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Abstract—We consider learning-based variants of the cu rule
for scheduling in single and parallel server settings of multi-
class queueing systems.

In the single server setting, the cu rule is known to minimize
the expected holding-cost (weighted queue-lengths summed
over classes and a fixed time horizon). We focus on the problem
where the service rates p are unknown with the holding-
cost regret (regret against the cp rule with known u) as
our objective. We show that the greedy algorithm that uses
empirically learned service rates results in a constant holding-
cost regret (the regret is independent of the time horizon). This
free exploration can be explained in the single server setting
by the fact that any work-conserving policy obtains the same
number of samples in a busy cycle.

In the parallel server setting, we show that the cp rule
may result in unstable queues, even for arrival rates within
the capacity region. We then present sufficient conditions for
geometric ergodicity under the cu rule. Using these results, we
propose an almost greedy algorithm that explores only when
the number of samples falls below a threshold. We show that
this algorithm delivers constant holding-cost regret because a
free exploration condition is eventually satisfied.

Index Terms—queueing systems, learning, cu rule, stability

I. INTRODUCTION.

We consider a canonical scheduling problem in a discrete-
time, multi-class, multi-server parallel server queueing sys-
tem. In particular, we consider a system with U distinct
queues, and K distinct servers. Each queue corresponds to a
different class of arrivals; arrivals queue ¢ are Bernoulli()\;),
i.i.d across time. Service rates y;; are heterogeneous across
every pair of queue ¢ and server j (i.e., a “link”). At each
time step, a central scheduler may match at most one queue
to each server. Services are also Bernoulli; thus jobs may
fail to be served when matched, and in this case the policy
is allowed to choose a different server for the same job in
subsequent time step(s). Jobs in queue ¢ incur a holding
cost ¢; per time step spent waiting for service. Letting Q; (%)
denote the queue length of queue ¢ at time ¢, the performance
measure of interest up to time 7" is the cumulative expected
holding cost incurred up to time 7":

> GE[Qi(1)].
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(All our analysis extends to the case where the objective of
interest is a time-discounted cost, i.e., where the ¢’th term is
scaled by /3, where the discount factor satisfies 0 < 3 < 1.)

Our emphasis in this paper is on solving this problem
when the link service rates are a priori unknown; the
scheduler only learns the link service rates by matching
queues to servers, and observing the outcomes. We use
as our benchmark the cu rule for scheduling, when link
service rates are known. The cu rule operates as follows:
at each time step, each link from a nonempty queue ¢ to
server j is given a weight c;u;;; all other links are given
weight zero. The server then chooses a maximum weight
matching on the resulting graph as the schedule for that
time step. It is well known that when there is only a single
server, this rule delivers the optimal expected holding cost
among all feasible scheduling policies. Further, there has
been extensive analysis of the performance and optimality
properties of this rule even in multiple server settings.

When service rates are unknown, we measure the per-
formance of any policy using (expected) regret at T': this
is the expected difference between the cumulative cost of
the policy, and the cumulative cost of the cu rule. Our
goal is to characterize policies that minimize regret. In
typical learning problems such as the stochastic multiarmed
bandit (MAB) problem, optimal policies must resolve an
exploration-exploitation tradeoff. In particular, in order to
minimize regret, the policy must invest effort to learn about
unknown actions, some of which may later prove to be
suboptimal—and thus incur regret in the process. In such
settings, any optimal policy incurs regret that increases
without bound as T" — oo; for example, for the standard
MAB problem, it is well known that optimal regret scales
as O(InT) [1], [2], [3].

In this paper, we show a striking result: in a wide range of
settings, the empirical cy rule—i.e., the cp rule applied using
the current estimates of the mean service rates—is regret
optimal, and further, the resulting optimal regret is bounded
by a constant independent of 7. Thus, in such settings there
is no tradeoff between exploration and exploitation. The
scheduler can simply execute the optimal schedule given
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its current best estimate of the services rates of the links.
In other words, the empirical cu rule benefits from free
exploration.

We make three main contributions: (1) regret analysis of
the empirical ¢y rule in the single server setting; (2) stability
analysis of the cu rule in the multi-server setting; and (3)
subsequent regret analysis of the empirical ¢y rule in the
multi-server setting.

For a full version of this paper with the formulation,
related work and all the technical proofs, please see [4].
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