
Memory-Sample Tradeoffs for Linear Regression with Small Error*

Vatsal Sharan

Stanford University

vsharan@stanford.edu

Aaron Sidford

Stanford University

sidford@stanford.edu

Gregory Valiant

Stanford University

valiant@stanford.edu

Abstract

We consider the problem of performing linear regression over a stream of d-dimensional examples, and show

that any algorithm that uses a subquadratic amount of memory exhibits a slower rate of convergence than can be

achieved without memory constraints. Specifically, consider a sequence of labeled examples (a1, b1), (a2, b2) . . . ,
with ai drawn independently from a d-dimensional isotropic Gaussian, and where bi = 〈ai, x〉 + ηi, for a fixed

x ∈ R
d with ‖x‖2 = 1 and with independent noise ηi drawn uniformly from the interval [−2−d/5, 2−d/5]. We

show that any algorithm with at most d2/4 bits of memory requires at least Ω(d log log 1

ε
) samples to approximate

x to `2 error ε with probability of success at least 2/3, for ε sufficiently small as a function of d. In contrast, for

such ε, x can be recovered to error ε with probability 1− o(1) with memory O
(

d2 log(1/ε)
)

using d examples. This

represents the first nontrivial lower bounds for regression with super-linear memory, and may open the door for strong

memory/sample tradeoffs for continuous optimization.

*The contributions of Vatsal and Gregory were supported by NSF awards AF-1813049 and CCF-1704417, and ONR Young Investigator Award

N00014-18-1-2295. Aaron’s contributions were supported by NSF CAREER Award CCF-1844855.

1 Introduction

What are the implications of memory constraints on the ability to efficiently learn or optimize? As has been revealed in

a recent series of striking results [Raz, 2016, 2017, Beame et al., 2018, Kol et al., 2017, Moshkovitz and Moshkovitz,

2017, 2018, Garg et al., 2018], for a broad class of natural learning problems over the Boolean hypercube and other

finite fields, there is a sharp threshold for the amount of memory required to learn with a polynomial amount of data.

This line of work was sparked by Raz’ breakthrough result [Raz, 2016], which considered the problem of learning

a parity: given access to a stream of labeled examples, (a1, b1), . . . , where each ai ∈ {0, 1}d is drawn uniformly

from the d-dimensional hypercube and bi = 〈ai, x〉 mod 2 for some fixed vector x, Raz showed that any algorithm

with o(n2) memory would require an exponential number of examples to learn x (with any significant probability of

success). Of course, given a quadratic amount of memory, x can be efficiently computed by taking the first O(n)
examples and solving the corresponding linear system over F2. Subsequent work extended this result to a broad class

of discrete learning problems, including Raz [2017], Moshkovitz and Moshkovitz [2017, 2018] which generalized the

results to a class of Boolean learning problems that satisfy a certain combinatorial condition, Kol et al. [2017] which

extended the techniques to the problems of learning sparse parities (parities involving o(d) coordinates) which implies

hardness of several other natural Boolean learning problems including learning small juntas, small decision trees, and

small DNF formulae, and the works Beame et al. [2018] and Garg et al. [2018] whcih strengthened the approach

of Raz [2017] to yield tight tradeoffs for a larger class of learning problems over finite fields, including homogeneous

m-variate polynomials over F2.

For continuous, real-valued optimization and learning problems, much less is known about memory/sample trade-

offs. This is in spite of fact that the problem of learning a linear regression—the real-valued analog of learning

parities—lies at the core of machine learning and is a prototypical convex optimization problem. Indeed, one of the

original motivations for the conjecture that learning a parity required either a quadratic memory or exponential time,

originally stated in Steinhardt et al. [2016], was the question of the memory/sample tradeoffs for linear regression.

This question of the memory/sample tradeoffs for linear regression is also extremely important from a practi-

cal perspective. Gradient-based ‘first-order’ methods are the workhorse of modern machine learning, in contrast to

‘second-order’ methods. This is explained by the efficiency benefit conferred by the linear memory footprint of first-

order methods as opposed to the quadratic memory requirements of second-order methods. For large-scale learning

problems, this reduction in memory usage of first-order methods more than compensates for the increase in the number

of iterations or datapoints processed. If methods with comparable memory usage to first-order methods (or at least

significantly subquadratic) were capable of achieving similar convergence rates to second-order methods, that could

have far-reaching practical implications.

The question of the memory/sample tradeoffs for linear regression is also a natural and largely unexplored frontier

of continuous optimization research. There is classic line of research which has proven information theoretic lower

bounds on continuous optimization [Nemirovski and Yudin, 1983, Nesterov, 2014, Bubeck, 2015] in a restricted

oracle model where the input real-valued function can only be queried via black box queries to an oracle that returns

local information about the function, e.g. function values, gradients, etc. Given only mild regularity assumptions

on a function, e.g. Lipschitz continuity, smoothness, convexity, etc., proving tight bounds on the number of queries

to an oracle needed to approximately minimize a function is well-studied and has been a driving force behind the

development of modern optimization theory. While there is some work studying the effect of parallelism on these lower

bounds [Nemirovski, 1994, Balkanski and Singer, 2018, Diakonikolas and Guzmán, 2018], we are unaware of previous

work proving gaps between the query complexity of optimization problems under differing memory constraints.

In this work, we provide the first nontrivial memory/sample tradeoffs for linear regression which apply in the

regime where the available memory is significantly larger than what would be required to store each datapoint to high

precision.

Theorem 1. Consider a sequence of labeled examples (a1, b1), (a2, b2) . . . , with ai drawn independently from a d-

dimensional isotropic Gaussian with an identity covariance matrix, and where bi = 〈ai, x〉 + ηi, for a fixed x ∈ R
d

with ‖x‖2 = 1 and with independent noise ηi drawn uniformly from the interval [−2−d/5, 2−d/5]. Let ε = 1/dr for

any r ≤ O(d/ log d). Then any algorithm with at most d2/4 bits of memory requires at least Ω(d log r) samples to

approximate x to `2 error ε with probability of success at least 2/3. In particular, for ε ≤ 1/dΩ(log d), this implies

1

that any algorithm with d2/4 bits of memory requires at least Ω(d log log 1
ε) samples to approximate x to error ε with

probability of success at least 2/3.

For comparison, note that for ε ∈ [2−Θ(d), 1/d], the trivial algorithm recovers x to error ε with probability 1−o(1)
using O

(

d2 log(1/ε)
)

bits of memory and d examples.1

1.1 Further Directions

Our result establishes the existence of a sharp gap in sample complexities for regression with bounded memory.

Nevertheless, this still leaves a significant margin between our lower bounds on the convergence rate of bounded

memory algorithms, and those achieved by the best known first-order methods which use memory O(d log(1/ε)). For

example, randomized Kaczmarz [Strohmer and Vershynin, 2006] can be easily shown to compute a point x̃ such that

‖x − x̃‖2 ≤ ε with constant probability using O(d log(1/ε)) samples and memory O(d log(1/ε)). This is the best

known sample complexity for achieving error ε given this amount of memory, though our lower bound leaves open the

question of whether it is optimal.

Beyond tightening our result, it is also worth considering the analogous regression question in the setting where

the datapoints are drawn from an ill-conditioned distribution. Both in practice, and theory, first-order methods suffer

a convergence rate that degrades with the condition number. Over the past decade there has been extensive research

on providing iterative methods which use sub-quadratic space and seek better dependencies on the eigenvalues of

the covariance of the distribution of a. Though there have been several improvements to randomized Kaczmarz and

variants of SGD in recent years [Hu et al., 2009, Lan, 2012, Ghadimi and Lan, 2013, Lee and Sidford, 2013, Frostig

et al., 2015, Liu and Wright, 2016, Needell et al., 2016, Dieuleveut et al., 2017, Jain et al., 2018] the number of

samples required by these methods all depend polynomially on some measure of eigenvalue range or conditioning of

the underlying covariance matrix. This is in sharp contrast to second-order methods which can simply store Θ(d)
samples and invert an associated matrix to compute an ε accurate solution with Ω(d2 log(dκ/ε)) memory where κ is a

condition number measure of the matrix.

Conjecture. For any κ bounded by a polynomial of d, there exists a distribution Dκ over d-dimensional Gaussian

distributions whose covariance has condition number κ, such that for G← Dκ, given a sequence of examples (ai, bi)
with ai drawn from G and bi = 〈ai, x〉, any algorithm that recovers the unit vector x to small constant `2 error with

constant probability either requires Ω(d2) bits of memory, or d · poly(κ) examples.

The work of this paper may be a first step towards proving the above conjecture. We hope this paper will inspire

efforts to establish strong memory/query complexity trade-offs for continuous optimization more broadly.

In a different direction, it may be worth considering the extent to which results of the form of Theorem 1 apply

beyond the stochastic streaming setting. Rather than considering a stream of independent examples, one could consider

the analogous questions in a cell-probe setting: suppose there is a set of O(d) examples stored in read-only memory,

and one is charged according to the number of times each example is ‘downloaded’ into working memory. What

are the tradeoffs between the amount of working memory, error of the recovered linear regression, and number of

‘downloads’? This setting closely corresponds to the data pipeline employed in many large scale learning settings, and

any strong results in this setting would be extremely interesting.

It is worth noting that, even in the setting of learning parities, the stochasticity of the examples is essential to

the exponential sample complexity of memory-constrained algorithms. Analogous results are not true in the above

cell-probe model. For example, given O(n) examples stored in read-only memory, there exists a successful learning

algorithm for the parity problem with O(n) working memory that uses poly(n) runtime and cell-probes [Kong, 2018]

(though, to the best of our knowledge, it is not known if there is a successful learning algorithm for the real-valued

regression problem which uses O(n) working memory and poly(n) cell-probes). Still, establishing any nontrivial gap

between memory-constrained and unconstrained learning (for either the real-valued regression or parity problems) in

the cell-probe setting would be exciting, though may be quite difficult.

1This follows from the fact that the condition number of the system with d examples is at most 1/poly(d) with high probability, and hence we

can solve the system to accuracy ε by doing all computations with O(log(d/ε)) = O(log(1/ε)) bits of precision, for ε ≤ 1/d.

2

1.2 Related Work

A number of recent works have examined learning problems such as sparse linear regression [Steinhardt and Duchi,

2015] and detecting correlations [Shamir, 2014, Dagan and Shamir, 2018] under information constraints such as lim-

ited memory or communication constraints. These results usually develop information-theoretic inequalities [Braver-

man et al., 2016, Steinhardt et al., 2016, Dagan and Shamir, 2018] to show that unless a set of parties exchange a

minimum amount of information, they cannot solve the learning problem—with the memory bound following as a

consequence of the communication lower bound. At a high level, the idea is to show that if the learning problem

requires distinguishing between a set of k distributions, and if the distributions are sufficiently uncorrelated, then at

least Ω(k) bits of communication are needed to solve the learning problem. While initial results only obtained lower

bounds for settings where the memory budget is less than the size of each data point, the recent work Dagan and Shamir

[2018] circumvented this barrier and showed strong lower bounds for detecting correlations for natural distributions

under information constraints.

Many of these information theoretic tools seem to break down for learning problems such as parity learning where

communication lower bounds do not directly give meaningful memory bounds. Hence these settings require explicitly

taking into account the memory constraint of the algorithm; the recent line of work discussed in the introduction, start-

ing with Raz [2016] achieves sharp lower bounds for memory-bounded learning by directly analyzing the structure

of width-bounded branching programs for these problems [Raz, 2017, Kol et al., 2017, Moshkovitz and Moshkovitz,

2017, 2018, Beame et al., 2018, Garg et al., 2018]. Our work directly builds on the analysis framework developed

in Raz [2017], and extended in Beame et al. [2018] and Garg et al. [2018], with the crucial difference that the ge-

ometry of the continuous space corresponding to linear regression lacks many of the combinatorial properties that are

leveraged in the analysis of these prior works.

There is also a large literature on memory lower bounds for streaming algorithms (for e.g. Alon et al. [1999],

Bar-Yossef et al. [2004], although these are mostly for non-learning problems and assume that the input stream is

constructed in an adversarial fashion.

On the optimization side, there is a long history of proving information theoretic lower bounds on optimization

methods. These results typically show that given a type of restricted local oracle to access the input, i.e. an oracle

which only returns information about values, gradients, higher derivatives, separation oracles, etc., lower bounds can

be formally proven on the number of queries needed to approximately minimize the function. Such results date back

early work of Nemirovski and Yudin [1983] on the oracle complexity of optimization and there are too many results to

do a complete review (see Nesterov [2014], Bubeck [2015] for more recent surveys). Key results in this broad area of

research include, tight oracle bounds known for computing approximate minimizer of smooth convex functions given

a gradient oracle [Nemirovski and Yudin, 1983, Nesterov, 2014, Bubeck, 2015] even when randomization is allowed

[Woodworth and Srebro, 2016], tight oracle bounds known for computing approximate minimizer of Lipschitz convex

function given by a subgradient oracle [Braun et al., 2017, Nemirovski and Yudin, 1983, Nesterov, 2014], and even

tight oracle bounds for computing critical points, that is points of small gradient, for smooth non-convex functions

given by a gradient oracle [Nesterov, 2012, Cartis et al., 2012, 2017, Carmon et al., 2017a,b]. There has also been

extensive research on the oracle complexity of stochastic optimization [Nemirovski and Yudin, 1983, Devolder et al.,

2013, 2014, Shamir, 2013, Duchi et al., 2015] and work on the tradeoff between oracle complexity and parallelism for

nonsmooth optimization with a subgradient oracle [Nemirovski, 1994, Balkanski and Singer, 2018, Diakonikolas and

Guzmán, 2018]. However, to the best of the authors knowledge the problem of memory / query complexity tradeoffs

for real-valued continuous optimization has been largely unexplored.

2 Setup and Proof Overview

In this section, we provide an overview of our proof approach. We begin by describing the notation and formalism we

will use in analyzing the branching program representing a memory-bounded learning algorithm.

3

Branching Programs for Learning

We model the learner by a branching program B. A branching program is a general non-uniform model for space

bounded computation. The branching program has m layers, corresponding to m time steps, with each layer having at

most w vertices, where w denotes the width of B. Each vertex of B corresponds to a memory state, and a branching

program with width w corresponds to an algorithm with memory usage log2 w. A vertex with no outgoing edges is

called a leaf, and all vertices in the last layer are leaves (though there may be additional leaves). Each non-leaf vertex

v has an associated transition function fv : Rd × R → [w], representing the mapping from an example (a, b) to a

vertex in the next layer. Without loss of generality, we may assume that these transition functions are deterministic, as

randomization cannot improve the probability of success.2 To be consistent with the literature on branching programs,

we will refer to this transition function as a series of ‘edges’ indexed by the (infinite number of) potential examples

(a, b). Finally, each leaf vertex, v, of the branching program is labeled by a label, x̃(v), representing the output value

that the corresponding algorithm would produce on the sequence of examples that led to vertex v.

The success probability of the branching program B for a specified accuracy parameter ε is the probability that

‖x̃− x‖2 ≤ ε, where x̃ is the vector returned by B, and the probability is with respect to the randomness in the

sequence of examples and choice of the true x.

Setup

We consider branching programs whose goal is to learn some true x ∈ R
d with ‖x‖2 = 1 to `2 error ε, in the setting

where x is drawn uniformly at random from the d dimensional unit sphere. At every time step, a d-dimensional

vector a is sampled from N(0, Id), and the branching program is given a and the (noisy) inner product b = aTx+ η,

where the noise η is sampled from U [−δ, δ] for δ = 2−d/5. The addition of this noise facilitates the analysis, and we

could have equivalently assumed that the true inner product aTx is discretized according to some exponentially small

discretization error δ. Note that as long as the goal is to estimate x up to accuracy ε ≥ 2−γd for a small constant γ, the

small uniform noise or discretization does not create any information theoretic obstacles.

Proof Overview

Our proof follows and builds on the recent analytic framework for showing time-space lower bounds developed in Raz

[2017], and further extended in Beame et al. [2018] and Garg et al. [2018]. The analysis in our case is complicated

by the fact that the gap in the sample complexity of first order and second order methods for regression on well-

conditioned matrices is not very large, and depends on the desired error ε. To capture this dependence of the sample

complexity on ε, we divide the branching program into multiple stages, where a stage is a group of consecutive layers

of the branching program. Each stage will intuitively correspond to the branching program reducing the `2 error of

the estimate of x by a factor of two. We will argue that each of these stages cannot be too short if the algorithm has

small memory. We now sketch the proof, describing the high-level framework of Raz [2017] and how we adapt it to

our setup.

As in Raz [2017], we define a truncated computation path T which follows the computation path of the branching

program B, but may stop before reaching a leaf vertex. The conditions under which T stops before reaching a leaf

vertex will depend on the stage of the branching program which T is in. For any vertex v in the branching program,

let Px|v be the posterior distribution of x conditioned on being at v. We will quantify the progress made by a vertex

v towards learning x by the `2 norm ‖Px|v‖2 of the posterior distribution Px|v of v, note that a large norm indicates

a concentrated posterior with an accurate estimate of x. The truncated path T stops at any significant vertex s where

‖Px|s‖2 is larger than some threshold, where the threshold is chosen as a function of the stage of the branching program

being analyzed. Intuitively, if ‖Px|s‖2 is larger than a given threshold, then T has more information about x then we

expect it to have at that stage. Most of the effort in Raz [2017] and in our work goes into ensuring that the probability

of any significant vertex is small enough that the probability of T stopping due to reaching a significant vertex is small.

2This can be easily seen by noting that any branching program with randomized transitions can be converted to a deterministic one by iteratively

derandomizing each vertex by replacing its randomized transition function with the deterministic one that select the transition that maximizes the

probability of success (breaking ties arbitrarily), where the probability is taken over the randomization in the subsequent examples and whatever

randomization remains in the transition functions corresponding to other vertices.

4

We now sketch the argument for showing that the probability of reaching a significant vertex, s, is small, for any

stage Bt of the branching program B. Let Li denote the set of all vertices in the ith layer of the t-th stage Bt. The

following potential function tracks the progress which the i-th layer of Bt has made towards a fixed significant vertex

s in Bt,

Zi =
∑

v∈Li

Pr(v) · 〈Px|v,Px|s〉d/2.

We claim that if Zi is small and the significant vertex s lies in the i-th layer of Bt, then the probability of s must also

be small. This follows because we define significant vertices as those for which ‖Px|s‖2 is large, and if s is in the ith

layer then Zi ≥ Pr(s) · ‖Px|s‖d2. Hence our goal will be to show that Zi is small. Note that raising to the power of

d/2 in our expression for Zi allows us to show that the probability of significant vertices is small enough that we can

do a union bound over all vertices in the branching program, and d/2 is the largest power to which we can raise while

keeping the contribution of the low probability events small.

We prove that Zi is small via an induction argument. We first show that Z0 must be small, as the previous

stage Bt−1 of the branching program could not have made too much progress. We next show that Zi+1 cannot be

much larger than Zi. To show this, we introduce another potential which tracks how much progress any edge e of

the branching program has made towards s. Let Px|e be the posterior distribution of x conditioned on the event of

traversing edge e in the branching program. Let Γi denote the set of all edges from the (i− 1)-th layer to the i-th layer

of the t-th stage Bt of the branching program, and let p(e) be the p.d.f. of the distribution over edges evaluted at edge

e. For any i, we define the potential,

Z ′
i =

∫

e∈Γi

p(e) · 〈Px|e,Px|s〉d/2 de.

A straightforward convexity argument shows that Zi+1 ≤ Z ′
i . Hence the main challenge is showing that Z ′

i cannot

be much larger than Zi. This is where our analysis differs significantly from Raz [2017] (this is also where Beame

et al. [2018] and Garg et al. [2018] differ the most from Raz [2017]). In these previous works which concern learning

over finite fields, the learning problem is viewed as a certain matrix, and properties of this matrix are used to show

that Z ′
i cannot be much larger than Zi. It is worth noting that in these settings, it is possible to argue that the example

in the next time step looks almost random to the branching program if it does not have significant knowledge about

the answer, and then use this to show that the branching program cannot make too much progress when it gets an

example. In our case though, first-order methods which require only linear memory can learn x up to non-negligible

error with only linear sample complexity, hence the examples do not have as much randomness. Also, as we work over

continuous spaces we lack the combinatorial properties that enables the analysis in the previous works to go through,

and need to develop different tools.

We now sketch our argument for showing that Z ′
i cannot be much larger than Zi. For intuition, we first describe

the argument as it would pertain to the branching program corresponding to the linear memory, first-order method

for regression. At a high level, by the end of the t-th stage of this branching program, the algorithm has learned x
up to error roughly εt = 1/2t, and the posterior Px|v of a vertex v in this stage roughly corresponds to a spherical

Gaussian with standard deviation εt in every direction. A target significant vertex, s, in the t-th stage will have posterior

Px|s roughly corresponding to another spherical Gaussian, but with standard deviation εt/2 in every direction. This

significant vertex represents a memory state that has learned significantly more than is expected of a vertex in this

stage, and we will show that the probability of reaching such a vertex is small. As every example (a, b) has some small

uniform noise η ∼ U [−δ, δ] added to b, if the branching program is initially at vertex v and then gets the example (a, b),
the posterior Px|v is updated by restricting it to the thin slice of the spherical Gaussian where aTx = [b− δ, b+ δ]. We

need to argue that this slicing does not significantly increase the inner product with the posterior Px|s corresponding

to the smaller, target Gaussian. This holds, provided the target Gaussian does not have significantly higher probability

mass in the slice to which we are restricting. This is easy to analyze in this special setting where the posteriors are

spherical Gaussians, by simply analyzing the projections of the two Gaussians along a random direction a. In our

actual proof, to bound the rate of progress via this argument, we cannot assume that the posteriors have such a nice

form. Nevertheless, we show a concentration result that guarantees that, for any distribution with sufficiently small `2

5

norm, the projections can not behave too much worse than projections of spherical Gaussians with the corresponding

`2 norms.

To sketch the argument more formally, we need to define some notation. We define f̃ as the point-wise product of

the distributions Px|v and Px|s, with suitable normalization. Hence for any x′ on the d dimensional unit sphere,

f̃(x′) =
Px|v(x

′) · Px|s(x
′)

∫

z
Px|v(z) · Px|s(z) dz

.

Let Iδ(b) be the interval [b−δ, b+δ]. For any distribution f and fixed a, define Gf,a(Iδ(b)) = Ex′∼f

[

1(aTx′ ∈ Iδ(b))
]

.

Note that for a vertex v with posterior distribution Px|v , GPx|v,a(Iδ(b)) is the probability mass on vectors x′ which

are consistent with the example (a, b), up to the noise level δ. With some technical work, we can approximately relate

〈Px|v,Px|s〉 and 〈Px|e,Px|s〉 for an edge e labelled by (a, b) as follows,

〈Px|e,Px|s〉 ≈ 〈Px|v,Px|s〉 ·
Gf̃ ,a(Iδ(b))

GPx|v,a(Iδ(b))
.

Intuitively, the above relation says that the progress that the truncated path T makes towards some target distribution

f̃ after receiving example (a, b) depends on the ratio of the probability mass of f̃ which is consistent with (a, b), and

that of Px|v which is consistent with (a, b). Hence in order to bound Ee[〈Px|e,Px|s〉d/2] in terms of 〈Px|v,Px|s〉d/2,

our goal will be to upper bound

E
a,b

[Gf̃ ,a(Iδ(b))

GPx|v,a(Iδ(b))

]d/2

.

Note that as b = aTx + η where x ∼ Px|v , we can show that examples (a, b) where GPx|v,a(Iδ(b)) is too small have

small probability. Hence we can lower bound the denominator by making the truncated path T stop if GPx|v,a(Iδ(b))
is too small, while still ensuring that the probability of T stopping due to this reason is small.

It is more complicated to upper bound Ea,b[Gf̃ ,a(Iδ(b))
d/2]. Note that Gf̃ ,a(Iδ(b)) is the probability mass of the

distribution f̃ which lies in the interval Iδ(b) when f̃ is projected onto a random direction a. The linear projection

of a high-dimensional distribution onto a random direction is a well-studied topic, and it is known that under mild

conditions on f̃ such as bounded second moments, its projection onto a random direction is approximately Gaussian

[Bobkov, 2003, Anttila et al., 2003, von Weizsäcker, 1997] or a mixture of Gaussians [Dasgupta et al., 2006] with

high probability. However, these results typically only give an additive O(1/
√
d) error guarantee for the difference

between the probability mass of f̃ on any interval I and that of an appropriate Gaussian on that interval (and this is

tight given only second moment constraints). Note that in our case the intervals Iδ(b) have exponentially small width

δ, and we care about the multiplicative approximation error, hence these O(1/
√
d) additive error guarantees are not

strong enough. We show that we can obtain stronger guarantees in our case by ensuring that ‖f̃‖2 is small, which

we guarantee by appropriate conditions on the truncated path T . With a bound on ‖f̃‖2, we prove the following

concentration result for projections of high-dimensional distributions onto a random direction—

Lemma 1. Let f̃ be a distribution over the d dimensional sphere, with ‖f̃‖2 ≤ (100/ε)d

Cd
for some ε ≤ 1. For an

absolute constant C and fixed b,

E
a

[

Gf̃ ,a(Iδ(b))
d/2

]

≤ (Cε−20δ)d/2.

Finally, note that the above bound is for a fixed b, but if the branching program knows x to a small error then it

also knows the inner product b for any a to a small error, hence the distribution of b is itself highly dependent on a.

To get around this, we prove a version of the above lemma where b is obtained by first sampling x from Px|v and

then adding noise η to aTx. These concentration bounds may be useful beyond this work, and it may be interesting to

further develop our understanding of properties of the projection of high-dimensional distributions with small `2 norm

onto a random direction.

6

3 Notation

Let Sd be the set of all vectors on the d-dimensional unit sphere, and Ud be the uniform distribution over Sd. Hence

Ud(x) = 1/Cd for all x ∈ Sd, for some Cd which depends on d.

Let Ev denote the event that the truncated path reaches a vertex v. For any random variable Z we denote the

distribution of Z by PZ . We denote the probability of any vertex v in the branching program by Pr(v). As the edges

e of the branching program are indexed by real valued (a, b), for any edge e we denote the p.d.f. of the distribution

over all edges of the branching program evaluated at the edge e by p(e). Let the sample at the ith time step be (ai, bi).
Recall that the distribution of ai is N(0, Id), and we will denote its p.d.f. at a vector a by p(a). Similarly, we denote

the p.d.f. of b conditioned on being at vertex v and seeing example a as p(b|a,Ev). For any function f from Sd → R,

we denote by ‖f‖2 the `2 norm of f with respect to the uniform distribution Ud over Sd,

‖f‖2 =
(

E
x∼Ud

[f(x)2]
)1/2

.

Recall from the previous section that Gf,a(Iδ(b)) = Ex′∼f

[

1(aTx′ ∈ Iδ(b))
]

for any distribution f , where Iδ(b)

is the interval [b− δ, b+ δ]. For notational convenience, we will subsequently denote GPx|v,a(Iδ(b)) for a vertex v by

Gv,a(Iδ(b)).

4 Proof of Theorem 1

In this section, we formally define the stages of the branching program and the truncated computation path T , and

then provide a proof for Theorem 1.

Stages of the Branching Program

We partition the branching program B into T stages {Bt : 0 ≤ t ≤ T}, for some T which depends on the desired

accuracy ε. The tth stage Bt continues for mt time steps, where mt = d c0d
log d+te and c0 is an absolute constant to be

determined later. We define the stages inductively. The first stage B0 consists of all vertices up until and including the

m0-th layer of the branching program B. The t-th stage Bt consists of (mt + 1) layers beginning with and including

the last layer of the previous stage Bt−1.

Truncated Path

We define the truncated path T corresponding to the branching program B. The truncated path T follows the same

path as B, except that it sometimes stops before reaching a leaf vertex. The conditions under which the truncated

path stops before reaching a leaf vertex will be different depending on the stage t. Define εt = 2−t. Intuitively, εt
determines the accuracy to which B could know x in the t-th stage. In the t-th stage Bt of B, the truncated path stops

at a non-leaf vertex v for any of the following three reasons—

1. If v is a significant vertex, where ‖Px|v‖2 > (2/εt)
d

Cd
.

2. If x belongs to the set of vectors Sig(v) which have non-trivial probability mass under Px|v(x), defined as

Sig(v) =
{

x′ : Px|v(x
′) > (4/εt)

2d

Cd

}

.

3. If the branching program is about to traverse a bad edge. The set Bad(v) of bad edges for the vertex v is defined

as the set of edges (a, b) for which either i) ‖a‖2 ≥ 2
√
d, or ii) Gv,a(Iδ(b)) ≤ 2δ/d3.

If the truncated path T does not stop at a non-leaf vertex, then it follows the same path as the computation path of

the branching program B. Lemma 2 proved in Section 5 shows that the probability of the truncated path stopping at a

non-leaf vertex is small.

7

Lemma 2. If the number of samples m ≤ d1.25 and the width of the branching program w ≤ 2d
2/4, then the

probability of T stopping at a non-leaf vertex is at most 1/(2d).

To prove Lemma 2, we show that the probability of the truncated path stopping at a non-leaf vertex due to each of

the three above reasons is small. Most of the effort goes into proving that the probability of stopping due to the first

reason, reaching a significant vertex, is small. This is proved in Section 6. Using Lemma 2, we are now ready to prove

our main theorem.

Theorem 1. Let B be a branching program to find x̃ : ‖x− x̃‖2 ≤ ε, where ε = 1/dr for some r ≤ O(d/ log d). For

a small absolute constant c, if B has length at most cd log r and width at most 2d
2/4, then the success probability of

B is at most 1/d.

Proof. We partition the branching program into T stages and consider the truncated path T . We first bound the

number of stages T required to do the partition if m ≤ cd log r. We claim that T ≤ (r/40) log d. As the t-th stage

consists of d c0d
log d+te steps, the number of steps in T = (r/40) log d stages can be lower bounded as follows,

(r/40) log d
∑

t=1

⌈

c0d

log d+ t

⌉

≥ c0d

(r/40) log d
∑

t=log d

1

log d+ t
≥ c0d

2

(r/40) log d
∑

t=log d

1

t

≥ c0d

2
log

(r log d

40 log d

)

≥ c0d log r

100
.

Hence taking c = c0/100, the number of stages T in cd log r steps is at most (r/40) log d. Note that if T does not stop

before reaching a leaf, then it follows the same path as the branching program B. By Lemma 2, the probability that T
stops before reaching a leaf is at most 1/(2d). Hence we now only need to bound the probability that a non-significant

leaf v of T outputs x̃ such that ‖x− x̃‖2 ≤ ε. However, for a non-significant leaf v we know that ‖Px|v‖2 ≤ (2/εT)d

Cd
.

Further, the following lemma (proved in Section 7) shows that this condition implies that the probability of v outputting

an ε accurate answer is small.

Lemma 3. Let f be a distribution over the d dimensional sphere Sd, with ‖f‖2 ≤ (2/ε)d

Cd
for some ε ≤ 0.01. Then for

any x ∈ Sd,

Pr
x∼f

[

x : ‖x− x̃‖2 ≤ ε40
]

≤ 2−d/2.

Now for T = (r/40) log d, εT = 1/dr/40. Hence by Lemma 3, the probability that a non-significant leaf v
outputting an 1/dr accurate answer is at most 2−d/2. By a union bound over the probability of the truncated path

stopping before a non-leaf vertex and the probability of a non-significant leaf outputting a valid answer, the probability

of B outputting an 1/dr accurate answer is at most 1/d.

5 Bounding the Probability of the Truncated Path Stopping Early

In this section, we show that the probability the truncated path T stop sat a non-leaf vertex is small. Lemma 4 shows

that probability of T stopping because of the first reason (reaching a significant vertex) is small. Most of the remainder

of the paper will be devoted to proving Lemma 4.

Lemma 4. If the total number of stages T ≤ d1.25 and the width of the branching program w ≤ 2d
2/4, then the

probability that T reaches a significant vertex in any stage is at most 2−d.

Lemma 5 and Lemma 6 show that the probability of the truncated path T stopping due to reasons (2) and (3)

respectively is small.

Lemma 5. If v is not a significant vertex of B, then

Pr[x ∈ Sig(v)|Ev] ≤ 2−2d.

8

Proof. Assume v is in the t-th stage in the branching program. Since v is not a significant vertex,

E
x′∼Px|v

[Px|v(x
′)] =

∫

x′∈Sd

Px|v(x
′)2dx′ = Cd E

x′∼Ud

[Px|v(x
′)2] ≤ (2/εt)

2d

Cd
.

Hence by Markov’s inequality,

Pr
x′∼Px|v

[

Px|v(x
′) >

(4/εt)
2d

Cd

]

≤ 2−2d.

Since conditioned on Ev , the distribution of x is Px|v , we get,

Pr[x ∈ Sig(v)|Ev] = Pr
x′∼Px|v

[

Px|v(x
′) >

(4/εt)
2d

Cd

]

≤ 2−2d.

Lemma 6. Pr(ai+1,bi+1)[(ai+1, bi+1) ∈ Bad(v)] ≤ 5/d2.5.

Proof. As a ∼ N(0, I), by standard concentration bounds for χ2 random variables, Pr[‖a‖2 ≥ 2
√
d] ≤ e−d/10.

Conditioned on ‖a‖2 ≤ 2
√
d, |aTx| ≤ 2

√
d. As b is generated by adding noise drawn uniformly at random from

[−δ, δ] to the true inner product aTx, p(b|a,Ev) = (2δ)−1Gv,a(Iδ(b)), where we use our notation Gv,a(Iδ(b)) =

Ex′∼Px|v
[1(aTx′ ∈ Iδ(b))]. Let u(b) be the p.d.f. of the uniform distribution on b with support [−2

√
d, 2
√
d]. Note

that,

∫

b∈R

p(b|a,Ev)1
(

p(b|a,Ev) ≤ 4u(b)/d2.5
)

db ≤ 4

∫

b∈R

u(b)

d2.5
db ≤ 4

d2.5
.

Therefore as u(b) = 1/(4
√
d) and Gv,a(Iδ(b)) = 2δp(b|a,Ev),

∫

b∈R

p(b|a,Ev)1
(

Gv,a(Iδ(b)) ≤ 2δ/d3
)

db ≤ 4

d2.5
.

By a union bound, it follows that Pr(ai+1,bi+1)[(ai+1, bi+1) ∈ Bad(v)] ≤ 5/d2.5.

Using these results, we can show that the probability of T stopping at a non-leaf vertex is small—

Lemma 2. If the number of samples m ≤ d1.25 and the width of the branching program w ≤ 2d
2/4, then the

probability of T stopping at a non-leaf vertex is at most 1/(2d).

Proof. By Lemma 4, the probability that T reaches a significant vertex and hence stops due to the first reason is at

most 2−d. If T does not reach a significant vertex, then by Lemma 5, the probability of stopping due to the second

reason at any non-significant vertex is at most 2−2d. Taking a union bound over all the m ≤ d1.25 steps, the probability

of stopping due to the second reason is at most 2−d. By Lemma 6, the probability of getting a bad sample (a, b) at

any time step and hence stopping due to the third reason is at most 5/d2.5. Taking a union bound over the m ≤ d1.25

time steps, the probability of stopping due to the third reason at any time step is at most 5/d1.25. Hence the overall

probability of the truncated path T stopping at a non-leaf vertex is at most 1/(2d).

6 Bounding the Probability of Significant Vertices

In this section, we bound the probability of the truncated path T reaching a significant vertex in the t-th stage, for any

t. We begin by first finding an expression for the posterior distribution Px|e of x conditioned on traversing an edge e,

and then upper bound the norm of a significant vertex s in the t-th stage Bt of B.

9

Relating Px|v and Px|e, and bounding ‖Px|s‖2
We relate Px|v and Px|e. Recall that Iδ(b) is the interval [b− δ, b+ δ]. We claim that,

Lemma 7. For any e labeled by (a, b), such that p(e) > 0,

Px|e(x
′) =

{

Px|v(x
′)/ce if x′ /∈ Sig(v) and aTx′ ∈ Iδ(b)

0 if x′ ∈ Sig(v) or aTx′ /∈ Iδ(b)

where ce ≥ δ/d3.

Proof. Let e be an edge labeled by (a, b), such that p(e) > 0. Since p(e) > 0, the vertex v is not significant, as

otherwise T stops on v. Also, as p(e) > 0, e /∈ Bad(v), as otherwise T never traverses edge e.

If T reaches v it traverses the edge e if and only if: x /∈ Sig(v) (as otherwise T stops on v) and the next sample

received is (a, b). Also, note that b = aTx+ η, where the noise η is uniform on [−δ, δ]. Hence the set of x′ which are

consistent with the example (a, b) are those where aTx′ ∈ Iδ(b). Therefore for any x′ ∈ Sd,

Px|e(x
′) =

{

Px|v(x
′)/ce if x′ /∈ Sig(v) and aTx′ ∈ Iδ(b)

0 if x′ ∈ Sig(v) or aTx′ /∈ Iδ(b)

where ce is a normalization factor, given by

ce =

∫

x′:x′ /∈Sig(v)∧aT x∈Iδ(b)

Px|v(x
′) dx′ = Pr

x
[(x /∈ Sig(v) ∧ aTx ∈ Iδ(b)|Ev)].

Since v is not significant, by Lemma 5,

Pr
x
[x ∈ Sig(v)|Ev] ≤ 2−2d.

Also, since (a, b) /∈ Bad(v),
Pr
x
[aTx /∈ Iδ(b)|Ev] ≤ 1− 2δ/d3.

Hence by a union bound and using the fact that δ ≥ 2−d/5,

ce ≥ 1− (1− 2δ/d3 + 2−2d) ≥ δ/d3.

We now show that ‖Px|s‖2 cannot be too large. To show this, we will first show that ‖Px|e‖2 cannot be too large

for any edge e such that the p(e) > 0.

Lemma 8. For any edge e in the t-th stage Bt of the branching program such that p(e) > 0, ‖Px|e‖2 ≤ (d3/δ)(2/εt)
d

Cd
.

Proof. Let e be an edge of the branching program from vertex v to vertex u such that p(e) > 0. Since p(e) > 0, the

vertex v is not significant (as otherwise T stops on v and p(e) = 0). As v is not significant,

‖Px|v‖2 ≤
(2/εt)

d

Cd
.

By Lemma 7,

Px|e(x
′) =

{

Px|v(x
′)/ce if x′ /∈ Sig(v) and aTx′ ∈ Iδ(b)

0 if x′ ∈ Sig(v) or aTx′ /∈ Iδ(b)

where ce ≥ δ/d3. Therefore, ‖Px|e‖2 ≤ (d3/δ)(2/εt)
d

Cd
.

10

We now use Lemma 8 to bound ‖Px|s‖2.

Lemma 9. For any significant vertex s in the t-th stage Bt of the branching program, ‖Px|s‖2 ≤ (d3/δ)(2/εt)
d

Cd
.

Proof. Let s be a significant vertex in Bt. Let Γin(s) be the set of edges e going into s. We can write,

∫

e∈Γin(s)

p(e) de = Pr(s).

By the law of total probability, for every x′ ∈ Sd,

Px|s(x
′) =

∫

e∈Γin(s)

p(e)

Pr(v)
· Px|e(x

′) de.

By using Jensen’s inequality,

Px|s(x
′)2 ≤

∫

e∈Γin(s)

p(e)

Pr(v)
· Px|e(x

′)2 de.

Summing over all x′ ∈ Sd,

‖Px|s‖22 ≤
∫

e∈Γin(s)

p(e)

Pr(v)
· ‖Px|e‖22 de.

By Lemma 8, for any edge e ∈ Γin(s), ‖Px|e‖22 ≤
(

(d3/δ)(2/εt)
d

Cd

)2

. Hence ‖Px|s‖2 ≤ (d3/δ)(2/εt)
d

Cd
.

Similarity to a Target Distribution

To show that the probability of T reaching a significant vertex is small, we will argue that the posterior of x on seeing

a new example is not significantly similar to the target posterior distribution of a significant vertex. We use the inner

product of two distributions to measure their similarity, and define it as follows. For two functions f, g : Sd → R
+,

define the inner product

〈f, g〉 = E
z∈Sd

[f(z)g(z)].

Note that for a significant vertex s in the t-th stage,

〈Px|s,Px|s〉 = ‖Px|s‖22 >
(2/εt)

2d

C2
d

. (1)

We now bound the inner product of Px|s with all states v0 in the first layer of the t-th stage Bt of B.

Lemma 10. For all states v0 with Pr(v0) > 0 in the first layer of the t-th stage Bt of B,

〈Px|v0
,Px|s〉 ≤

(d3/δ)(
√
2/εt)

2d

C2
d

.

Proof. We claim that ‖Px|v0
‖2 ≤ (d3/δ)(1/εt)

d

Cd
for all states v0 in the first layer of Bt. Consider the (t − 1)-th stage

Bt−1 of the branching program B. The truncated path T stops at any significant vertex, and recall that a significant

vertex for the (t− 1)th stage is defined as a vertex s where

‖Px|s‖2 >
(2/εt−1)

d

Cd
.

11

Hence for all non-significant vertices v in the (t− 1)-th stage Bt−1 of B,

‖Px|v‖2 ≤
(2/εt−1)

d

Cd
.

Also, by Lemma 9 for all significant vertices s in Bt−1,

‖Px|s‖2 ≤
(d3/δ)(2/εt−1)

d

Cd
.

Hence for all vertices v in Bt−1 with Pr(v) > 0,

‖Px|v‖2 ≤
(d3/δ)(2/εt−1)

d

Cd
.

Note that εt−1 = 2εt, hence ‖Px|v0‖2 ≤
(d3/δ)(1/εt)

d

Cd
for all states v0 ∈ L0 with Pr(v0) > 0, as L0 is also the last

layer of Bt−1. Now by using Cauchy Schwartz,

〈Px|v0 ,Px|s〉 ≤
(d3/δ)(

√
2/εt)

2d

C2
d

.

Note that the inner product of Px|s with itself is larger than the inner product of Px|s with Px|v for v in the first layer

by a factor of about 2Θ(d), and in the next section we will argue that this inner product cannot increase too quickly in

a small number of time steps, via a suitable potential function.

Progress Towards Target Distribution

In this section, we bound how much progress T can make towards a significant vertex s in the t-th stage Bt of B. For

notational convenience, we will reindex all the layers in the t-th stage Bt so that the first layer in Bt is labelled as L0.

Let Li denote the set of all vertices in the ith layer of the t-th stage Bt, with Pr(v) > 0. Let Γi denote the set of

all edges from the (i− 1)th layer to the ith layer of Bt. For i ∈ {0, . . . ,mt} and β = 1/2, let

Zi =
∑

v∈Li

Pr(v) · 〈Px|v,Px|s〉βd. (2)

For i ∈ {0, . . . ,mt}, let

Z ′
i =

∫

e∈Γi

p(e) · 〈Px|e,Px|s〉βd de. (3)

Note that by Lemma 10,

Z0 ≤
((d3/δ)(

√
2/εt)

2d

C2
d

)βd

. (4)

The goal of the next three Lemmas is to bound how much Zi can increase at every step. Lemma 11 does most of the

heavy-lifting, and shows that for a fixed vertex v, the contribution to the potential Z ′
i from v’s outgoing edges is not

much larger than v’s contribution to Zi. Lemma 13 uses Lemma 11 to show that Z ′
i is not much larger than Z . Finally,

Lemma 14 shows that Zi+1 ≤ Zi by a convexity argument.

12

Lemma 11. Consider the t-th stage Bt of B, and let s be a significant vertex in Bt. For every vertex v of Bt such that

Pr(v) > 0,

∫

e∈Γout(v)

p(e)

Pr(v)
· 〈Px|e,Px|s〉βd de ≤ 〈Px|v,Px|s〉βd · (C ′ε−20

t d3)βd +
(d3(1/εt)

2d

δC2
d

)βd

,

where C ′ is an absolute constant.

Proof. If v is a significant vertex or if v is a leaf of the branching program, then Γout(v) is the empty set and hence

the claim is trivially true. Hence we will assume that v is not a significant vertex or a leaf.

Define P : Sd → R
+ as follows. For any x′ ∈ Sd,

P (x′) =

{

0 if x′ ∈ Sig(v)

Px|v(x
′) if x′ /∈ Sig(v).

Note that by the definition of Sig(v), for any x′ ∈ Sd,

P (x′) ≤ (4/εt)
2d

Cd
. (5)

Define f : Sd → R+ as follows. For any x′ ∈ Sd,

f(x′) = P (x′) · Px|s(x
′).

By Lemma 9 and Eq. (5),

‖f‖2 ≤ ‖P‖∞‖Px|s‖2 ≤
d3(4/εt)

3d

δC2
d

. (6)

By Lemma 7, for any edge e ∈ Γout(v) labeled by (a, b) and for any x′ ∈ Sd,

Px|e(x
′) =

{

0 if aTx′ /∈ Iδ(b)

P (x′) · c−1
e if aTx′ ∈ Iδ(b)

where ce ≥ δ/d3. Hence for any edge e ∈ Γout(v) labeled by (a, b) and any x′ ∈ Sd we can write,

Px|e(x
′)Px|s(x

′) =

{

0 if aTx′ /∈ Iδ(b)

f(x′) · c−1
e if aTx′ ∈ Iδ(b).

Let

F =

∫

x′∈Sd

f(x′) dx′.

Recall that for uniform distribution Ud on Sd, Ud(x) = 1/Cd for all x ∈ Sd. Hence we can write,

〈Px|e,Px|s〉 = E
x′∼Sd

[Px|e(x
′) · Px|s(x

′)]

= (ceCd)
−1

∫

{x′:aT x′∈Iδ(b)}

f(x′) dx′. (7)

We will now bound 〈Px|e,Px|s〉 by considering two separate cases:

13

Case 1: F ≤ (1/εt)
2d/Cd.

In this case, we bound
∫

{x′:aT x′∈Iδ(b)} f(x
′) dx′ ≤

∫

{x′∈Sd} f(x
′) dx′ = F . As c−1

e ≤ d3/δ, using Eq. (7),

〈Px|e,Px|s〉 ≤
d3(1/εt)

2d

δC2
d

.

Note that for an edge e labeled by (a, b), p(e)
Pr(v) ≤ p(a)p(b|a,Ev), where the equality may not be true as the branching

program could stop at v if e ∈ Bad(v). Hence
∫

e∈Γout(v)
p(e)
Pr(v) de ≤ 1 and Lemma 11 follows in this case.

Case 2: F > (1/εt)
2d/Cd.

We rewrite 〈Px|e,Px|s〉 as follows,

〈Px|e,Px|s〉 = F/Cd · c−1
e

∫

{x′:aT x′∈Iδ(b)}

f(x′)/F dx′. (8)

For every x′ ∈ Sd, we define f̃(x′) = f(x′)/F . Note that
∫

x′ f̃ dx′ = 1 and hence f ′ is a distribution over Sd. Also,

we can bound ‖f̃‖2 as follows,

‖f̃‖2 ≤ ‖f‖2/F ≤
d3(64/εt)

d

δCd
≤ (100/εt)

d

Cd
,

where we use the fact that δ ≥ 2−d/5 and Eq. (6) to bound ‖f‖2. By the definitions of P and f ,

F/Cd = E
x′∈RSd

[f(x′)] = 〈P,Px|s〉 ≤ 〈Px|v,Px|s〉. (9)

By using Eqs. (8) and (9), we can write,

∫

e∈Γout(v)

p(e)

Pr(v)
〈Px|e,Px|s〉βd de ≤

∫

e∈Γout(v)

p(e)

Pr(v)

(

F/Cd · c−1
e

∫

{x′:aT x′∈Iδ(b)}

f̃(x′) dx′
)βd

de

= (F/Cd)
βdc−βd

e

∫

e∈Γout(v)

p(e)

Pr(v)

(

∫

{x′:aT x′∈Iδ(b)}

f̃(x′) dx′
)βd

de

≤ 〈Px|v,Px|s〉βdc−βd
e

∫

e∈Γout(v)

p(e)

Pr(v)

(

∫

{x′:aT x′∈Iδ(b)}

f̃(x′) dx′
)βd

de.

Recall that for an edge e labeled by (a, b), p(e)
Pr(v) ≤ p(a)p(b|a,Ev). Using our notation Ex′∼f̃ [1(a

Tx′ ∈ Iδ(b))] =

Gf̃ ,a(Iδ(b)), we can write,

∫

e∈Γout(v)

p(e)

Pr(v)
〈Px|e,Px|s〉βd de ≤ 〈Px|v,Px|s〉βdc−βd

e

∫

a∈Rd

∫

b∈R

p(a) p(b|a,Ev) Gf̃ ,a(Iδ(b))
βd db da.

Let η be a random variable uniform on [−δ, δ], and u(η) denote its distribution. Note that p(b|a,Ev) is the distribution

14

of aTx′ + η, where x′ is sampled from Px|v and noise η is added to aTx′. Therefore,

∫

e∈Γout(v)

p(e)

Pr(v)
〈Px|e,Px|s〉βd de ≤ 〈Px|v,Px|s〉βdc−βd

e ·

∫

a∈Rd

∫

x′∈Sd

∫

η∈R

p(a) Px|v(x
′) u(η) Gf̃ ,a(Iδ(a

Tx′ + η))βd dη dx′ da

= 〈Px|v,Px|s〉βdc−βd
e E

η
E

x′∼Px|v

E
a

[

Gf̃ ,a(Iδ(a
Tx′ + η))βd

]

.

We now use Lemma 12 to bound the expectation.

Lemma 12. Let f be a distribution over the d dimensional sphere, with ‖f‖2 ≤ (100/ε)d

Cd
for some ε ≤ 1. Let x0 be

any vector on the d dimensional unit sphere, and η0 be some constant. Then for any ` ≤ d/2 and a universal constant

C,

E
a

[

Gf,a(Iδ(a
Tx0 + η0))

`
]

≤ (2(C/ε)20δ)`.

By Lemma 12, if β ≤ 1/2, then Ea Gf̃ ,a(Iδ(a
Tx′ + η))βd ≤ (2(C/εt)

−20δ))βd for any x′ and η. Let C ′ = 2C20.

Therefore,

∫

e∈Γout(v)

p(e)

Pr(v)
〈Px|e,Px|s〉βd de ≤ 〈Px|v,Px|s〉βdc−βd

e (C ′ε−20
t δ)βd.

As ce ≥ δ/d3, therefore,

∫

e∈Γout(v)

p(e)

Pr(v)
〈Px|e,Px|s〉βd de ≤ 〈Px|v,Px|s〉βd(C ′ε−20

t d3)βd.

Lemma 13. Consider the t-th stage Bt of B, and let s be a significant vertex in Bt. Consider the potential functions

defined in Eqs. (2) and (3) which track progress towards s. Then for every i ∈ {1, · · · ,mt},

Z ′
i ≤ Zi−1 · (C ′ε−20

t d3)βd +
(d3(1/εt)

d

δC2
d

)βd

.

Proof. Using Lemma 11,

Z ′
i =

∫

e∈Γi

p(e) · 〈Px|e,Px|s〉βd de =
∑

v∈Li−1

Pr(v) ·
∫

e∈Γout(v)

p(e)

Pr(v)
〈Px|e,Px|s〉βd de

≤
∑

v∈Li−1

Pr(v) ·
(

〈Px|v,Px|s〉βd · (C ′ε−20
t d3)βd +

(d3(1/εt)
2d

δC2
d

)βd)

≤ Zi−1(C
′ε−20
t d3)βd +

∑

v∈Li−1

Pr(v)
(d3(1/εt)

2d

δC2
d

)βd

≤ Zi−1(C
′ε−20
t d3)βd +

(d3(1/εt)
2d

δC2
d

)βd

.

15

Lemma 14. For every i ∈ {1, · · · ,mt},

Zi ≤ Z ′
i.

Proof. For any vertex v, let Γin(v) be the set of edges e = (a, b) going into v. We can write,

∫

e∈Γin(v)

p(e) de = Pr(v).

By the law of total probability, for every v ∈ Li and every x′ ∈ Sd,

Px|v(x
′) =

∫

e∈Γin(v)

p(e)

Pr(v)
· Px|e(x

′) de,

=⇒ 〈Px|v,Px|s〉 =
∫

e∈Γin(v)

p(e)

Pr(v)
· 〈Px|e,Px|s〉 de.

By using Jensen’s inequality,

〈Px|v,Px|s〉βd ≤
∫

e∈Γin(v)

p(e)

Pr(v)
· 〈Px|e,Px|s〉βd de.

Summing over all v ∈ Li,

Zi =
∑

v∈Li

Pr(v) · 〈Px|v,Px|s〉βd ≤
∑

v∈Li

Pr(v) ·
∫

e∈Γin(v)

p(e)

Pr(v)
· 〈Px|e,Px|s〉βd de,

=

∫

e∈Γin(v)

p(e) · 〈Px|e,Px|s〉βd de = Z ′
i.

We now use the previous two results to bound the potential Zi for any layer i in the stage Bt.

Lemma 15. If the length of the t-th stage mt = d c0d
log d+te for sufficiently small constant c0, then for every i ∈

{1, · · · ,mt},

Zi ≤
(d3/δ)βd(1/εt)

2βd2

21.25βd
2

C2
d

.

Proof. By Lemma 13 and 14,

Zi ≤ Zi−1 · (C ′ε−20
t d3)βd +

(d3(1/εt)
2d

δC2
d

)βd

.

As (C ′ε−20
t d3)βd > 1, Zi is monotonically increasing and hence Zi ≥

(

d3(1/εt)
2d

δC2
d

)βd

for all i > 0. Therefore we

can write,

Zi ≤ Zi−1(1 + (C ′ε−20
t d3)βd) ≤ Zi−1 · (2C ′ε−20

t d3)βd.

16

By Eq. (4), Z0 ≤
(

(d3/δ)(
√
2/εt)

2d

C2
d

)βd

. Hence for every i ∈ {1, · · · ,mt},

Zi ≤
((d3/δ)(

√
2/εt)

2d

C2
d

)βd

· (2C ′ε−20
t d3)βdm.

Note that for sufficiently small c0 and using the fact that εt = 2−t, mt = d c0d
log d+te = d

c0d
log(d/εt)

e ≤ d
4 log(2C′ε−20

t d3)
.

Therefore,

Zi ≤
((d3/δ)(

√
2/εt)

2d

C2
d

)βd

· 2βd2/4 =
(d3/δ)βd(1/εt)

2βd2

21.25βd
2

C2
d

.

Lemma 4. If the total number of stages T ≤ d1.25 and the width of the branching program w ≤ 2d
2/4, then the

probability that T reaches a significant vertex in any stage is at most 2−d.

Proof. Consider a significant vertex s in the t-th stage Bt of B. Assume that s is in the ith layer of Bt. Then by Eq.

(1),

Zi ≥ Pr(s) · 〈Px|s,Px|s〉βd ≥ Pr(s) · (2/εt)
2βd2

C2
d

.

But by Lemma 15,

Zi ≤
(d3/δ)βd(1/εt)

2βd2

21.25βd
2

C2
d

.

Therefore,

Pr(s) ≤ (d3/δ)βd2−0.75βd2

.

By a union bound over the at most d2 · 20.5βd2

vertices in any stage of the branching program and using the fact

that δ ≥ 2−d/5, the probability that T reaches a significant vertex in the t-th stage is at most (d5/δ)βd2−βd2/4 ≤
2−βd2/20 ≤ 2−2d. By taking a union bound over T ≤ d1.25 stages, the probability that T reaches a significant vertex

in any stage is at most 2−d.

7 Concentration Theorem for Projections of Distributions

In this section, we prove our concentration theorem for projections of high-dimensional distributions onto a random

direction.

Lemma 12. Let f be a distribution over the d dimensional sphere, with ‖f‖2 ≤ (100/ε)d

Cd
for some ε ≤ 1. Let x0 be

any vector on the d dimensional unit sphere, and η0 be some constant. Then for any ` ≤ d/2 and a universal constant

C,

E
a

[

Gf,a(Iδ(a
Tx0 + η0))

`
]

≤ (2(C/ε)20δ)`.

Proof. All expectations over {xi, i ∈ [`]} in this proof will be with xi sampled from the distribution f . Recall from

our definition,

E
a

[

Gf,a(Iδ(a
Tx0 + η0))

`
]

= E
a

[

Π`
i=1 E

xi

[1Iδ(aT x0+η0)(a
Txi)]

]

17

As the distribution of a is a Gaussian and the distribution of the projection of a Gaussian along a fixed direction is

well-understood, we will first interchange the order of a and xi in the expectation. We can write,

E
a

[

Gf,a(Iδ(a
Tx0 + η0))

`
]

= E
{xi,i∈[`]}

[

E
a

[

Π`
i=11Iδ(aT x0+η0)(a

Txi)
]]

.

We will write the vectors {xi : 0 ≤ i ≤ `} in terms of a suitable orthogonal basis which will facilitate the analysis

of the projection of a onto xi. For all 0 ≤ i ≤ `, let xi = ui + vi, where ui lies in the span of {xj : j < i}
and vi is orthogonal to the span of {xj : j < i}. Note that because a ∼ N(0, I), the components of a along any

orthogonal basis of Rd are independent N(0, 1) random variables. Hence the components {va,0, . . . , va,`} of a along

the orthogonal directions {v0, . . . , v`} are independent N(0, 1) random variables. Note that aTxi is independent of

{va,j : j > i}, as xi is orthogonal to {vj : j > i}. Let aTx0 + η0 = b0. Using this independence, we can rewrite the

expectation as follows,

E
{xi,i∈[`]}

[

E
a

[

Π`
i=11Iδ(b0)(a

Txi)
]]

= E
{xi,i∈[`]}

E
va,0

[

E
va,1

[

1Iδ(b0)(a
Tx1) E

va,2

[

1Iδ(b0)(a
Tx2) . . . E

va,`

[

1Iδ(b0)(a
Tx`)

]]

. . .
]

.

We will now upper bound Eva,i

[

1Iδ(b)(a
Txi)

]

for any value of {va,j : j < i}. Note that for a fixed value of

the components vi and ui of xi, va,i
T vi is a Gaussian with mean 0 and standard deviation ‖vi‖2 and is independent

of aTui as ui and vi are orthogonal. Also, note that for any value of aTui the probability that aTxi lies within the

interval Iδ(b) = [b− δ, b+ δ] equals the probability mass of the distribution of va,i
T vi in the interval Iδ(b− aTui) =

[b−aTui−δ, b−aTui+δ]. As the distribution of va,i
T vi is Gaussian with mean 0, the probability mass in any interval

Iδ(b− aTui) is upper bounded by the probability mass in the interval Iδ(0) = [−δ, δ] centered at 0. Further, because

the probability mass of a Gaussian with standard deviation σ in the interval Iδ(0) = [−δ, δ] is at most max{δ/σ, 1}
and the distribution of va,i

T vi is a Gaussian with standard deviation ‖vi‖2, the probability mass in the interval Iδ(0)
is at most max{δ/‖vi‖2, 1} ≤ δmax{1/‖vi‖2, 1/δ}. Hence we can simplify the expectation as,

E
{xi,i∈[`]}

[

E
a

[

Π`
i=11Iδ(b0)(a

Txi)
]]

≤ δ` E
{xi,i∈[`]}

[1

Π`
i=1 min{‖vi‖2, δ}

]

.

Therefore our goal now is to lower bound the component vi of xi which is orthogonal to the vectors {xj , j < i}. This

is where we will use our upper bound on ‖f̃‖2. Intuitively, if f̃ is not too large then f̃ is not a highly concentrated

distribution and hence random vectors drawn from f̃ will not be too close to each other. We formalize this in Lemma

16 which shows that if ‖f̃‖2 is not too large, then the probability of ‖vi‖2 being small is also small.

Lemma 16. Let f be a distribution over the d dimensional sphere, with ‖f‖2 ≤ (100/ε)d

Cd
for some ε ≤ 1. Let

{x0, . . . , xi−1} be an arbitrary set of i vectors for some i ≤ d/2, and xi be a vector sampled from f . Let vi be the

component of xi orthogonal to {x0, . . . , xi−1}. Then for a sufficiently large universal constant C,

Pr[‖vi‖2 ≤ (ε/C)20] ≤ (ε/2)d/2.

The result now follows with some computation. Let {Xi, i ∈ [`]} be independent random variables each of which

take the value δ with probability (ε/2)` and (ε/C)20 otherwise. Note that E[1/Xi] ≤ (1/δ)(ε/2)` + (C/ε)20 ≤
(2(C/ε)20) for δ ≥ 2−d/5. Hence by Lemma 16,

E
{xi,i∈[`]}

[1

Π`
i=1 min{‖vi‖2, δ}

]

≤ E
{Xi,i∈[`]}

[1

Π`
i=1Xi

]

= Π`
i=1 E

[1

Xi

]

≤ (2(C/ε)20)`.

Hence,

E
{xi,i∈[`]}

[

E
a

[

Π`
i=11Iδ(b0)(a

Txi)
]]

≤ (2(C/ε)20δ)`.

18

We remark that the bound in Lemma 1 is tight up to the constant C and the constant 20 in the exponent of ε. This

follows from the case where f̃ is the uniform distribution on all points x on the unit sphere which are distance at most

ε from a fixed point x0.

We now prove Lemma 16. Lemma 3, which is used in the proof of Theorem 1, is a corollary of Lemma 16 and

follows by appropriately rescaling the constants in the statement of Lemma 16.

Lemma 16. Let f be a distribution over the d dimensional sphere, with ‖f‖2 ≤ (100/ε)d

Cd
for some ε ≤ 1. Let

{x0, . . . , xi−1} be an arbitrary set of i vectors for some i ≤ d/2, and xi be a vector sampled from f . Let vi be the

component of xi orthogonal to {x0, . . . , xi−1}. Then for a sufficiently large universal constant C,

Pr[‖vi‖2 ≤ (ε/C)20] ≤ (ε/2)d/2.

Proof. We will first upper bound the probability that ‖vi‖2 ≤ (ε/C)20 for any i ≤ d/2 if xi is drawn uniformly at

random from the unit sphere. As the Gaussian distribution is spherically symmetric, we can assume without loss of

generality that {xj : j < i} span the first i basis directions. Sampling xi uniformly at random from the unit sphere is

equivalent to first sampling a vector x̃i whose each coordinate is sampled independently from a N(0, 1/d) distribution,

and then setting xi = x̃i/‖x̃i‖2. Using this formulation, let the jth coordinate of x̃i be zj , where zj ∼ N(0, 1/d).

We will first show that with probability 1 − εd, ‖x̃i‖2 ≤ 2
√

1/ε. This follows from the following tail bound for χ2

random variables. Note that r2 = d
∑d

j=1 z
2
j is the sum of d standard Gaussian random variable and hence is a χ2

random variables with d degrees of freedom. We use the following concentration inequality for a χ2 random variable

r with d degrees of freedom (Lemma 1 in Laurent and Massart [2000]),

Pr[r2 − d ≥ 2
√
dt+ 2t] ≤ e−t, ∀ t > 0.

Choosing t = d log(1/ε),

Pr[r2 − d ≥ 2d
√

log(1/ε) + 2d log(1/ε)] ≤ εd.

Using the fact that 4max(log(1/ε),
√

log(1/ε)) ≤ 3/ε for 0 ≤ ε ≤ 1, Pr[r2 − d ≥ 3d/ε] ≤ εd. Hence ‖x̃i‖2 ≤
√

1 + 3/ε ≤
√

4/ε with failure probability εd.

We now claim that Pr[
∑d

j=i+1 z
2
i ≤ ε2/64] ≤ εd/4. Note that if

∑d
j=i+1 z

2
i ≤ ε2/64, then by Markov’s inequality

z2j ≤ ε2/(32(d − i)) ≤ ε2/(16d) for at least half of the random variables {zj : j ∈ [i + 1, d]}. As zj is a N(0, 1/d)

random variable, hence Pr[|zj | ≤ ε/(4
√
d)] ≤ ε/4. Hence the probability that z2j ≤ ε2/(4d) for at least half of the

random variables {zj : j ∈ [i+ 1, d]} is at most the probability that at least half of a set of (d− i) independent coins

land heads when all of them are flipped, given that each of them has probability ε/4 of landing head. Let Xj be the

indicator random variable denoting the event |zj | ≤ ε/(4
√
d), note that Pr[Xj = 1] ≤ ε/4. Let X =

∑d
j=i+1 Xj .

Then by standard Chernoff bounds,

Pr[X ≥ (d− i)/2] ≤ exp{−(d− i)D(1/2 ‖ ε/4)}

where D(1/2 ‖ ε/4) is the relative entropy of 1/2 with respect to ε/4. Note that D(1/2 ‖ ε/4) ≥ − ln(ε)
2 and

(d− i) ≥ d/2. Therefore,

Pr[X ≥ (d− i)/2] ≤ εd/4.

Hence for any i ≤ d/2,
∑d

j=i+1 z
2
j ≥ ε2/64 with failure probability εd/4. Note that ‖vi‖22 =

∑d
j=i+1 z

2
j /‖x̃i‖22, and

we have shown that ‖x̃i‖22 ≤ 4/ε with failure probability εd. Therefore, by a union bound, Pr[‖vi‖2 ≤ ε1.5/16] ≤
εd/4 + εd ≤ 2εd/4. For any C ≥ 200 and ε ∈ (0, 1], this implies that Pr[‖vi‖2 ≤ (ε/C)20] ≤ (ε/100)3d when xi is

drawn uniformly from the unit sphere. We next show that this implies that Pr[‖vi‖2 ≤ (ε/C)20] is also small when xi

is drawn uniformly from some distribution f such that ‖f‖2 is small.

Let X be the set of all xi on the unit sphere such that ‖vi‖2 ≤ (ε/C)20. We have shown that for xi drawn

uniformly from the unit sphere, Pr[xi ∈ X] ≤ (ε/100)3d. Note that if X has probability p under the distribution

f , then ‖f‖2 ≥ p(100/ε)3d/2

Cd
. This is because the uniform distribution on X has norm

(100/ε)3d/2

Cd
. Therefore if

‖f‖2 ≤ (100/ε)d

Cd
, then p ≤ (ε/2)d/2.

19

References

Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning. In Foundations of

Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 266–275. IEEE, 2016.

Ran Raz. A time-space lower bound for a large class of learning problems. In Foundations of Computer Science

(FOCS), 2017 IEEE 58th Annual Symposium on, pages 732–742. IEEE, 2017.

Paul Beame, Shayan Oveis Gharan, and Xin Yang. Time-space tradeoffs for learning finite functions from random

evaluations, with applications to polynomials. In Conference On Learning Theory, pages 843–856, 2018.

Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities. In Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory of Computing, pages 1067–1080. ACM, 2017.

Dana Moshkovitz and Michal Moshkovitz. Mixing implies lower bounds for space bounded learning. In Conference

on Learning Theory, pages 1516–1566, 2017.

Dana Moshkovitz and Michal Moshkovitz. Entropy samplers and strong generic lower bounds for space bounded

learning. In 9th Innovations in Theoretical Computer Science Conference (ITCS), 2018.

Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds for learning. In Proceedings of

the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 990–1002. ACM, 2018.

Jacob Steinhardt, Gregory Valiant, and Stefan Wager. Memory, communication, and statistical queries. In Conference

on Learning Theory, pages 1490–1516, 2016.

A.S. Nemirovski and D.B Yudin. Problem complexity and method efficiency in optimization. 1983.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course. 2014.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in Machine Learning,

8(3-4):231–357, 2015.

Arkadi Nemirovski. On parallel complexity of nonsmooth convex optimization. J. Complexity, 10(4):451–463, 1994.

Eric Balkanski and Yaron Singer. Parallelization does not accelerate convex optimization: Adaptivity lower bounds

for non-smooth convex minimization. CoRR, abs/1808.03880, 2018.

Jelena Diakonikolas and Cristóbal Guzmán. Lower bounds for parallel and randomized convex optimization. CoRR,

abs/1811.01903, 2018.

Thomas Strohmer and Roman Vershynin. A randomized solver for linear systems with exponential convergence. In

10th International Workshop on Randomization and Computation, RANDOM, pages 499–507, 2006.

Chonghai Hu, James T. Kwok, and Weike Pan. Accelerated gradient methods for stochastic optimization and online

learning. In Advances in Neural Information Processing Systems, pages 781–789, 2009.

Guanghui Lan. An optimal method for stochastic composite optimization. Math. Program., 133(1-2):365–397, 2012.

doi: 10.1007/s10107-010-0434-y.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly convex stochastic com-

posite optimization, II: shrinking procedures and optimal algorithms. SIAM Journal on Optimization, 23(4):2061–

2089, 2013. doi: 10.1137/110848876.

Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster algorithms for solving

linear systems. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,

2013, Berkeley, CA, USA, pages 147–156, 2013.

20

Roy Frostig, Rong Ge, Sham M. Kakade, and Aaron Sidford. Competing with the empirical risk minimizer in a single

pass. In Proceedings of The 28th Conference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, pages

728–763, 2015.

Ji Liu and Stephen J. Wright. An accelerated randomized kaczmarz algorithm. Math. Comput., 85(297):153–178,

2016.

Deanna Needell, Nathan Srebro, and Rachel Ward. Stochastic gradient descent, weighted sampling, and the random-

ized Kaczmarz algorithm. Math. Program., 155(1-2):549–573, 2016. doi: 10.1007/s10107-015-0864-7.

Aymeric Dieuleveut, Nicolas Flammarion, and Francis Bach. Harder, better, faster, stronger convergence rates for

least-squares regression. J. Mach. Learn. Res., 18(1):3520–3570, 2017.

Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerating stochastic

gradient descent for least squares regression. In Conference On Learning Theory, COLT 2018, Stockholm, Sweden,

6-9 July 2018., pages 545–604, 2018.

Weihao Kong. Personal communication. 2018.

Jacob Steinhardt and John Duchi. Minimax rates for memory-bounded sparse linear regression. In Conference on

Learning Theory, pages 1564–1587, 2015.

Ohad Shamir. Fundamental limits of online and distributed algorithms for statistical learning and estimation. In

Advances in Neural Information Processing Systems, pages 163–171, 2014.

Yuval Dagan and Ohad Shamir. Detecting correlations with little memory and communication. In Conference on

Learning Theory (COLT), 2018.

Mark Braverman, Ankit Garg, Tengyu Ma, Huy L Nguyen, and David P Woodruff. Communication lower bounds

for statistical estimation problems via a distributed data processing inequality. In Proceedings of the forty-eighth

annual ACM symposium on Theory of Computing, pages 1011–1020. ACM, 2016.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments.

Journal of Computer and system sciences, 58(1):137–147, 1999.

Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. An information statistics approach to data

stream and communication complexity. Journal of Computer and System Sciences, 68(4):702–732, 2004.

Blake E. Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives. In Advances in

Neural Information Processing Systems, pages 3639–3647, 2016.

Gábor Braun, Cristobal Guzman, and Sebastian Pokutta. Lower bounds on the oracle complexity of nonsmooth convex

optimization via information theory. IEEE Trans. Information Theory, 63(7):4709–4724, 2017.

Yurii Nesterov. How to make the gradients small. Optima, 88:10–11, 2012.

Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. How Much Patience to You Have?: A Worst-case Perspective

on Smooth Noncovex Optimization. Science and Technology Facilities Council Swindon, 2012.

Coralia Cartis, Nick IM Gould, and Philippe L Toint. Worst-case evaluation complexity and optimality of second-order

methods for nonconvex smooth optimization. arXiv preprint arXiv:1709.07180, 2017.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary points I. CoRR,

abs/1710.11606, 2017a.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary points II: First-

order methods. arXiv preprint arXiv:1711.00841, 2017b.

21

Olivier Devolder, François Glineur, Yurii Nesterov, et al. First-order methods with inexact oracle: the strongly convex

case. CORE Discussion Papers, 2013016, 2013.

Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth convex optimization with

inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

Ohad Shamir. On the complexity of bandit and derivative-free stochastic convex optimization. In COLT 2013 - The

26th Annual Conference on Learning Theory, June 12-14, 2013, Princeton University, NJ, USA, pages 3–24, 2013.

John C. Duchi, Michael I. Jordan, Martin J. Wainwright, and Andre Wibisono. Optimal rates for zero-order convex

optimization: The power of two function evaluations. IEEE Trans. Information Theory, 61(5):2788–2806, 2015.

Sergey G Bobkov. On concentration of distributions of random weighted sums. Annals of probability, pages 195–215,

2003.

Milla Anttila, Keith Ball, and Irini Perissinaki. The central limit problem for convex bodies. Transactions of the

American Mathematical Society, 355(12):4723–4735, 2003.

Heinrich von Weizsäcker. Sudakov’s typical marginals, random linear functionals and a conditional central limit

theorem. Probability theory and related fields, 107(3):313–324, 1997.

Sanjoy Dasgupta, Daniel Hsu, and Nakul Verma. A concentration theorem for projections. In Proceedings of the

Twenty-Second Conference on Uncertainty in Artificial Intelligence, pages 114–121. AUAI Press, 2006.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selection. Annals of

Statistics, pages 1302–1338, 2000.

22

