such that

Lo+ (f=Nyp > 0.

Recall that 1,, is the exit time from the open ball B, (0). Therefore, applying the It6-Krylov formula, we
obtain

p(2) < B[l U G(x )] < (sﬂgyw) B, [el" VDS om0 (4.25)

Since &,(f) is finite, letting n — oo in (4.25), taking logarithms on both sides, dividing by T" and then letting
T — oo we obtain A < &,(f). This implies N (f) < €.(f). Now suppose ¢ € Wz’d(Rd), with infga ¢ > 0,

loc
satisfies

Lo+ (f=Ne < 0.

Repeating the analogous calculation as above, we obtain A > €,(f), which implies that &, (f) < N'(f).

Next we prove (ii). Since X(f + ¢) = X(f) + ¢ for any constant ¢, we may replace f by f + ||/ |lco-
Therefore, f is non-negative and || f||s < 7- By (i) we have X(f) < A’(f). Let x»: R? — [0, 1] be a cut-off
function such that x,(z) = 1 for |z| < n, and x,(x) = 0 for |z| > n+1. Define f,, == xn f+(1—xn)||f|lco- Let
(W%, X (fy)) denote the principal eigenpair of £/». By Remark 4.1 we have X'(f,) — X‘(f) as n — oo. Thus
to complete the proof it is enough to show that infge ¥,, > 0, which implies that X(f,,) = A (fn) = X'(f)
for all n, and thus X(f) > A”(f). Note that X(f,) < E(fn) < ||fll for all n. Now fix n and let T,, be the
first hitting time to the ball B,,. Then applying the It6—Krylov formula to

LU+ (fa = X(fa) ¥, = 0
together with Fatou’s lemma, we have

min W5 (2) < B, [l DN U0 wr (X )] < Wy (a)

zEB+1

for all z € FZH(O). Hence infga ¥ > 0 which completes the proof.

The proof of (iii) is completely analogous to the proof of part (ii). Since 3¢— f¥ is inf-compact, we can find
g: RY — Ry, such that lim|;| o g(#) = 00, and B¢— fT—g s inf-compact. Welet fr, = xn f+(1—xn)(g+fT).
Note that

inf (B¢ — fn) = inf (X (B = f) + (1= xa) (B = T —9))

is inf-compact. On the other hand, f,, > f for all n. The rest follows as part (ii). O
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