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Abstract—Functional electrical stimulation (FES) is a promis-
ing solution for restoring functional motion to individuals with
paralysis, but the potential for achieving any desired full-arm
reaching motion has not been realized. We present a combined
feedforward-feedback controller capable of automatically calcu-
lating and applying the necessary muscle stimulations to hold
the wrist of an individual with high tetraplegia in a desired
static position. We used the controller to hold a complete arm
configuration to maintain a series of static wrist positions. The
average distance to the target wrist position, or accuracy, was
2.9 cm. The precision is defined as the radius of the 95%
confidence ellipsoid for the final positions of a set of trials with
the same muscle stimulations and starting position. The average
precision was 3.7 cm. The control architecture used in this study
to hold static positions has the potential to control arbitrary
reaching motions.

I. INTRODUCTION

For approximately 166,000 individuals in the United States
living with some level of tetraplegia, the loss of functional
motion in their upper extremities limits their ability to self-
feed, groom themselves, and perform other activities of daily
living [1]. For these individuals, their greatest priority for
functional recovery is the restoration of arm and hand function
[2]. Functional electrical stimulation (FES) is a promising
technology for restoring full-arm reaching function to indi-
viduals with spinal cord injuries (SCI).

FES restores function in individuals with SCI by stimulating
paralyzed muscles to activate in desired patterns. FES has
demonstrated success in restoring functions to individuals
with SCI including standing [3], bowel control [4], and hand
function [5]. These functions have typically been achieved us-
ing fixed stimulation patterns. Implementing fixed stimulation
patterns to control full-arm reaching has been attempted [6],
but these methods lack the flexibility to achieve any goal-
directed task and to account for the complexity of the shoulder
and arm mechanics.

More flexible methods have been developed to select the
stimulation commands required to control the arm’s joint or
wrist position. Many strategies have been implemented in com-
puter simulations including using an optimized proportional-
derivative controller [7], combined feedforward-feedback con-
trollers [8], reinforcement learning [9], and threshold control
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[10]. While these, and other controllers, have proven success-
ful in simulation, in practice, application has been limited due
to the differences between the models and constantly changing
real-world arm dynamics.

Most practically applied control strategies for reaching
motions have, to this point, treated the joints independently
instead of as a complete arm system. The MUltimodal Neuro-
prosthesis for daily Upper limb Support (MUNDUS) project
successfully achieved some reaching tasks by using an ex-
oskeleton to lock all degrees of freedom (DOF) except for the
single joint currently being actively controlled [11]. However,
this method does not take advantage of the kinematic redun-
dancy of the arm which allows an individual to reach points in
their workspace following different trajectories. Additionally,
this system results in slower, less smooth movements than
standard reaching motions.

The most advanced FES-controlled reaching system,
demonstrated as part of the BrainGate2 clinical trial, used
a percutaneous FES system controlled via an intracortical
brain-computer interface [12]. The system controlled each
joint simultaneously, but still treated the joints as independent.
Using a low level controller which independently controlled
each joint, it was difficult for the participant to accurately
control the multiple degrees of freedom necessary to complete
full-arm reaching motions. The system also did not control the
shoulder using FES, which would significantly increase the
difficulty of control due to the increased degrees of freedom.

Model-based controllers which seek to control the entire
arm system have been developed to overcome these obstacles.
Parameterized models have had some success in controlling
two muscles in rehabilitation of stroke patients [13, 14], but
assessing the parameters of all muscles necessary for complete
arm control requires significantly larger amounts of data.
Nonparametric models have thus been developed to eliminate
the need of direct parameter identification. We have previously
demonstrated that these methods, used in open-loop control,
are capable of holding and differentiating between desired
wrist positions in the reachable workspace [15]. However,
feedback is necessary to achieve the accuracy required for
many reaching tasks.

Feedback control of planar arm tasks has been achieved
in healthy individuals using a model-based controller [16].
The authors used an artificial neural network to map the
configuration in task space to the forces the muscles produce.
The shift to a task-space (as opposed to a joint-space) con-
troller makes planning and feedback more intuitive as this is
the space in which the reaching is occurring. Overall, this
technique was very successful in planar reaching and may



TABLE I
STIMULATION ELECTRODES USED

Electrode Placement Muscles Targeted Approximate Function Type Current Amplitude (mA) Max Pulse Width (µs)

radial nerve triceps elbow extension nerve cuff 2.1 250

axillary nerve deltoids arm abduction nerve cuff 2.1 23

thoracodorsal nerve latissimus dorsi arm adduction nerve cuff 0.8 10

long thoracic nerve serratus anterior scapular abduction nerve cuff 1.4 20

musculocutaneous nerve biceps, brachialis elbow flexion nerve cuff 0.8 49

suprascapular nerve supraspinatus, infraspinatus shoulder stability, humeral rotation nerve cuff 1.4 62

rhomboids rhomboids scapular adduction intramuscular 18.0 107

lower pectoralis lower pectoralis shoulder horizontal flexion intramuscular 18.0 22

upper pectoralis upper pectoralis shoulder horizontal flexion intramuscular 20.0 25

be useful for some tasks, but many other tasks require three-
dimensional movements (for example, moving food from a
plate to the mouth). Removing the constraints of a planar
workspace significantly complicates the problem.

To apply these ideas to practical, three-dimensional control
of an impaired arm driven by FES, we propose using a similar
model-based method that isn’t subject to planar constraints and
controls the whole-arm system instead of individual joints.
We present a combined feedforward-feedback task-space con-
troller. We identify a data-driven, person-specific model of an
arm driven by FES which provides a feedforward aspect of
the controller. Feedback is added to the system via a positional
PID controller. The controller then uses the model to calculate
the muscle stimulations necessary to achieve the desired wrist
position.

We completed this study to test the feasibility of the
presented control architecture for controlling full-arm reaching
movements with FES. The main goal for the project was
to evaluate the performance of the combined feedforward-
feedback controller for holding static wrist positions with an
FES driven arm.

II. MATERIALS AND METHODS

To assess the controller, we identified the model for an indi-
vidual with high tetraplegia and an implanted neuroprosthesis
and then used the model as the basis of a feedforward-feedback
controller (referred to as the feedback+ controller) to calculate
and execute the muscle stimulation commands necessary to
achieve a series of desired wrist target positions. For the set
of experiments, the model was identified over the course of a
day, and the controller was tested over two additional days. For
simplicity, the two days of controller testing will be referred
to as Day One and Day Two respectively.

Each day of the experiments took place during a four-hour
time block. Approximately one hour was used to set up the
motion capture system and the participant. The participant
would then take a half-hour break to eat lunch. The exper-
imentation took place during the remaining 2.5 hours with
short breaks whenever the participant requested.

A. Experimental Setup
We completed the experiments with a single human partic-

ipant who has high tetraplegia. The participant was a 60-year-
old female who sustained a hemisection of the spinal cord
at the C1-C2 level. She is unable to voluntarily move her
right arm (the arm with which we performed our experiments)
but does have sensation. She experiences hypertonia in some
of the arm muscles. The participant’s wheelchair is equipped
with a passive arm support which produces a comfortable and
achievable workspace by using elastic bands to assist against
the force of gravity. The arm support results in a resting
equilibrium position with the wrist approximately at the height
of the participant’s chest. More details can be found in [17]
(Subject 1).

The participant is implanted with a stimulator-telemeter
in her abdomen [18, 19, 20]. The device has leads which
transmit current to intramuscular electrodes [21] and nerve
cuff electrodes [22] activating muscles in her right arm and
shoulder complex. We refer to each muscle or group of mus-
cles stimulated by a single electrode as a muscle group. In this
experiment, we controlled the nine muscle groups shown in
Table I. Power and control signals are sent by a computer to the
implanted device via an inductive radio-frequency link. Muscle
stimulation uses bi-phasic, charge balanced pulses delivered at
13 Hz. The amplitude of the pulses is constant for each muscle
group. The force generated by each muscle group is controlled
by varying the pulse-width (referred to as the stimulation
input) from 0-250 µs. The maximum stimulation input for each
muscle was determined as the point when no additional muscle
force was achieved or the participant reported discomfort
(shown in the last column of Table I). The vector containing
the stimulation inputs for every muscle group is the control
input. Stimulation commands are sent to the implant using
real-time control code on a computer. Protocols used for this
research were approved by the institutional review boards at
Cleveland State University (IRB NO. 30213-SCH-HS) and
MetroHealth Medical Center (IRB NO. 04-00014).

To identify the model, we gathered data using a Haptic-
Master (Moog FCS) robot with three degrees of freedom. The
robot records the 3D forces and positions of its end-effector.
An Optotrak Certus Motion Capture System (Northern Digital,
Inc.) captured data used to estimate the arm’s configuration.
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Fig. 1. Controller block diagram

The arm’s configuration was defined by the position and
orientation of the wrist relative to the thorax. The motion
capture system was also used to measure the real-time position
of the wrist to be used for feedback during the static hold
experiments. A third order-moving average filter was used on
the wrist position signal to achieve smooth velocities.

The experiment was controlled using MATLAB xPC target
on a Dell Dimension 8400 PC with a Pentium 4 3.20 GHz
processor. The control and data collection occurred at 52
Hz, but stimulation inputs were updated at the stimulation
frequency of 13 Hz.

B. Model Identification

We developed a three-part model consisting of: 1. inverse
arm statics (the mapping from configuration to the forces
needed to hold the wrist in a position), 2. muscle force
production (the mapping from configuration and activation
to the forces produced at the wrist by each muscle), and 3.
recruitment curves (the mapping from muscle group stimu-
lation input to activation). Our controller uses the model of
the inverse arm statics, the inverse of the model of muscle
force production, and the inverse recruitment curves as shown
in Fig. 1. A similar model identification procedure using a
joint space configuration was defined in [23]. Following the
ideas of [16], we developed our model using the wrist position
and orientation because it produces a more intuitive system
by working directly in the space where the task is occurring
without reducing the amount of information in the model (Our
joint space controller in [15] has five dimensions while the
workspace of the controller presented in this paper is six
dimensional.). Additionally, by working in the task-space, we
are able to eliminate the need to accurately track the joint
angles of the shoulder which is difficult. We present a complete
summary of our task-space model identification here.

To gather data for the model identification, a robot held the
participant’s wrist at a series of static positions within the par-
ticipant’s comfortably reachable workspace. The connection of
the participant’s wrist to the robot was via a ball-in-socket joint
that does not transmit torque. The robot was equipped with a
three-dimensional force sensor at its end-effector, and the force
needed to hold the wrist static, fr ∈ R3, was recorded.

To determine the inverse arm statics, the robot held the
arm in a position with zero muscle stimulation, and, thus, all
muscle activations, α ∈ R9, were zero. Therefore,

frstatic = p(q) (1)

where p(q) ∈ R3 are the forces necessary to hold the arm
in the static configuration, q ∈ SE(3), determined by wrist
position and orientation. The wrist position is defined as x,
y, and z coordinates of the center of the wrist relative to the
thorax coordinate frame. The wrist orientation is defined as
the orientation of the forearm coordinate frame relative to the
thorax. The thorax and forearm coordinate frames are defined
by [24].

To determine the force production of the jth muscle group,
the muscle group was stimulated at its maximum stimulation
command so that α was a vector of all zeros except for an
activation of one for the selected muscle group. The forces
applied by the robot, frstimj, are then defined by the difference
of the robot forces with zero stimulation (i.e. the required static
forces) and the forces produced by the muscle group,

frstim = p(q)−R(q)α, (2)

where R(q) ∈ R3×9 is the linear mapping of muscle acti-
vation to forces at the wrist and p(q) are the forces when
stimulating no muscles. Each row of R(q) represents the
force at the wrist in each Cartesian direction. Each column of
R(q) represents the amount of force produced in each degree
of freedom by 100% activation of the corresponding muscle
group. The jth column of R(q) is determined by subtracting
frstimj, the recorded total force during stimulation of muscle
group j, from the previously identified inverse static forces,
frstatic ,

R(q)j = frstatic − frstimj. (3)

This process of identifying p(q) and R(q) for a wrist
configuration q, was completed for 27 positions within the
participant’s workspace. The set of 27 positions was repeated
five times as determined by the allotted time. Within each
set, the order of positions was randomized, and the order of
activating muscle groups was randomized for each position.
The data was used to train 30 Gaussian process regression
(GPR) models [25]. The inputs for each GPR model were the



wrist position and orientation, and the output was the forces
recorded by the robot. One GPR model was used for arm
statics in each Cartesian direction (three total models). For
each muscle, a separate GPR model was used to determine the
forces in each Cartesian direction required to hold the wrist in
place when the muscle is stimulated (27 total models). Thus,
using the GPR models, we can determine p(q) and R(q)
for any desired wrist configuration q within the participant’s
workspace. When used in the controller (Fig. 1), the GPR
models form the basis of the “Inverse Arm Statics” and
“Inverse Muscle Force” blocks.

Relative to a parametric model, GPR does not have re-
quirements on identifiability. Compared to other nonparametric
methods, such as artificial neural networks, we chose GPR due
to the automated nature of determining the complexity of the
model by maximizing the marginal likelihood (see [23] for
details on the quality of the model). The hyper-parameters
for each model were selected by maximizing the marginal
likelihood. The kernel function used in the GPR was the
squared exponential function using the distance metric for
rigid bodies defined in [26].

The recruitment curves, the mapping from stimulation input
to muscle group activation, for each muscle group were
identified using the deconvolved ramp method [27].

C. Controller

Our controller aims to determine the muscle stimulation
commands necessary to maintain a desired static wrist po-
sition. It does so by building upon the model presented in
section II-B which requires the wrist position and orientation
as inputs. The controller (Fig. 1) uses the model to map the
desired wrist position and orientation to the forces necessary
to hold the wrist statically at the desired position. The muscle
group activations necessary to achieve the desired forces are
then determined and mapped to the stimulation inputs which
are applied to the arm.

The input to the controller (see Fig. 1) is the desired
wrist configuration (position and orientation), q∗ ∈ SE(3),
that corresponds to the desired wrist position. The controller
calculates the desired open-loop forces at the wrist, p(q∗),
necessary to hold the position by using the GPR model of
the inverse arm statics. Feedback is added using a positional
PID controller which outputs corrective forces in each degree
of freedom (x, y, and z directions). These forces are added
to the open-loop forces to get the required force necessary to
maintain the wrist position.

Next, the controller uses the GPR model of muscle force
production to determine the force produced by each muscle
group. Equation (3) is then used to identify the elements of
the mapping from muscle group activations to wrist forces,
R(q∗).

It is important to reiterate that after the feedback controller
is added to the output of the inverse arm statics model, it still
requires the model of the inverse muscle force to calculate
the desired muscle activations. After determining the desired
forces and the muscle-force mapping, R(q∗), we calculate the
muscle activations, α which will produce the desired forces.

R(q∗) is not square as there are more muscle groups than
degrees of freedom. We resolve this redundancy and determine
the muscle activations by solving the following optimization
problem,

minimize:
α

||α||22
subject to: R(q∗)α = p(q∗)

αi ∈ [0, 1] ∀i ∈ {1, 2, . . . , 9}
. (4)

For feedback control, (4) must be solved in real-time as the
desired forces, p(q∗), are being updated. We used the quasi-
Newton method to minimize the penalty function,

||α||22 + c1‖R(q∗)α− p(q∗)‖22 + c2K

K =
∑
ki where ki =

 α2
i if αi < 0

(α− 1)2 if αi > 1
0 if 0 ≤ αi ≤ 1

, (5)

where ||α||22 minimizes the muscle activations,
c1‖R(q∗)α− p(q∗)‖22 penalizes activations that do not
produce the desired force, and c2K penalizes activations
which do not belong to αi ∈ [0, 1]. c1 and c2 were chosen
to be 500 and 50,000 respectively because they produced the
same solution as the MATLAB function quadprog found
for (4).

Equation (4) can be solved for a number of objective
functions. As a starting point, we chose to minimize the muscle
activations as a way to limit energy usage and fatigue. Once
a feasible solution to (4) is found, the recruitment curves
are inverted (inverse recruitment curves block of Fig. 1) to
determine the stimulation inputs to achieve the desired muscle
activations. These stimulation inputs are sent to the stimulator
to be applied to the arm.

D. Static Hold Experiments

To evaluate the controller’s ability to hold static positions,
we quantified the accuracy of the controller at various targets
in the participant’s workspace during two sessions held on
separate days. For each individual trial, the robot moved the
participant’s wrist to the desired target position. With the robot
holding the wrist stationary, the stimulation input calculated
by the controller was applied to the arm. Each individual
trial lasted seven seconds. To avoid transient dynamics of
the muscle groups affecting the results, the robot held the
participant’s wrist in place with decreasing stiffness for the
first two seconds. For the next five seconds, the arm moved
freely depending on the stimulation of the muscles. The
average wrist position over the final second of each trial was
recorded. A perfect controller would result in a stationary wrist
position for the entire trial, while a less than perfect controller
would result in movement away from the starting position.

To select the targets, a 3×3×3 grid of points was developed
within the space of the training positions, thus ensuring a
wide spread of targets distinct from the training positions. For
each point, the nearest feasible wrist position was selected.
Feasibility is determined by the ability to solve (4) using
quadprog. From these points, 13 targets were selected based
on participant comfort (as reported by the participant) while
maintaining positions throughout the workspace.



A single target near the center of the workspace was selected
to tune the PID controller. The controller was tuned with the
goal of improving accuracy while limiting oscillation which
could be disconcerting to the participant. After tuning was
complete, every target was tested once, and the tuning was
adjusted if oscillations occurred at any of the targets. The
final proportional gain was 0.025 N/mm, derivative gain was
0.01 N-s/mm, and integral gain was 0.1 N/mm-s. These gains
were the same for all Cartesian directions and were used
for all targets and all trials across both days of static hold
experiments.

For each set during testing, each target was repeated twice,
once with the feedback+ controller and once with open-loop
control (zero feedback forces) resulting in a total of 26 targets
during a set. The order of the 26 targets was randomized
in each set. The number of sets completed each day was
determined by the scheduled time (5 sets on Day One and
11 sets on Day Two).

E. Data Analysis

The accuracy of each trial of the static hold experiments
was defined as the Euclidean distance from the target wrist
position to the average wrist position over the final second of
a trial. For a set of trials, the accuracy was the average of all
trials in the set.

The precision, r, for a set of trials is defined by

r =
√
χλmax, (6)

where λmax is the maximum eigenvalue of the covariance
matrix for the mean wrist positions over the last second of
the trials and represents the largest spread of the points in
any direction. For three dimensions and a 95% confidence, χ,
the inverse of the chi-squared cumulative distribution function,
is equal to 7.8147. Thus, r is equal to half the length of
the maximum axis for the 95% confidence ellipsoid of the
data. Therefore, r represents the radius of a sphere which will
encompass 95% of the final positions.

To quantify the response of the system, the maximum error
and 5% settling time for each trial was recorded. The 5%
settling time was defined as the time after which the distance
between the wrist and the target position remained within 5%
of the accuracy for the trial.

The study was analyzed as a randomized complete blocked
design where the blocks were each set of 26 targets. 1-way
ANOVAs were completed to determine if the accuracy, settling
time, and maximum error were significantly different for the
feedback+ controller than for the open-loop controller. A 2-
sample t-test was completed to determine if the controller
affected the precision. A 2-sample t-test was also completed
to determine if the accuracy of the controllers changed from
day to day.

III. RESULTS

The feedback+ controller generally performed with better
accuracy and less maximum error than the open-loop con-
troller. Feedback control typically had a significant effect on
the overall controller during a trial and was dominated by the

TABLE II
COMPARISON OF CONTROLLERS

Mean Open-loop Feedback+ p-value
(standard deviation)

Accuracy (cm) 12.3 (9.5) 2.9 (2.2) <0.001
Precision (cm) 7.7 (8.7) 3.7 (1.9) 0.13

Maximum error (cm) 12.7 (9.6) 6.1 (3.4) <0.001
5% settling time (s) 4.3 (1.3) 6.3 (1.1) <0.001

integral portion of control. To illustrate these results in detail,
we present a representative example (Fig. 2-3) along with the
numerical results from all trials.

Figure 2 shows the position of the wrist relative to the
target, the desired forces (the input to the inverse muscle force
block of the controller), and the stimulation commands for a
representative trial of the experiments. The target shown is rep-
resentative of the overall accuracy of the controllers, the time
history of the controllers, the contributions of the feedback
controller, and the complex relationship of the muscles.

Relative to the resting position of the participant (which
is determined by the arm support), the target was a wrist
position away from the participant (negative x direction), to
the participant’s left (negative y) and slightly higher (positive
z). To achieve the target position, the elastic properties of the
arm support must be overcome, and thus our model predicts
open-loop forces in the negative x, negative y, and positive z
directions.

As the trial begins, the wrist was gradually released from the
target position over the first two seconds. At two seconds, there
was an immediate movement away from the target position,
most notably in the positive y direction. To compensate for
this movement, the feedback controller calculated forces in
the negative y direction. Due to this, the controller increased
the upper pectoralis stimulation command to 100%, and the
lower pectoralis quickly followed as more negative y force
was needed. Additionally, the need for increased x force led
to an increase in activation of the biceps/brachialis and a
slight decrease in the triceps stimulation command. This new
combination of muscles and stimulation commands led the y
position of the wrist to move back to the negative side of the
target, while the x position of the wrist moved very near the
target. The y desired force began to increase just after three
seconds, and so the lower pectoralis stimulation command
decreased. At six seconds, as the y desired force continued
to increase, the upper pectoralis stimulation command began
to decrease since the lower pectoralis was already at 0%
stimulation.

Overall, the feedback+ controller held static wrist positions
with better accuracy than the open-loop controller. As seen
in Fig. 2 (top), the open-loop position moved away from
the target to a new final position while the feedback would
drive the wrist back towards the target. The mean accuracy
and precision results for all trials of all targets are seen in
Table II. For the open-loop controller, the mean accuracy
(standard deviation) was 12.3 cm (9.5 cm). The mean accuracy
of the feedback+ controller was 2.9 cm (2.2 cm). There was
a significant improvement in the accuracy of the feedback+
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Fig. 2. This figure shows the controller performance during a trial of a representative target. The top plot shows the time response of the position of the wrist
(adjusted so the target is at 0) for a single target with the open-loop (dashed lines) and the feedback+ (solid lines) controllers. The middle plot shows the total
force input to the inverse muscle force block (see Fig. 1) along with the open-loop force commands (dashed lines). The bottom plot shows the stimulation levels
(as a percentage of the maximum pulse-width defined in Table I) for all muscles during the trial. (The latissimus dorsi, deltoids, supraspinatus/infraspinatus,
and rhomboids were not active during this trial.)

controller compared to the open-loop controller (p < 0.001).
The example in Fig. 2 had a similar performance with an
accuracy of 16.0 cm for the open-loop controller and 3.3 cm
for the feedback+ controller. The complete set of trials for this
target are shown spatially in Fig. 3 with an average open-loop
accuracy of 10.4 cm and feedback+ accuracy of 3.7 cm.

The mean precision (standard deviation) for the open-loop
controller was 7.7 cm (8.7 cm). The mean precision for the
feedback+ controller was 3.7 cm (1.9 cm). There was not a
significant improvement in the precision of the feedback+
controller compared to the open-loop controller (p = 0.13).
Figure 3 shows trials spatially with an open-loop precision of
7.1 cm and a feedback+ precision of 7.0 cm.

Figure 2 shows the representative contribution of feedback
in a trial. Over all trials, the feedback controller produced a
median change of 97% from the open-loop forces. For exam-
ple, this means that a trial starting with a desired open-loop
force of 10N would end with a desired force of 19.7N. The
feedback was dominated by the integral component with it, on
average, accounting for 75% of the maximum amount of force
change desired due to the feedback controller. Additionally,

as shown in the figure, the feedback+ controller was able to
produce a significantly smaller maximum error (overshoot).
The average time response for each controller was quantified
(defined by the settling time and maximum error) as seen in
Table II. The open-loop controller had a significantly lower
settling time (p < 0.001). The feedback+ controller had a
significantly lower maximum error (p < 0.001).

There was not a significant difference in the performance of
the open-loop controller on Day One vs Day Two (p = 0.61).
There was also not a significant difference in the performance
of the feedback+ controller on Day One vs Day Two (p =
0.076).

IV. DISCUSSION AND CONCLUSION

We have presented a combined feedforward-feedback (feed-
back+) controller for holding any feasible static wrist position
of a paralyzed human arm controlled by FES and have
quantified its performance throughout the workspace. Overall,
the addition of feedback to the controller produced better
performance.



Fig. 3. Representative example showing the final positions for each trial for
a single target (blue). The open-loop trials (red) had an average accuracy of
10.4 cm and precision of 7.1 cm. The feedback+ trials (green) had an average
accuracy of 3.7 cm and precision of 7.0 cm

The accuracy of 2.9 cm was an improvement to the single
joint accuracy achieved by [28]. The authors of this pa-
per controlled the elbow joint angle over a trajectory using
feedback and co-activation of antagonist muscles. An rms
error of approximately 9◦ was achieved for trajectories with
no disturbances. With the length of our participant’s arm,
57 cm, and translating the error to the shoulder joint, this
error would result in a wrist position error of 9 cm. Our
controller has been demonstrated for only static purposes, but
the improved accuracy while including the degrees of freedom
at the shoulder is encouraging to applying our controller to full
reaching trajectories.

The accuracy found in the study was also an improvement
over our previous study using open-loop control [15] and
is useful in similar applications to those achieved in the
BrainGate2 study [12]. An accuracy of 2.9 cm maintained
over a trajectory would be good enough for many reaching
tasks including combing one’s hair or picking up a large
piece of food on a plate like a sandwich. Finer movements,
such as picking up a small vegetable with a fork, would
require improved accuracy. The BrainGate2 study used a set
of stimulation patterns for each joint, and the participant used
an intracortical brain-computer interface (iBCI) to select the
position on the stimulation pattern and achieve the desired arm
motion. The main failure mode was due to control interface
challenges which demonstrates the challenge of controlling
joint dynamics directly. A low-level controller is necessary to
account for these joint dynamics and allow the participant to
focus on high-level goal inputs such as a target position in
Euclidean space. The ability to focus on high-level control
inputs also allows for additional control interfaces, such as an
eye-gaze system, for individuals who cannot or do not wish
to use an iBCI due to the required brain surgery. This paper
demonstrates that our controller, with some improvement, has
the potential to be a low-level controller for FES-controlled

arm motions for a high-level control input such as the iBCI
used in the BrainGate2 study.

Our accuracy of 2.9 cm was worse than the tracking accu-
racy of less than 2 cm found in [16] where they completed
arbitrary planar movements with a healthy participant. Re-
moving the planar constraints, however, makes the control
more difficult due to the increased degrees of freedom. The
relative performance of our controller in a 3D workspace while
working with an SCI participant is promising for moving
forward with the controller to full-arm reaching.

Many methods of identifying muscle models have been
proposed throughout the years. The vast majority of such
literature has focused on identifying the models for a single
muscle acting on a single degree of freedom. Examples of this
include the use of such methods in identifying the parameters
of a muscle model about the knee [29, 30]. These types of
methods have been expanded upon to identify muscle models
for two muscles in the upper extremity [13]. Other upper-
limb system identification methods have been performed for
single degrees of freedom [28] or in a restricted workspace
[16]. While the speed and accuracy of these methods have
improved, the requirements to model the entire arm still make
them impractical for full-arm reaching. Our method defined
in this paper rises to the challenge of identifying a model of
the entire arm of a person with a spinal cord injury using a
limited amount of data. The model can immediately be used
as a controller to be used for full-arm reaching tasks.

Achieving arbitrary, 3-dimensional reaching motions re-
quires an accurate model. The work in [16] shows that a model
of the muscles and their actions is necessary for good control.
For feedback to work correctly, our controller must know the
correct direction of force induced at the wrist by each muscle.
In a 2D workspace, this is relatively easier as each muscle
essentially acts about a single degree of freedom. However,
in 3-dimensions, many muscles (especially in the shoulder)
act about multiple degrees of freedom. If we consider the
deltoids, the action of the muscle of arm abduction would
lead to an expected positive force in the z direction. Fig.4
shows the direction of the force produced by the deltoids in
the x-y plane according to our model. In configurations to
the left side of the workspace, the deltoids produce a force
almost entirely perpendicular to the participant’s chest, but
towards the right side of the workspace the deltoids produce
a force which pushes away from the participant’s chest. It
is necessary to know the force produced in all directions to
accurately control reaching.

This accurate model is critical to having a controller in 3-
dimensional space which can automatically select the muscle
stimulation levels. In the trial shown in Fig. 2, it is not
completely intuitive which muscles were selected to achieve
the desired forces. For example, it is not clear as to why the
biceps increased in activation instead of the triceps decreasing
activation since they are often considered simple antagonist
muscles about the elbow. The stimulation pattern selected by
the controller was most likely due to the muscle actions in
other degrees of freedom. Without an accurate model and a
method of automatically selecting the muscles for a given
reach, it would not be possible to intuitively make these muscle



Fig. 4. Image showing the modeled direction of force produced at the wrist
by the deltoids throughout the workpspace. The direction of force changes
based on the position and orientation of the wrist.

choices.
The required complexity for 3-dimensional control of the

entire upper-limb demands a significant amount of time to
complete the system identification. System identification meth-
ods which require less time have been presented in works
such as [16, 28], but most focus on single degrees of freedom
or constrained workspaces. The data gathering for our model
identification took place over the course of approximately 2.5
hours. Our work models a 6-dimensional workspace of the
wrist position and orientation. This large increase in dimen-
sionality requires significantly more information compared
to single joint control methods (1D workspace) and planar
methods (2D workspace). Our system also requires modeling
for controlling nine muscle groups as opposed to only two
muscles in single joint systems or even five muscles in [16].
This increase in control inputs requires more data to accurately
model. Additionally, an individual with SCI requires more
frequent breaks than a healthy individual which increases the
amount of time required to gather the data.

A drawback of the amount of time required for our system
is that, for real-world use, it is difficult to complete the
identification frequently to account for day-to-day changes in
the model. Additionally, there could be rapid changes to the
system in real-time (for example, if the individual picks up an
object) which would lead to errors in the model. However, as
our controller has demonstrated, the addition of feedback is
able to account for errors in the modeling or changes in the
system over several days. Therefore, the system identification
will need to be performed at less frequent intervals as opposed
to daily and the system can account for changes due to picking
up objects.

To improve controller performance, improved modeling or
model adaptations may still be necessary. For several open-
loop targets, the wrist would start at the target, drift slowly
away for a second or two, and then quickly accelerate to
the far right extreme of the participant’s workspace. It was

noticed that this seemed to occur due to the triceps causing
elbow extension when other muscles caused internal rotation
of the shoulder. Internal rotation of the shoulder would cause
the triceps direction of force to change from one that is
pushing forward, to a force pushing to the right. This inter-
nally rotated shoulder does not passively occur and therefore
is not seen during the muscle identification procedure (the
triceps model is developed with only the triceps active). It is
likely that performance could be improved by using a richer
amount of data which could better include the changes in
orientation which occur when multiple muscles are activated.
However, compared to our current method of identifying joints
individually, stimulating multiple muscles would not leverage
the independence of muscles and would require significantly
more time. To improve our modeling without adding more
identification time, we aim to develop a system of updating
the muscle models during control tasks to improve the system
performance.

More advanced controllers may also be necessary to im-
prove the system’s performance. Our controller has a relatively
slow response as shown by the high settling time because it is
driven strongly by integral control (Fig. 2). This slow response
leads to the wrist moving an average of 6.1 cm away from
the target before the feedback pushes the wrist back towards
the target. The controller gains were selected to improve the
accuracy of the controller while limiting oscillations which
can be uncomfortable to the participant. Due to the system
dynamics and time delays in the system, increasing the pro-
portional and derivative gains led to oscillations. Techniques
for accounting for these issues, including electromechanical
delay, have been developed but generally only for single joint
systems [31]. Developing and applying these techniques to our
complete arm system may help further improve the controller
performance.

A common issue in FES control is the rapid fatigue in the
muscles which have been controlled. During this experiment,
we did not notice any significant changes in the performance
of the controller over the course of a day (though this was not
explicitly tested for). For a single trial (or trials spaced out over
time), the controller seems to be able to account for changes
in muscle dynamics due to fatigue (or other disturbances) as
demonstrated in the performance found in this study.

The goal of this paper was to develop a controller capable
of achieving reaching tasks. Though demonstrated for static
positions, our control architecture shows promise in achieving
full reaching tasks. We propose using the controller (with the
stated improvements) as a quasi-static controller. The wrist
will move along a path of feasible static wrist positions
connecting a starting position to the end goal position. The
path of feasible points will be selected from the set of feasible
configurations as defined by the model in this paper. The
controller presented in this paper demonstrated the capability
of achieving the static wrist positions. By shifting the desired
static position, we will be able to move the wrist along any
desired path.

The main contribution of this paper is the development
of a data-driven-model-based feedback controller for 3-
dimensional wrist-position control of an FES-controlled para-



lyzed human arm. Our controller accurately and consistently
holds feasible static wrist positions while maintaining the mus-
cular redundancy of the arm. However, improved performance
may be necessary for finer motions. Improved modeling and
model updates are the clearest opportunity to do so. Using
this controller, FES-controlled full-arm reaching motions can
be achieved by commanding a sequence of static positions
along a path connecting a starting position to a goal position.
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