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Nematicity in the superconducting mixed state of strain detwinned underdoped Ba(Fe1−xCox)2As2
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Evidence of nematic effects in the mixed superconducting phase of slightly underdoped Ba(Fe1−xCox )2As2 is
reported. We have found strong in-plane resistivity anisotropy for crystals in different strain conditions. For these
compositions, there is no magnetic long-range order, so the description may be ascribed to the interplay between
the superconducting and nematic order parameters. A piezoelectric-based apparatus is used to apply tensile or
compressive strain to tune nematic domain orientation in order to examine intrinsic nematicity. Measurements are
done under a rotating magnetic field, and the analysis of the angular dependence of physical quantities identifies
the cases in which the sample is detwinned. Furthermore, the angular dependence of the data allows us to evaluate
the effects of nematicity on the in-plane superconductor stiffness. Our results show that although nematicity
contributes in a decisive way to the conduction properties, its contributions to the anisotropy properties of the
stiffness of the superconducting order parameter is not as significant in these samples.
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I. INTRODUCTION

The role of electronic nematicity [1,2] in unconventional
superconductivity has been theoretically explored in terms of
coupling between the nematic and superconducting order pa-
rameters [3,4]. Growing experimental results pointing towards
this connection have been published during the last decade.
In particular, an anisotropic phase has been reported in the
underdoped regime of both cuprate- [5] and Fe-based [6–9]
high-temperature superconductors with a concurrent breaking
of the C4 symmetry in the structural and transport properties.

Recent Raman [10] and elastoresistivity [11–13] experi-
ments in the Ba(Fe1−xCox )2As2 family have established that
this simultaneous symmetry breaking is driven by electronic
degrees of freedom, consistent with the existence of a true
nematic phase. In many superconducting compounds this
phase develops until the system undergoes a transition to an
antiferromagnetic order at a lower temperature. In underdoped
pnictides, the most conclusive experimental observation sup-
porting the interplay between nematic and superconducting
orders is the fact that their phase boundaries intersect at a
composition xc near the optimal doping xop [14,15], where
the signature of a nematic quantum critical point has been
reported [13]. In the Ba(Fe1−xCox )2As2 family, xc ≈ 0.067 �
xop ≈ 0.074.

Recently, a nematic superconducting phase in an optimally
doped tetragonal compound of the family Ba1−xKxFe2As2

[16] was reported. The strong symmetry breaking in the
superconducting transport properties, in contrast to the very
weak symmetry breaking in the normal phase, may originate

from the strong quantum fluctuations of a nearby nematic
quantum critical point, as found in recent state-of-the-art
quantum Monte Carlo simulations [17].

On the other hand, reentrant magnetic [18] and
orthorhombic-tetragonal [19] transitions have been
reported in the superconducting phase of underdoped
Ba(Fe1−xCox )2As2, the latter occurring near optimal doping.
These facts, together with an enhancement of the superfluid
density in nematic domain boundaries (DBs) [20], in
agreement with a repulsion of superconducting vortices
[21], are all evidence suggesting a competition between
nematicity and superconductivity in these compounds.

In fact, slightly underdoped Ba(Fe1−xCox )2As2 single
crystals [22] are ideal compounds to study the interplay
between nematic and superconducting order parameters. For
these doping concentrations, the spontaneous orthorhombic
distortion is very small (less than 0.05% for x = 0.062) [19],
whereas the elastoresistivity near the structural transition is
huge [13]. Moreover, the superconducting transition occurs in
the absence of any competing magnetic order [14]. Therefore,
the symmetry of the superconducting properties near the
critical temperature can bring valuable information on the
possible coupling with the nematic phase.

In this framework, the formation of a dense array of
nematic domains at submicron distances in typical as-grown
crystals is a crucial issue. It has been shown that in slightly
underdoped compounds, with low orthorhombic distortions,
the twinning distances are also very short, making domains
not observable with standard optical methods [15]. Further-
more, the very small structural distortion is even undetectable
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with standard x-ray characterization. However, the presence
of DBs is expected to dramatically modify vortex physics
[23,24], providing a means to recognize the presence of
nematic domains without the need for additional experimental
techniques.

The interplay between superconducting vortices and DBs
(also associated with structural twin boundaries) has been
extensively investigated in the past in YBa2Cu3O7−δ single
crystals [25–29], and more recently, experiments were per-
formed in underdoped Fe-based compounds [21,30,31]. DBs
indeed can act as a source of correlated disorder, so their
presence modifies the superconducting anisotropy expected
in a detwinned single domain. Taking advantage of this
fact, in the present work, we investigate the symmetry in
the superconducting transport properties in a slightly under-
doped Ba(Fe1−xCox )2As2 single crystal under different strain
conditions.

The effects of anisotropy in superconductors with uniaxial
symmetry were analyzed in the 1990s within the Ginzburg-
Landau formalism, using simple scaling laws that predict the
behavior of physical quantities as the relative orientation of
the external magnetic field and the c axis is varied [24,32].
Failure of this scaling is interpreted as the prevalence of
correlated disorder, such as that originating from the presence
of DBs [28,30,33].

In this work, we measure the transport properties in the
superconducting mixed phase under the out-of-plane rotation
of an applied magnetic field. From these measurements, we
are able to detect the presence of DBs in free samples as well
as the detwinning under the application of strong compressive
or tensile strains. By generalizing the scaling formalism to
nematic systems, we determine the in-plane anisotropies of
the superconducting stiffness and of transport properties in
the mixed phase. We observe a strong in-plane resistivity
anisotropy, suggesting that nematicity strongly affects trans-
port properties related to vortex dissipative dynamics. On the
other hand, the superconducting stiffness, associated with the
energy cost of local changes of the superconducting order
parameter, seems to be unaffected by the strain within our
experimental resolution.

This paper is organized as follows: in Sec. II we describe
the experimental array; results and discussion are presented in
Sec. III, and conclusions are drawn in Sec. IV.

II. EXPERIMENT

Samples used in this work are single crystals of
Ba(Fe1−xCox )2As2, grown from FeAs flux from a starting
load of metallic Ba, FeAs, and CoAs, as described in detail
elsewhere [14]. We selected samples with x = 0.062, which
is very close to optimal doping and near the maximum doping
at which orthorhombicity is observed [14,15]. For this Co
concentration, the tetragonal-to-orthorhombic phase transi-
tion at Ts � 30 K is above the superconducting transition at
Tc � 24 K, which nucleates in the orthorhombic paramagnetic
normal phase with no long-range antiferromagnetic order.

The orientation of the crystalline axes was identified with
x-ray diffractometry in single-crystalline platelet samples.
Crystals were further cut along the tetragonal [110] direction

FIG. 1. Scheme of the direction of the applied magnetic field and
current. For clarity, just one family of parallel domain boundaries
(DBs) is shown. The indicated a and b axes correspond to the first
domain, where the short b axis is oriented parallel to the applied
current J. In this domain, the applied magnetic field H is rotated in
the ac plane, forming an angle θ with the c axis. Current is applied
in the b direction. Inset: Tetragonal aT , bT (blue) and orthorhombic
a, b (red) axes are shown (see text).

into rectangles with a precision wire saw, so that the a/b
orthorhombic axes were parallel to the sample sides upon
cooling through the structural transition. In this way, we
expect to be able to detwin the sample through application
of compressive or tensile strain along its length. Uniaxial
stress can be applied, favoring one orthorhombic orientation
over the other; if uniaxial tensile stress is applied, the longest
orthorhombic a axis is favored in the direction of the applied
stress, whereas the shorter b axis is favored for the case of
compressive stress [7]; for low strains, DBs are expected to
form at a 45◦ angle, as shown in Fig. 1.

After cleaving the crystals, current and voltage Au wires
were attached with silver paint on top of Au sputtered contacts
along the longest side of the sample. The main results pre-
sented in this work correspond to a sample with dimensions
of 1.1 × 0.3 × 0.05 mm3. Measurements performed in other
samples of the same batch and composition are consistent.

Angle-dependent low-current ac magnetotransport experi-
ments were carried out in a Janis continuous-flow 4He cryostat
down to �20 K with millikelvin temperature control in the
low-temperature range, using a lock-in amplifier for audio
range frequencies.

A dc magnetic field, provided by an electromagnet that can
be rotated with a precision of �0.5◦, was applied perpendic-
ular to the applied current and oriented at a given angle with
respect to the sample’s c axis, as sketched in Fig. 1. In Fig. 1
we show an orthorhombic sample with a family of parallel
DBs, and the left domain has its shorter b axis parallel to
the applied current. For clarity, just one family is shown (in
real samples many families are present, oriented along both
directions, forming a 45◦ angle with the sample side).

In order to control the longitudinal strain, samples were
mounted in a recently designed apparatus to tune in-plane
uniaxial stress [34]. As described in detail in Ref. [34], the
sample is placed across a gap between two plates joined by a
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FIG. 2. (a) and (b) Different components of the apparatus, indi-
cating sample elongation and compression (see text).

bridge, one of them movable and the other fixed, as sketched
in Fig. 2. Three lead zirconium titanate piezoelectric stacks
control the position of the movable plate. Compressive or
tensile strain is applied by controlling the length differential
between the inner and outer stacks, as sketched in Figs. 2(a)
and 2(b): a positive voltage applied on the outer two stacks
pushes the bridge and elongates the sample, and the opposite
occurs if the positive voltage is applied to the central stack.
Because the stacks are much longer than the sample, larger
strains can be achieved on the sample, compared to other
piezoelectric-based straining setups. To measure the displace-
ment applied to the sample, there are strain gauges affixed to
the stacks, and these are connected to two opposite branches
of a Wheatstone bridge, so that the out-of-balance signal
can be measured to determine the gap (or sample) length
variation with high resolution. Samples were prepared with
high length-to-width and length-to-thickness aspect ratios to
increase strain homogeneity, reduce bending, and avoid edge
effects [34]. Recommendations in the use of epoxy to mount
samples and to consider elastic deformation of the mounting
epoxy described in Ref. [34] were followed. Due to technical
restrictions, samples were glued in the asymmetric configu-
ration [34]. Any local stress produced by the mounting itself
decays at a distance λ � 90μm and becomes negligible close
to the voltage contacts.

Besides the capability to apply larger deformations, this
array helps compensate the thermal expansion of the piezo-
electric stacks: as all the stacks have equal lengths, similar
temperature expansions (contraction) are expected for the
inner and outer stacks, so the gap (sample) length should
not significantly vary with temperature. However, this thermal
compensation is, in practice, not perfect, and in addition, the
sample will be strained by differential thermal contraction
between it and the frame material (titanium) of the stress cell.
The additional strain would need to be compensated by an
appropriate voltage on the stacks to achieve the zero-strain
condition. Notice that most previous experimental works just
report a relative sample deformation. In this work we measure
the absolute sample strain by applying the following strategy
to determine the zero-strain sample condition: single crystals
are first placed on top of the gap and carefully attached
to the sample plates at one end, leaving the other end of
the sample free so that it remains unstressed throughout the

FIG. 3. Normalized temperature-dependent resistivity of a
Ba(Fe1−xCox )2As2 single crystal with x = 0.062 measured for differ-
ent strain values under uniaxial applied stress in the [110] direction
ε. The color code indicates the strain interval −0.074 < ε < 0.040.
Inset: ρ−1 dρ/dε as a function of temperature in the tetragonal phase,
consistent the nematic divergence (see text).

whole measured temperature. We define this arrangement as
a freestanding (F) sample with its corresponding resistivity
ρF(T, H, θ ). The next step is to properly attach the second
end of the sample to apply strain, as both ends are driven.
We then adjust the voltage applied on the piezo stacks to
compensate the apparatus thermal contraction/expansion at
each temperature. We consider the sample to have reached
the strain-free (SF) condition εSF = εF = 0 when the corre-
sponding resistivity ρSF(T ) = ρF(T ). In the rest of the work
the longitudinal strain ε refers, in all the cases, to the absolute
strain, considering εSF ∼ εF = 0.

III. RESULTS AND DISCUSSION

As reported in several works [7,8,35], the application
of strain in the tetragonal [110] direction in underdoped
Ba(Fe1−xCox )2As2 promotes a preferential orientation of ne-
matic domains below Ts; high-resolution x-ray studies show
that the relative volume fraction of domains with different
orientations is bolstered by the applied strain. On the other
hand, the applied strain induces in-plane resistivity anisotropy
below and above Ts due to large elastoresistivity effects.

Figure 3 shows the temperature-dependent resistivity ρ(T )
of a Ba(Fe1−xCox )2As2 sample with x = 0.062 at temper-
atures below 70 K, normalized to its value at T = 300 K,
measured under different values of applied uniaxial strain ε

in the interval −0.07 � ε � 0.04. Negative strain stands for
sample compression, while positive strain values indicate ten-
sile strain. For this doping level, the fingerprint in resistivity
related to the tetragonal-to-orthorhombic phase transition [7]
at Ts � 30 K is very weak because the orthorhombicity is
low [19]. However, a huge dependence on the applied strain
is observed in this temperature range. The inset shows the
corresponding elastoresistivity component 1

ρ

dρ

dε
as a function

of temperature in the tetragonal phase, consistent with the
nematic divergence reported in a large number of Fe-based
superconductors and recently related to the ubiquitous sig-
natures of nematic quantum criticality in optimally doped
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FIG. 4. Normalized temperature-dependent resistivity of the
freestanding sample (black curve) for H = 0. The matched resistivity
for the strain-free sample is plotted by green dots. Inset: Sample
strain with 0 V on the piezo stacks ε0V due to residual differential
thermal contraction between the sample and apparatus. The opposite
T -dependent strain was applied to the sample to recover resistivity
values displayed in black line in the main panel (see text).

Fe-based superconductors [13]. In the context of the present
work, this huge elastoresistivity allows for using the resistivity
as a tool to identify the zero-strain condition with reasonable
resolution.

The procedure described in Sec. II was followed to ob-
tain a controlled SF sample as shown in Fig. 4 for another
sample at H = 0. The black cooling curve is the F sample
resistivity, measured while the sample had only one of its ends
attached to the apparatus. With green dots we plot the matched
temperature-dependent resistivity after properly attaching the
second end of the sample to the second piezo stack so that
both ends were driven independently. In our particular setup,
for zero voltage on the stacks the temperature-dependent
resistivity was higher than for the F sample in the whole
T range, indicating sample compression. This compression
was quantified and is plotted in the inset. To recover the
free sample resistivity, the opposite strain was applied to the
sample.

Central to this work is the connection between electronic
nematicity and superconductivity, so from this point we focus
on the resistive superconducting transition. A finite width in
the resistivity transition at H = 0 is expected due to disorder
and geometrical effects. Moreover, in an applied magnetic
field, there is an additional transition broadening due to the
presence of a dissipative vortex liquid in the superconducting
phase. The main panel of Fig. 5 compares the resistivity
transition in a field H0 = 5 kOe applied at a fixed direction
θ0 relative to the c axis under different strain conditions,
F and SF procedures (black and green curves), and under
strong compressive (CS, red curve) and tensile (TS, blue
curve) strains of −0.35% and 0.26%, respectively. For this
comparison, keeping in mind that DBs may be modified
by strain, the magnetic field was applied in a direction far
enough from the c axis and the a-b planes to avoid vortex
pinning by correlated defects. We arbitrarily fixed θ0 = 62◦,
so that random point defects dominate pinning in all the strain
conditions. A strain-dependent resistivity is observed along

FIG. 5. Normalized resistivity transition measured at H0 =
5 kOe applied at θ0 = 62◦. The responses of the freestanding sample
(F, black line) and strain-free sample (SF, green line) are compared
with the resistivity measured under a strong tensile strain (TS)
εTS = 0.26% (blue line) and under a strong compressive strain (CS)
εCS = −0.35% (red line). The resistivities measured in TS and CS
conditions can be identified as ρa and ρb, respectively (see text).
The inset shows the temperature-dependent resistivity anisotropy,
2(ρb − ρa)/(ρb + ρa ) > 0.4, across the whole resistive transition.
The gray regions in both panels identify the temperature range where
the effective fields plotted in Fig. 9 were obtained.

the transition, together with a small decrease in the transition
temperature (very small in this case due to the quasi-optimal
sample doping [36]).

In anisotropic superconductors, a dependence on the mag-
netic field direction is expected from the contribution of
the vortex liquid magnetoresistivity ρ(T, H, θ ). This angular
dependence gives therefore information about the underlying
anisotropy in the superconducting phase. Figure 6 summarizes
the main experimental results of this work: polar plots for the
angle-dependent normalized magnetoresistivity [ρ(θ, T ) −
ρ(θ0, T )]/ρ(θ0, T ) across the superconducting transition for
the four different sample conditions, F [Fig. 6(a)], SF
[Fig. 6(b)], under tensile strain TS [Fig. 6(c)] and under
compressive strain CS [Fig. 6(d)]. The color bar represents
the normalized magnetoresistivity, the radial coordinate is the
temperature, and the angular coordinate is the angle between
the applied field and the c axis as the field is rotated within
a plane perpendicular to the direction of the applied current
(see Fig. 1). The circle sectors delimited by red lines indicate
the angular and temperature intervals for which resistivity was
measured. The plots were completed by symmetry.

The resistivity in the normal state is angle independent
within resolution, and the angular dependence develops once
the dissipation due to the driven superconducting vortex flow
starts playing a role. As expected in C2 symmetry, in the inter-
val [0, π/2], there is a monotonic decrease of the temperature
where superconductivity nucleates [i.e., the temperature for
which H0 = Hc2(T, θ )] with increasing θ . As the underlying
anisotropy is conserved along the transition, a similar mono-
tonic angular dependence is expected for the vortex-liquid-
vortex-glass transition at Tg(θ ), where the resistivity drops to
zero. However, as can be observed, this is not the case for
all the sample conditions; the main feature to be pointed out
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FIG. 6. Color maps in polar plots for temperature- and angle-dependent normalized magnetoresistivity [ρ(θ, T ) − ρ(θ0, T )]/ρ(θ0, T ) in
the superconducting state at H0 = 5 kOe. Temperature is the radial coordinate, the angular coordinate is the angle between the applied field
and the c axis, and the color code indicates the normalized resistivity scale. Results for different sample strain conditions are shown. (a)
Freestanding sample (F). (b) Strain-free sample (SF). (c) Under tensile strain (TS). (d) Under compressive strain (CS). The circular segments
delimited by red lines indicate the angular and temperature intervals for which resistivity was measured, and the plots were completed by
symmetry. At low temperatures, delimited by the white circles, an anomaly is observed for F and SF conditions but absent in strained TS and
CS samples. This anomaly is related to DBs (see text).

is the low-resistivity anomaly observed at low temperatures
and low angles (encircled in white) in Figs. 6(a) and 6(b) that
is absent in the strained samples in Figs. 6(c) and 6(d). This
anomaly is clearly observed in the S and SF phase samples.
We attribute the existence of such an anomaly to the presence
of planar defects (parallel to the c axis), which act as a source
of correlated disorder and strongly influence vortex dynamics
[30]. The disappearance of this anomaly under the application
of stress thus signals the detwinning of the sample.

The liquid-glass temperature transition Tg can be obtained
by means of a nonlinear fit, taking into account the criti-
cal behavior of the resistivity ρ(H, T ) at Tg. An alternative
way [37] proposes a scaling of the resistivity ρ(H, T ) by
assuming that the glass transition occurs when thermal and
pinning energy scales match. This scaling procedure has been
performed in order to obtain the best Tg for each θ direction
at H0 = 5 kOe and under different strain conditions (F, CS,
and TS). The main panel in Fig. 7 presents the angular
dependence of Tg in the F condition. The local maximum of
Tg for angles close to the c axis violates the expected angular
dependence in the presence of uncorrelated random disorder.
A maximum in Tg(θ ) at θ = 0 was also observed in twinned
cuprate superconductors and associated with a transition to a
Bose glass phase [23,27]. Conversely, the anomaly is absent
in the TS and CS conditions (see the inset), consistent with a
single-domain detwinned sample.

With the aim being to quantify the underlying anisotropy
and be able to compare results obtained in different condi-

tions, we make use of the effective field concept. Essentially,
the idea is to find the magnetic field that would be necessary
to apply, in a hypothetical isotropic situation, in order to
obtain the measured resistivity in the real anisotropic case.
In materials with uniaxial anisotropy the dependence of any
property on the direction of the magnetic field relative to
the c axis Q(H0, θ ) can be related to the magnetic field
dependence Q(H, θ0) through an effective field Heff(θ ) defined
as Q(H0, θ ) = Q(Heff(θ ), θ0). Heff is well defined if Q(H ) is
a one-to-one function. In a variety of experiments, carried out
with different techniques in tetragonal (or slightly orthorhom-
bic twinned) type-II superconductor materials [28,30,33], the
angular dependence of Heff is well fitted by

Heff

H0
=

√
γ 2 cos2 θ + sin2 θ√
γ 2 cos2 θ0 + sin2 θ0

, (1)

where the constant γ characterizes the uniaxial anisotropy.
This dependence holds if randomly distributed defects are the
prevailing source of vortex pinning but breaks down when
the predominant pinning is due to correlated defects such as
DBs, ab planes, or columnar defects. However, in a single
orthorhombic domain, different γa and γb constants could, in
principle, hold.

To obtain the effective field from our results, we have
complemented the data shown in Fig. 6 with measurements
of the magnetoresistivity as a function of the intensity of the
magnetic field. As plotted in the inset of Fig. 8, the sample was
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FIG. 7. Vortex liquid-to-glass transition temperature Tg as a func-
tion of the orientation θ of an applied field of 5 kOe with respect
to the c axis for a free sample (F, main panel) and for strained and
compressed strain conditions (TS and CS, inset). Glass temperatures
were obtained by means of a nonlinear fit according to the reported
model [37] of the temperature dependence of ρ. Black solid circles
stand for Tg obtained from curves ρ(T ) measured in temperature
ramps at fixed θ with a temperature step of 
T = 1 mK, and gray
open circles correspond to measurements obtained in a single cooling
temperature ramp while periodically rotating the field direction. Er-
ror bars represent the 95% confidence intervals for the estimated Tg.

field cooled under different constant magnetic fields ranging
between 0 and 7.5 kOe, applied at a fixed angle, away from
the DBs. Figure 8(a) shows ρ(H ) for θ0 = 62◦ at T = 23.3 K;
Fig. 8(b) shows ρ(θ ) at H0 = 5kOe at the same temperature
and the same strain conditions (TS in this example). We then
obtain Heff in the same way as in Ref. [30], identifying the

FIG. 8. Illustration of the effective field concept: (a) field-
dependent normalized resistivity ρ/ρ(300 K) for θ = 62◦ and T =
23.3 K in TS conditions. Data points were obtained, as indicated
in (c) by the intersection with the dotted vertical line, from the
temperature-dependent curves for different magnetic fields. Each
color [symbol (a) and curve in (c)] corresponds to a different mag-
netic field between 0 and 7.5 kOe. (b) Normalized resistivity as a
function of the orientation of H = 5 kOe for the same temperature
as in (a).

intensity H needed in Fig. 8(a) to match the resistivity value
at a given angle θ in Fig. 8(b) (see gray labels on top axis),
ρ(Heff, θ0) = ρ(H0, θ ).

Figure 9 presents the angular dependence of Heff for differ-
ent strain conditions for the same sample. Good agreement
with the scaling function in Eq. (1) holds, as shown by
blue and red solid lines, over a wide angular range for TS
[Fig. 9(a)] and CS [Fig. 9(c)], but scaling definitely fails to
reproduce the observed behavior in F [Fig. 9(b)], especially
when the orientation of the field is close to the c axis.
This anomaly is reinforced as the temperature is lowered,
as depicted in the inset in Fig. 9(b), while the temperature
dependence in the strained sample conditions, TS and CS,
is negligible [see the inset in Fig. 9(a)]. The absence of the
dip near small angles in the TS and CS conditions, together
with the good fit with the scaling function in Eq. (1), further
supports that the sample was successfully detwinned with
the applied strains (0.26 ± 0.05)% and (−0.35 ± 0.05)%. In
addition, we observed that the signature of DBs reappeared as
the strain was released in the orthorhombic nematic phase [8],
as shown in the inset in Fig. 9(c) for [ρ(θ ) − ρ(θ0)]/ρ(θ0).

Under the premise of achieved detwinning, the shortest
lattice constant b would align with the compressed direction,
while the lattice constant a would align with the elongated
direction. In that sense, the measured resistivity would cor-
respond to ρb in the case of CS and to ρa in the case of
TS. It should be kept in mind that these resistivities are
additionally affected by the corresponding tensile (compres-
sive) strain and the corresponding compression (expansion)
in the transverse directions. The inset of Fig. 5 presents the
resistivity anisotropy obtained from both magnitudes, larger
than 0.4 throughout the whole temperature range in which
the resistivity can be measured. The coincident resistivities
obtained for free conditions (F and SF), on the other hand,
correspond to an average of ρa and ρb under zero strain [9] in
the temperature range where resistivity is unaffected by DBs.

Along with the line of reasoning that we have achieved a
single oriented domain in TS and CS conditions, we conclude
that the magnetic field is rotated in the cb and ca planes
in each strain condition. Therefore, the best-fit parameters
shown in Fig. 9 are γb and γa, respectively, with no discernible
differences (γb = 1.66 ± 0.05, γa = 1.68 ± 0.06) [38].

Blatter et al. [24] explained the angular dependence of the
effective field in superconductors with uniaxial anisotropy in
the context of a Ginzburg-Landau (GL) free-energy functional
[39,40] by proposing simple rules that scale the anisotropic
problem into an isotropic situation. In that work, anisotropy is
modeled by introducing coefficients in the gradient terms of
the free-energy expansion as

Gsc =
∫

d3r
∑

μ

1

2mμ

|Dμ
|2 + α|
|2 + β|
|4, (2)

where 
 is the complex order parameter, α and β are the
standard parameters in the free-energy expansion, and Dμ =

∂
∂xμ

+ ie∗
h̄c Aμ is the covariant derivative. The index μ runs

over the crystal axes a, b, c. The parameters mμ are related
to the phase stiffness [41,42] via h̄2|
0|2/mμ, where |
0|
stands for the T = 0 bulk value of the order parameter. Given
that orthorhombic distortion in these materials is ascribed to
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FIG. 9. Heff as a function of applied field orientation θ for the
same sample under (a) tensile, (b) null, and (c) compressive strain,
at T ≈ 23.0 K. Heff is normalized by the applied field H0 = 5 kOe.
Measured data are represented in solid circles, while open sym-
bols stand for equivalent data points generated by symmetry for
completion. Best-fitting curves are plotted by blue and red solid
lines according to Eq. (1), in (a) and (c), respectively, and colored
dashed lines account for uncertainty in the estimated parameter (95%
confidence intervals). Data corresponding to field directions near the
ab planes beyond the vertical dashed lines were excluded from the fit.
The observed angular dependence for F in (b) is contrasted to the
one predicted by Eq. (1) with γ = 1.67, shown by the green solid
line. The angular dependence of Heff for temperatures ranging from
22.90 to 23.30 K is included in the insets of (a) and (b) for TS and
F, respectively. The inset of (c) presents the angular dependence of
the normalized resistivity [ρ − ρ(θ0)]/ρ(θ0) of the sample after the
strain was released (green symbols) compared to that obtained for
CS (red symbols), both at T = 23 K and θ0 = 62◦.

nematic ordering, it is reasonable to assume that ma = mb =
m|| in the absence of nematicity. In that case, Blatter et al. have
shown that the parameter γ of Eq. (1) can be identified with
γ = mc

m||
.

When a nematic order parameter η is present, we can
expect the usual biquadratic coupling

Gint = λ2

∫
d3r η2|
|2, (3)

which will directly affect the value of Tc. In addition, we
expect the presence of a term coupling the nematic order to the
gradient of the superconducting order parameter of the form

G1
int = λ1

2

∫
d3r η{|Da
|2 − |Db
|2}. (4)

In the case of a detwinned sample with η = η0 this amounts
to working with a standard GL model except with

1

m∗
a,b

= 1

m||
± λ1η0. (5)

This fact immediately suggests the generalization of Eq. (1),
but now with two a priori different γa and γb depending on
whether the external field is rotated in the ac or ab plane.
Our results show that there is no significant difference in
the values of γa and γb, implying that although nematicity
contributes in a decisive way to the conduction properties, it
does not strongly affect the in-plane anisotropy of the stiffness
parameters. From Eq. (5), the latter could be related either
(a) to a suppressed η0 due to the proposed competition with
superconductivity [19,20] or (b) to a weak-coupling constant
λ1. For item (b) to be true, nematic superconducting coupling
should then be expressed in higher-order even coupling terms
such as λ2η

2
0|
|2.

In order to predict the angular dependence of supercon-
ducting properties, Blatter and coworkers [24,32] further pro-
posed additional scaling rules. In particular, the resistivity
is predicted to scale in proportion to the parameter mμ. In
the present case, however, ma � mb in spite of the strong
anisotropy between the resistivities ρa and ρb.

The observed mismatch between the in-plane anisotropies
of superconducting stiffness and resistivity indicates that the
symmetry of the transport properties in the mixed phase is
strongly influenced by the normal-state in-plane anisotropy.
Moreover, it is reminiscent of the mismatch between the out-
of-plane anisotropies of normal effective mass and resistivity
measured in various iron superconductors [43]. The latter sug-
gests that sources of anisotropy other than the Drude weight
[44], such as anisotropic scattering [9,45], could be relevant
in the normal and superconducting transport properties.

The strong difference in dissipation between TS and CS
samples in the mixed superconducting vortex liquid phase is
qualitatively consistent with both the observed difference in
Tg and the reported critical current in-plane anisotropy in the
absence of DBs for similar compositions [46]. Hecher et al.
attribute the observed Jc anisotropy either to an anisotropic
pinning efficiency induced by Co impurities or to the multi-
band electronic structure of these compounds. An insight
favoring this last possibility is the subtle loss of the C2

symmetry observed at the onset of the resistive transition
for some strain conditions. Careful observation of the color
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maps in the polar plots in Fig. 6 shows that there is a weak
loss of C2 symmetry, similar to that recently observed in
in-plane angular-dependent resistivity and associated with the
multiband character [16]. This measured effect (within the
circular segments delimited by red lines) is more evident at
higher temperatures, i.e., at the largest radius in the polar
plots, where the angular dependence of the resistivity is very
small (light blue).

Full time-dependent GL calculations, with the appropri-
ate Legendre transform (taking into account the fact that in
transport experiments the current is one of the independent
variables [40]), are required for an accurate description.

IV. CONCLUSIONS

The anisotropy in the superconducting transport properties
was investigated in slightly underdoped Ba(Fe1−xCox )2As2

single crystals by measuring the resistive superconducting
transition under the rotation of an applied magnetic field
and different strain conditions. We were able to reproduce
the free sample response under controlled uniaxial stress
and, consequently, measure the absolute sample deformation.
We detected the presence of DBs in free samples from the
breaking of the expected intrinsic angular dependence for
a single orthorhombic domain: an anomaly was detected in
the vortex liquid-glass transition temperature Tg, as well as
in the angular dependence of the resistivity in the vortex
liquid phase. The suppression of this anomaly, indicative of
the sample detwinning, was achieved under the application of
strong compressive and tensile strains ε � 0.3%, considerably
higher than the reported orthorhombic distortion.

For the samples employed, there is no magnetic long-range
order; thus, only nematic and superconducting order parame-
ters need to be taken into account. By extending a Ginzburg-
Landau scaling formalism to nematic systems and coupling at
first order the nematic and superconducting order parameters,
we obtained the in-plane superconducting stiffness anisotropy

under strain. Our results show no significant differences be-
tween the superconducting stiffness in the orthorhombic a
and b axes. On the other hand, a strong in-plane resistiv-
ity anisotropy holds in the mixed superconducting phase,
indicating that normal and/or nonequilibrium properties are
playing a key role. Under the GL formalism, the lack of
a measurable in-plane stiffness anisotropy coexisting with a
clear in-plane resistivity anisotropy is surprising and requires
further investigation.

An additional important remark is that part of these con-
clusions is based on the assumption of the validity of the GL
formalism, under debate in these materials [47]. Assuming
this framework, full time-dependent GL calculations, as well
as a model for the interaction between nematic DBs and
superconducting vortices, are necessary to rigorously quantify
our experimental results.
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