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Abstract

Compact object mergers can produce a thermal electromagnetic counterpart (a “kilonova”) powered by the decay
of freshly synthesized radioactive isotopes. The luminosity of kilonova light curves depends on the efficiency with
which beta-decay electrons are thermalized in the ejecta. Here we derive a simple analytic solution for
thermalization by calculating how accumulate electrons lose energy adiabatically and via plasma interactions. The
thermalization efficiency is well described by f t t t1 n

e» + -( ) ( ) where the timescale te is a function of the ejecta
mass and velocity and the exponent n 1.0 1.5» – depends on the electron energies and the thermalization cross-
sections. For a statistical distribution of r-process isotopes with radioactive power Q t 4 3µb

-˙ and n=1, the late
time kilonova luminosity asymptotes to L f t Q t 7 3= µb

-( ) ˙ and depends super-linearly on the ejecta mass,
L M5 3µ . If a kilonova is instead powered by a single dominate isotope, we show that the late time luminosity can
deviate substantially from the underlying exponential decay and the heating from the accumulation of trapped
electrons eventually exceeds the instantaneous radioactivity. Applied to the kilonova associated with the
gravitational wave source GW170817, these results imply that a possible steepening of the light curve at 7 days is
unrelated to thermalization effects and instead could mark the onset of translucency in a high opacity component of
ejecta. The analytic results should be convenient for estimating the properties of observed kilonovae and assessing
the potential late time detectability of future events.
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1. Introduction

The violent merger of two neutron stars (or a neutron star
and a black hole) can eject neutron-rich matter that, upon
decompression, will assemble into heavy nuclei via rapid
neutron capture (the r-process; Lattimer & Schramm 1976;
Eichler et al. 1989; Meyer 1989; Freiburghaus et al. 1999;
Rosswog et al. 1999). The subsequent radioactive decay of
these freshly made nuclei was predicted to power a thermal
electromagnetic transient known as a kilonova (Li &
Paczyński 1998; Metzger et al. 2010; Roberts et al. 2011;
Barnes & Kasen 2013). Electromagnetic follow-up of the
gravitational wave source GW170817 (Abbott et al. 2017a)
appears to confirm the existence of an optical/infrared kilonova
with properties in general agreement with theoretical expecta-
tions for a neutron star merger (e.g., Abbott et al. 2017b;
Arcavi et al. 2017; Chornock et al. 2017; Coulter et al. 2017;
Cowperthwaite et al. 2017; Drout et al. 2017; Kasen et al.
2017; Kasliwal et al. 2017; Kilpatrick et al. 2017; McCully
et al. 2017; Nicholl et al. 2017; Shappee et al. 2017; Smartt
et al. 2017; Soares-Santos et al. 2017; Tanaka et al. 2017;
Tanvir et al. 2017)

Interpreting kilonova observations requires understanding
the processes by which radioactive decay particles deposit
energy (i.e., “thermalize”) in the ejected material. Radioactivity
produces energetic particles (photons, electrons, alphas, and
fission fragments), which are only partially absorbed and
reradiated as thermal light. The thermalization efficiency
declines with time as the ejecta expand and dilute, which
substantially influences the evolution of the kilonova light
curve.

At early times, the luminosity of kilonovae is complicated by
radiation transport effects related to the diffusion of thermal
optical/infrared photons through the opaque ejecta. However,
at later times (days to weeks), the ejecta become optically
thin and the bolometric light curve directly tracks the
instantaneous deposition of radioactive energy. This makes
the late time light curves of kilonovae particularly sensitive
probes of merger ejecta. A simple theoretical description of
thermalization and emission at these phases would be useful for
estimating the physical properties and detectability of
kilonovae.
Metzger et al. (2010) made initial analytic estimates of the

thermalization in kilonovae, while Hotokezaka et al. (2016)
studied the absorption and potential detectability of r-process
gamma-rays. Barnes et al. (2016) carried out detailed numerical
calculations of thermalization efficiency for all r-process decay
products, including electrons, alpha particles and fission
fragments. Waxman et al. (2018) applied an analytic treatment
of electron thermalization to model the kilonova that
accompanied GW170817. The steep decline of the efficiency
adopted by Waxman et al. (2018) is in tension with the more
gradual decrease seen in the numerical results of Barnes et al.
(2016), motivating a deeper analytic description of
thermalization.
Here we derive analytic expressions for radioactive heating

in kilonova that account for the several important physical
processes at play. In particular, charged particles from decay
are likely trapped by magnetic fields and accumulate locally
until they are thermalized. The kilonova luminosity is then not
simply a function of the instantaneous decay rate, but rather
depends on the accumulated store of electrons emitted from
prior epochs. We determine this cumulative heating by
calculating how electrons deposit energy in the plasma while
simultaneously losing energy due to adiabatic expansion.
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Because plasma losses roughly follow the Bethe formula
(dE dt E Eln1 2µ - ), electrons deposit energy more effec-
tively as they adiabatically degrade to lower energy E. We
account for this energy dependence, along with the fact that in
beta decay the longer lived nuclei on average emit lower-
energy electrons.

The above physical processes were included in the detailed
numerical thermalization calculations of Barnes et al. (2016).
Here we show that, despite the apparent physical complexity,
the essential behavior of radioactive heating can be well
described by simple and intuitive analytic formulae. After a
description of the decay and thermalization processes in
kilonovae (Section 2), we derive solutions for the energy
evolution and heating efficiency of suprathermal electrons in an
expanding plasma (Section 3). The analytic results are then
generalized to varying radioactivity decay parameters
(Section 4) including heating dominated by a single isotope
(Section 5). We provide convenient expressions for the
thermalization timescale (Section 6) and the total (gamma-ray
plus electron) thermalization efficiency of beta decay
(Section 7). In Section 8 we summarize the most useful results,
which are readily applicable to kilonova modeling, and discuss
implications for the kilonova associated with GW170817.

2. Radioactive Heating in Kilonovae

The material ejected in compact object mergers is expected
to consist of heavy neutron-rich isotopes that primarily undergo
beta decay. If translead nuclei are present, alpha decay and
fission may also contribute to the radioactivity. Detailed
nuclear network calculations have shown that the radioactive
power of r-process material is approximately described by a
power law (e.g., Metzger et al. 2010; Roberts et al. 2011;
Lippuner & Roberts 2015; Rosswog et al. 2018)

Q t t10 erg s g , 110
d

1.3 1 1»b
- - -˙ ( ) ( )

where td is the time since merger measured in days.
The power-law dependence of Q tb˙ ( ) has been explained as

follows. The r-process synthesizes a multitude of isotopes with
a wide range of half-lives. Assuming that the decay times, tr, of
isotopes are roughly equally distributed in log time (Li &
Paczyński 1998) between t t tmin r max< < , the integrated
number of decays per unit time is
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where N is the total number of isotopes, t tlnr max minl = ( ) is a
normalization factor of the distribution, and we assumed
t tmin . For times, t t tmin max  the number of decays per
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where Aá ñ is the mean atomic weight of isotopes and mp is the
proton mass.

The radioactive energy generation rate Q tb˙ ( ) declines more
rapidly than n t t 1µ -˙ ( ) because longer lived isotopes typically
have a lower-energy release (Colgate & White 1966; Metzger
et al. 2010; Hotokezaka et al. 2016). From Fermi’s theory of
beta decay, the average energy released in a decay approxi-
mately follows E t a

rµb
- , where a=1/5 in the relativistic

beta-decay regime. For the epochs of interest to kilonovae
(∼days), Hotokezaka et al. (2016) show that the nonrelativistic
or nonrelativistic Coloumb regime applies, for which a=1/4
and a=1/3 respectively. Assuming that isotopes with half-
lives t tr » dominate at time t, the energy generation rate per
gram is Q t n t E t=b b˙ ( ) ˙ ( ) ( ) or

Q t
E

m c A
t10

200
erg s g , 4d

e

a10 ,

2 d
1 1 1»
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b

b - + - -˙ ( ) ( )( )

where E d,b is the average energy of a beta decay at 1day. The
analytic estimate resembles the numerical result Equation (1)
with a 1 3» .
Beta decays produce gamma-rays, electrons, and neutrinos,

only a fraction of which will be absorbed and reradiated as
kilonova light. The neutrinos escape straightaway, while
gamma-rays will only be effectively absorbed at early times
(see Section 7). After a few days, the kilonova emission is
powered mainly by electrons depositing energy through impact
ionization and excitation of ambient atoms (Barnes et al. 2016).
The ionization energy loss rate for nonthermal electrons
(ignoring relativistic corrections) is given by the Bethe formula

dE t

dt

q

m v
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E
ln , 5e

e e
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4
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⎛
⎝⎜

⎞
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where χ is the effective ionization potential, nb is the number
density of bound electrons, and q v E, ,e e are the electron
charge, velocity, and energy, respectively. For nonrelativistic
electrons, the loss rate scales as E Eln1 2- ( ), i.e., lower-energy
electrons thermalize more readily. Plasma loss due to
interactions with free electrons has a similar functional form
but is expected to be subdominant given the low-ionization
state of kilonova ejecta.
Beta-decay electrons also lose energy as they do work on the

expanding ejecta. For kilonovae, the ejecta velocity structure
rapidly becomes homologous (velocity proportional to radius)
and the ejecta volume increases as V t3µ . The energy loss to
adiabatic expansion is then

dE

dt
x

E

t
, 6ad = - ( )

where x=2 for nonrelativistic and x=1 for relativistic
particles. For purely adiabatic evolution the electron energy
follows E t xµ - . The energy lost to expansion goes into
increasing the ejecta kinetic energy and is not available to
power the kilonova luminosity. A complete treatment of the
electron heating efficiency must therefore account for both
adiabatic and ionization loses.
The propagation of electrons through the kilonova ejecta is

hindered by magnetic fields. The fields initially present in the
neutron star merger will be diluted by ejecta expansion, but the
expected residual field strength (B∼μg) still implies an
electron Larmor radius 106~ times smaller than the ejecta size
(Barnes et al. 2016). Assuming magnetic fields are not ordered
on large scales, electrons are effectively trapped at a specific
mass coordinate and advected with the fluid flow.

3. Analytic Expression for Thermalization

We now derive analytic formulae for the thermalization
efficiency of electrons (or other charged particles) in a
homologously expanding medium. We assume electrons are

2
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trapped locally by magnetic fields at a fixed Lagriangian
coordinate, where the time-dependent density is

t
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v t
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3 3
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h=( ) ( )

where Mej is the ejecta mass, vmax the maximum ejecta velocity,
and η is a dimensionless parameter that depends on the density
structure (for a uniform spherical distribution, η=1). The
corresponding number density of bound electrons is
n t t Z A mb pr= á ñ á ñ( ) ( ) , where Zá ñ and Aá ñ are the average
nuclear charge and weight, respectively, of isotopes, which are
expected to be in a low-ionization state.

The total energy loss rate of a nonrelativistic electron,
including both adiabatic (Equation (6) with x= 2) and
ionization (Equation (5)) losses is
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where Elnl c=c ( ). For the moment we take lc to be
constant, but in Section 4 will adopt a more general dependence
of the ionization losses. Defining a characteristic thermalization
timescale
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we write the energy evolution equation in dimensionless form

d

d
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where t tet = and E E = t. Here Et is the average energy
of electrons emitted at scaled time τ=1. The value of te sets
the timescale at which electron thermalization begins to
become inefficient; we will give convenient expressions for
calculating it in Section 6.

Solving the differential equation Equation (10) we find the
evolution of an electron’s energy
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where ò0 is the initial energy of an electron emitted at time 0t .
We assume now that the electrons emitted at 0t come primarily
from beta decays with decay times t ter 0t» . Following the
discussion of beta decay in Section 2 we write a

0 0 t= - , which
gives
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For specificity, we adopt a=1/3 in what follows but
generalize to arbitrary values in Section 4.
At any given time, the ejecta is heated by the cumulative

deposition from electrons emitted at earlier times. The oldest
electrons still in existence at a time τ are those emitted at a time
1t such that , 01 t t =( ) , which is satisfied when

2

3
. 131 1

5 2t t t+ = ( )

The equation is not readily solvable for 1t but the limiting
cases can be determined. For 11t  particles thermalize nearly
instantaneously, 1t t» . For 11t  thermalization is inefficient
and

3

2
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To derive the instantaneous heating rate per gram, qdep t˙ ( ),
we integrate the plasma losses (Equation (5)) of all existing
electrons produced between times 1t and t
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The factor of Et is included so that qdep t˙ ( ) has physical units
of energy. Here n t˙ ( ) is the number of electrons emitted per unit
time per gram, which is taken from Equation (3), giving
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and , 0 t t( ) is given by Equation (12). The integration must be
done numerically in general, but we can determine the behavior
in the asymptotic limit 1t  . Since thermalization is
inefficient at these times, the energy of particles degrades
primarily adiabatically ( 2 tµ - ) and we approximate

, . 170 0
1 3

0
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Integration of Equation (16) then gives the asymptotic
heating rate
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Working in the limit of weak thermalization, 1t t , we
neglect the second term in brackets and use the limiting value

Figure 1. Thermalization efficiency of electrons as a function of time for
standard parameters. The numerical result is derived from integrating the
plasma loses of accumulated electrons subject to adiabatic loses. The analytic
interpolation formula Equation (22) f 1 1t t= + -( ) ( ) well approximates the
numerical solution, which approaches f 1t tµ -( ) at late times. This
calculation uses parameters b a x1 2, 1, 1 3, 2g = = = = .
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of 1t (Equation (14)) to find
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The electron thermalization efficiency is defined as
f q Qedept t t=( ) ˙ ( ) ˙ ( ), where Qe t˙ ( ) is the instantaneous
radioactive energy generation rate of electrons (i.e., that
fraction of the total beta-decay power Qb˙ emitted in the form
of electrons)
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Dividing Equation (19) by Equation (20) we find the
asymptotic thermalization efficiency
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The coefficient is close to unity, so we arrive at the simple
result fa

1t t» -( ) .
The analytic solution Equation (21) applies only at late times

( 1t  ). At early times ( 1t  ) particles thermalize efficiently
and f 1t ( ) . An ad hoc formula that interpolates between the
two limits is

f 1 . 221t t» + -( ) ( ) ( )
Figure 1 shows f t( ) calculated by numerical integration of

Equation (16) using the full electron energy dependence
(Equation (12)). The asymptotic behavior approaches the
analytic result f 1t tµ -( ) . The simple analytic interpolation
formula Equation (22) reproduces the numerical solution at all
epochs to better than 10%.

The efficiency only gradually approaches the asymptotic
behavior f 1t tµ -( ) . To quantify the time dependence at any
instant we can write f nefft tµ t-( ) ( ), where the effective
exponent

n
flog
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1
23eff t

t t
» -
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»
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( ) ( )
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and so n 1eff  for all τ. In particular, at the onset of inefficient
thermalization (τ=1), the decline rate is only half of the
asymptotic result, n 0.5eff = . This behavior is noticeable in
tabulated fits to numerical calculations (Barnes et al. 2016),
where neff is smaller for models with greater te (i.e., larger Mej

or smaller vmax).

4. Generalized Solution

The above thermalization calculation adopted specific
dependencies for the electron generation rate, initial electron
energies, and the plasma loss rate. We now derive a more
general solution. We write the number of electrons generated
per gram per unit time as

n B , 24bt= -˙ ( )

where B and b are constants. We take the initial energy of
electrons emitted to be a

0 0 t t= -( ) and generalize the electron
energy equation (Equation (10)) to

d
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where x 1 2= – quantifies how relativistic the electrons are and
γ describes the energy dependence of loses to the plasma.
In Section 3 we adopted default values a=1/3, b=1,

x=2, γ=1/2. The actual values likely differ only modestly.
The energy dependence of ionization losses may be weaker
than 1 2g = due to the Elog el c=c ( ) term in Equation (5)
and relativistic corrections. Inspecting Equation (5) we find that

1 4 1 2g » - over the energy range of interest.
Calculation of the asymptotic thermalization efficiency in the

more general formulation can be carried out in the way
described in Section 3. We find f t n

a t» -( ) , where
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This solution assumes b x a 1g+ - >( ) and 0g > . As
before, we introduce an ad hoc interpolation between the
limiting behaviors

f 1 . 27nt t= + -( ) ( ) ( )

For parameters that do not differ much from the defaults, n
deviates only modestly from unity. For example, for
b a x1, 1 3, 2= = = we find n=1.166 for 1 3g = and
n=1.266 for γ=1/4.
In the limit 0g  , the approximations applied in the above

derivation break down. As an example of the behavior in this
regime, we consider the specific case b0, 1g = = where
integration of the heating gives
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An expression for 1t can be determined by solving the energy
equation, Equation (10),

ln ln . 291 1
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Calculation of 1t must be done numerically, but at late times we
have e1 11

2
t t t= t  and so the asymptotic heating efficiency is

f b
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for 0, 1 . 30a a2
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t
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Figure 2. Thermalization efficiency of electrons as a function of time for the
case a 0, 0g= = (i.e., all electrons emitted with the same energy and plasma
loses independent of particle energy). The analytic interpolation formula
Equation (31) reasonably approximates the numerical solution, which declines
as f 0.8t tµ -( ) at 1t » and gradually steepens to f 1.6t tµ -( ) at 10t » .
This calculation uses parameters b a x0, 1, 0, 2g = = = = .
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For a=0, this efficiency decays more slowly by a factor of
ln t( ) than the fa

2t tµ -( ) implied by Equation (26) and
adopted by Waxman et al. (2018). This logarithmic factor was
found in the analytic derivation of Barnes et al. (2016), which
carried out a similar integration over trapped electrons. The
analytics of Barnes et al. (2016) neglected adiabatic losses, but
these do not affect the limiting functional form.

To describe the full time dependence of f t( ) in the limit
0g = we can use an interpolation formula motivated by the

analytic result of Barnes et al. (2016)

f b
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2
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-

-
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Figure 2 shows that it provides a reasonable fit to the true
numerical solution for these parameters.

The decay rate at any instant in time can be quantified as
f nefft tµ t-( ) ( ) with (for a= 0)
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which shows that when inefficiency begins to set in ( 1t = )
n 0.8eff » which steepens to n 1.6eff » at very late
times 10t » .

5. Single Isotope Heating

For some r-process compositions, deviations from a power-
law decay rate n t 1µ -˙ can occur at times t tmax> , when the
statistical distribution of isotopes cuts off and individual
species begin to dominate the radioactive power. We therefore
adapt the previous analysis to derive the heating rate from the
exponential decay of a single isotope of decay times tr. The
number of decays per unit time per gram is now

n t
X

Am t
e , 33i
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where A is the atomic mass number and Xi is the mass fraction
of the isotope. The instantaneous radioactive power is
Q t E n ti i i=( ) ˙ ( ) where the energy released per decay Ei is
constant with time (i.e., a= 0). The integral for the heating rate
(Equation (15)) becomes for this single isotope case
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where we have adopted an energy loss dependence 1 2g = .
The emission time, 1t , of the oldest living electrons can be
determined from electron energy evolution Equation (12) with
a=0

2
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and so 3 21
3t t= for 11t  .

As before, we approximate the late time energy evolution by
the adiabatic formula, , 0 0

2 2 t t t t»( ) , and integrate
Equation (34) to find
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where i is the exponential integral. In the weak thermalization
limit we can neglect the first term in brackets and use the

limiting behavior of the exponential integral x e xi
x » - -( ) ,

to derive the asymptotic heating rate
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The asymptotic thermalization efficiency
f q Qi a i a i, ,t t t=( ) ( ) ( ) for a single isotope is
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which has the interesting behavior that the efficiency, at some
point, increases with time and eventually will exceed unity.
Though perhaps unexpected, f 1t >( ) is possible when the
heating from accumulated electrons emitted from previous
epochs dominates over the instantaneous generation rate. This
is realized for the steep exponential decay rate of a single
isotope, as well as for power-law decay rates when the
exponent b is large enough to give n 0< in Equation (26).
Figure 3 shows a numerical integration of the radioactive

heating from a single isotope with t ter = . Initially f 1t <( ) ,
but eventually the integrated heating due to electrons from
earlier epochs exceeds the instantaneous radioactive power and
f t( ) becomes formally greater than one. The radioactive
heating rate differs substantially from the underlying exponen-
tial decay e t trµ - , and is reasonably approximated at times

1t by the analytic result Equation (37). Comparing this
single isotope heating to that of a statistical distribution
(Equation (19)) we see both share a 7 3t- dependence, though
the single isotope case declines more steeply due to the
exponential factor in Equation (37).

6. Thermalization Timescale

In our formalism, electron thermalization depends on a
single dimensional parameter, te, which sets the timescale over
which thermalization becomes inefficient. We defined te in

Figure 3. Radioactive heating (relative to the value at t = 0) for a kilonova
powered by a single isotope with a half life taken to be equal to the electron
thermalization time te. The heating rate qi (filled circles) deviates substantially
from the underlying radioactive decay power Q ei

t trµ - (dashed black line).
At late times ( 7t ) the heating due to electrons accumulated from early
epochs exceeds the instantaneous generation rate Qi, such that the thermaliza-
tion efficiency is formally greater than one. The analytic formula Equation (37)
(solid black line) reasonably approximates the later time ( 1t ) behavior.
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Equation (9) as a function of Et, the energy of electrons
emitted at time t te= . It is convenient to rewrite te in terms of
the energy of electrons emitted at some fixed time, say
t=1day after merger. Using the time dependence of the
electron energy, E E at t= t

-( ) we rewrite te from Equation (9)
as

t
E

m c

t
t

1 day
, 39

e

a

e
day

2
e

3 4

e,0=
- -⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )

where Eday is the energy of electrons emitted at 1day and

t
q

m m c

M

v

Z

A

3

32
40e

e p
e,0

4

2 3
max
3

1 2
l h

=
c

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

¯
¯ ( )

is the thermalization timescale of an electron emitted with
energy m ce

2. Solving Equation (39) for te gives the desired
expression for te

t
E

m c

t

1 day
days. 41

e

a a

e
day

2

3 4 3
e,0

4 4 3

=
- - -⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

( ) ( )

To get a sense of the timescales involved, we scale to values
typical for kilonovae. For the case a=0 we have

t M v a6.8 days 0 , 42e 0.01
1 2

0.2
3 2 1 2z= =- ( ) ( )

where M M M100.01 ej
2= -

 and v v c0.20.2 max= . For the case
a 1 3= (our fiducial choice)

t M v a12.9 days 1 3 , 43e 0.01
2 3

0.2
2 2 3z» =- ( ) ( )

above we have introduced for convenience the variable

Z

A

E

m c10

2
, 44

e

day

2

3 2

z h
l

=
á ñ
á ñ

c
-⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

which is defined such that 1z ~ for typical values.

7. Total Thermalization Efficiency

In addition to electrons, beta-decay energy also emerges as
gamma-rays and neutrinos. The neutrinos never thermalize, but
gamma-ray deposition can be significant at early times
(∼days). If a fraction pγ of the energy emerges in gamma-
rays and pe in electrons, the total thermalization efficiency of
beta decay is

f t p f t p f t , 45e= +b g g( ) ( ) ( ) ( )

where f tg ( ) is the thermalization efficiency of gamma-rays.
Typical fractions for beta decay are p p0.2, 0.5e = =g with
the remaining p 0.3=n emerging as neutrinos (see Barnes et al.
2016; Hotokezaka et al. 2016).
Gamma-ray thermalization occurs primarily through inelas-

tic Compton scattering off of bound electrons. The probability
that a gamma-ray emitted at a velocity coordinate v is absorbed
in the ejecta is e vt- ( ), where the radial optical depth from v to
the surface is, for constant density ejecta

v v v t, 46maxt rk= -g( ) ( ) ( )

where kg is the effective absorptive opacity which for ∼MeV
gamma-rays is approximately Y0.06 cm ge

2 1k =g
- (Swartz

et al. 1995). The volume averaged optical depth is

v
v v dv

M

v t

3

4
4

3

16
. 47

v

max
3 0

2

max
2 2

max

òt
p

t p
k
p

= =g
g¯ ( ) ( )

Averaging over nonradial gamma-ray trajectories only intro-
duces a small ( 10%~ ) correction.
The gamma-ray thermalization efficiency can then be written

(Barnes et al. 2016; Hotokezaka et al. 2016)

f t
t

t
1 exp , 48

2

2
= - -g

g
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

where tγ is the timescale at which gamma-rays begin to
thermalize inefficiently. For constant density ejecta

t
M

v
M v

3

16
0.3 days, 49

max
2

1 2

0.01
1 2

0.2
1

,0.02
1 2k

p
k= »g

g
g

-
⎛
⎝⎜

⎞
⎠⎟ ( )

where 0.02 cm g,0.02
2 1k k=g g

- .
In outflows with low electron fraction (Y 0.15e  ) the r-

process can also synthesize significant quantities of translead
nuclei (e.g., Mendoza-Temis et al. 2015) and alpha decay will
contribute to the radioactive power. The total heating rate is
then

q t f t Q t f t Q t , 50tot = +b b a a˙ ( ) ( ) ˙ ( ) ( ) ˙ ( ) ( )

where Qa˙ and fα are the radioactive power and thermalization
efficiency of alpha decay. For low Ye outflows,Qa˙ may be from
5% to 40% of Qb˙ depending on what nuclear mass model is
used. If many alpha-decaying isotopes are present, the
statistical distribution of half-lives should mimic that of the
beta-decaying nuclei and decline as a power-law Q t t 1µa

-˙ ( ) .
If instead the alpha decay is dominated by just a few isotopes,
Q ta˙ ( ) will more closely resemble an exponential.

The analytic formulae for thermalization (Section 4) can also
be applied to alpha decay, for which x=2 and a=0. The
plasma energy loss rate of alpha decay follows a rough power
law with 0.3g = in the energy range of interest (Barnes et al.
2016). The thermalization efficiency is then described by
f t t1 nt » +a a

-( ) ( ) with n 1.5» , and where the thermaliza-
tion timescale of alpha decay is roughly t t3 e»a , due to a
higher plasma loss rate. In addition, the alpha-decay therma-
lization efficiency is enhanced relative to beta decays because
no alpha-decay energy is lost to neutrinos or weakly
thermalizing gamma-rays.

8. Discussion and Conclusion

We have derived simple but effective analytic formulae for
calculating the radioactive heating in kilonovae. The fraction of
beta-decay energy that is absorbed in the ejecta can be
estimated using

f t p
t

t
p e1 1 , 51e

n
t t

e

2 2= + + -b g

-
- g

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

with n 1» , and where p p0.2, 0.5e » »g are the fractions of
beta-decay energy emerging in electrons and gamma-rays,
respectively. The thermalization timescales depend on ejecta
mass and velocity as

t M v12.9 days 52e 0.01
2 3

0.2
2 2 3z» - ( )
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t M v0.3 days, 530.01
1 2

0.2
1»g

- ( )

where M M M0.010.01 ej= , v v c0.20.2 max= , and 1z ~ is
given by Equation (44). The summary equations above adopt
several default assumptions regarding the radioactive decay
behavior; more general results can be found in Section 4. In
particular, for heating powered by a single isotope the late time
efficiency is given by Equation (38)

Our analytic solutions permit simple estimates of the
luminosity of a kilonova at later times. Once the ejecta have
become optically thin to photons, the bolometric luminosity
should track the instantaneous energy-deposition rate,
L t M Q t f tbol ej» b b( ) ˙ ( ) ( ), where the radioactive power of a
statistical distribution of isotopes is

Q t t10 erg s g , 5410
10 d

1 1»b
a- - -˙ ( ) ˙ ( )

where 10̇ is the radioactive energy generation rate at t=1day
in units of 10 ergs s g10 1 1- - . Nuclear reaction networks find

4 3a » and 0.5 2.510 »˙ – , with a relatively weak dependence
on the ejecta conditions as long as they are sufficiently neutron
rich (electron fraction Y 0.4e  ). If electrons dominate the
heating at these epochs, the predicted bolometric luminosity is
(using pe=0.2)

L
M t

t M v
4 10

1 0.08
erg s . 55d

d
nbol

40 10 0.01

0.01
2 3

0.2
2

1
» ´

+

a-

-
-˙

( )
( )

At times late enough that the ejecta are both optically thin
and inefficient at thermalizing electrons (t te ) the bolometric
luminosity of Equation (55) becomes

L M v t5.2 10 erg s . 56d
n

bol
41

10 0.01
5 3

0.2
2 1» ´ a- - + -˙ ( )( )

The late time luminosity depends super-linearly on Mej, as a
larger ejecta mass produces both greater radioactive power and
a higher thermalization efficiency. For typical values

n4 3, 1a » » the asymptotic dependence is L t tbol
7 3µ -( ) .

We further derived analytic heating rates for radioactivity
dominated by a single isotope with an exponential, rather than

power-law, time dependence. This can occur for mildly
neutron-rich outflows that synthesize only a narrow distribution
of isotopes. Interestingly, the late time bolometric luminosity in
this case eventually exceeds the instantaneous radioactive
power (i.e., f t 1>( ) ). This is because the heating from
electrons accumulated from earlier epochs eventually exceeds
the generation rate of new electrons. The predicted late time
light curves of single isotope kilonovae also have a
L t tbol

7 3µ -( ) dependence (Equation (37)) but modulated by
an exponential factor that gives a steeper decline. The
nontrivial behavior of f (t) highlights the importance of
carefully considering thermalization effects when trying to
infer the radioactive source from late time bolometric
measurements of kilonovae and supernovae.
We can apply our analytic results to the kilonova AT2017gfo

associated with the neutron star merger GW170817. The
bolometric luminosity at t=10days was L 10 erg sbol

40 1» - .
Taking 110 =˙ , α=4/3, and v c0.2max = , Equation (55)
gives M M0.06ej » , similar to estimates derived from more
detailed modeling of the light curve. Uncertainties in the
bolometric correction to the observations, along with the ejecta
velocity, density profile, and nuclear heating rate 10̇ , however,
could introduce errors in Mej at the factor of ∼2 level.
The time evolution of f (t) is important for interpreting the

bolometric light curve of AT2017gfo, which initially declined
as L tbol

1µ - then appeared to steepen to L tbol
3µ - at times

t 7 days (Cowperthwaite et al. 2017; Drout et al. 2017;
Kasliwal et al. 2017; Kilpatrick et al. 2017; Smartt et al. 2017;
Arcavi 2018; Coughlin & Dietrich 2018; Waxman et al. 2018).
While this steepening has potentially interesting implications
for the kilonova properties, it may also be an artifact of a
shifting bolometric correction—late time observations are
available in only a few wavelength bands and different
published bolometric reconstructions find discrepant results
(Arcavi 2018).
Waxman et al. (2018) ascribe the bolometric steepening in

AT2017gfo to the onset of inefficient thermalization, which
they model as a sudden transition from unity to f t t te 2= -( ) ( )
for t te> . Our analysis indicates that this interpretation is
unlikely—the thermalization efficiency has a weaker asympto-
tic decline f t t te 1= -( ) ( ) and this is only approached
gradually. At the onset of inefficiency (t te» , expected to
occur ∼weeks after the merger) the dependence is approxi-
mately f t t 0.5µ -( ) (see Equation (23) and Figure 1), which is
too shallow to explain a relatively sharp steepening
to L tbol

3µ - .
A change in the light-curve slope could occur at times

t tmax> when the statistical distribution of isotopes cuts off
and one or a small number of decays start to dominate the
underlying radioactive power. The steeper heating evolution of
Equation (36) then applies. Nuclear reaction networks for
various outflow conditions do show eventual deviation from a
power law (Rosswog et al. 2018), although this transition
typically occurs at later times, t 15 days.
Another plausible explanation of the light-curve steepening

of AT2017gfo is that some significant portion of the ejecta
remained optically thick to photons for t 7» days. As the
kilonova ejecta become translucent, trapped radiation is
released, causing the light curve to decline more steeply than
the instantaneous heating rate. This behavior is familiar from
observations of supernova light curves, which show a sharp
decline from peak followed by a shallower radioactive “tail.”

Figure 4. Toy analytic light curve of a kilonovae with radioactive power
Q t 4 3µb

- and a heating efficiency f t t t1 e
1= + -( ) ( ) with t 10e = days.

The light curve is calculated using a simple Arnett-like one-zone semianalytic
model (Arnett 1982; Kasen & Bildsten 2010) with an effective diffusion time,
td=5 days. The relatively steep decline L t 3µ - after peak is due to opacity
effects as trapped radiation diffuses out of the ejecta, while the shallower late
time decline follows the asymptotic result L t 7 3µ - .
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We illustrate the effect with a simple analytic model in
Figure 4, which captures the bolometric behavior seen in
detailed radiation transport calculations (e.g., Kasen et al. 2017;
Kilpatrick et al. 2017; Tanaka et al. 2018; Wollaeger et al.
2018). For a kilonova to remain optically thick over ∼7days
requires a high opacity presumably provided by complex
lanthanide ions, suggesting that GW170817 synthesized a
significant mass of heavy (A 130 ) r-process ejecta (Kasen
et al. 2013). This is consistent with the red colors observed at
the later epochs, which are defining signature of lanthanide
production (Barnes & Kasen 2013; Tanaka &
Hotokezaka 2013).

The analytic results derived here provide workable estimates
for analyzing and understanding kilonova light curves, but
quantitative accuracy requires explicit thermalization transport
calculations based on detailed nuclear inputs. We confirmed
that the first term in Equation (51), representing electron
thermalization, does a reasonable job of reproducing the
detailed numerical results of Barnes et al. (2016) when
n 1.2 1.4» – . The second term describing the gamma-ray
thermalization efficiency, however, did a poorer job, suggest-
ing that a more sophisticated analysis of gamma-ray transport
and energy deposition may be needed to analytically capture
the time evolution of fγ. In addition, alpha decay and fission are
generally more efficiently thermalized than beta-decay energy
and may become significant at late times, in some cases
dominating the heating. Quantitative analyses of kilonova
observations will require further nuclear experiment and theory
to determine the detailed nucleosynthesis and decay chains of
r-process nuclei.

While the results presented here clarify some aspects of the
bolometric emission of kilonovae, the predicted late time colors
and spectra remain rather uncertain. Once the ejecta have
become fully transparent (the “nebular phase”) deviations from
local thermodynamic equilibrium become significant. At these
phases, nonthermal beta-decay electrons will play a dominant
role in setting the ionization/excitation state of the ejecta. The
deposited energy may not strictly speaking be “thermalized”;
nevertheless, it will presumably be radiated rapidly via some
series of optical/infrared atomic transitions. Although the
microscopic processes will be complex in detail, the simple
estimates of the bolometric luminosity presented here are likely
to remain robust.
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