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dition; and crystal symmetry. We show that this metric reproduces the Mackenzie distribution in the no-
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mon normal or misorientation. We provide a graphical representation of the mapping of quaternion pairs
onto the octonion unit sphere, and describe a number of practical computations in the Supplementary
Material accompanying this paper.
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1. Introduction

Grain boundaries play an important role in determining the
properties of metals, ceramics, and other polycrystalline materials
[1,2]. However, they are difficult to analyze in experiments and
simulations in part because they occupy a high dimensional space
that is typically characterized by five experimentally observable
crystallographic parameters: a relative rotation between two single
crystal grains known as the misorientation and a boundary plane
separating the two grains [3,4]. Two important aspects of different
grain boundary representations are the ability to compare them by
a metric and compute shortest paths, or geodesics, between grain
boundaries of arbitrary character in the configuration space of the
representation. The question of the proper choice of a metric for
grain boundary configurations is a classical problem in grain
boundary science attempted by many authors [3,5]. Metrics pro-
vide important information with many uses; for example, metrics
can form descriptors correlated to the similarity between boundary
pairs for the purpose of machine learning or other data science
approaches (e.g. in Ref. [6]). On the other hand, interpolation along
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geodesic paths in grain boundary space has not been attempted,
due to the complex symmetries present for grain boundary con-
figurations. However, this is an important task: grain boundaries
are dynamic, and can undergo changes in both misorientation and
boundary plane during microstructural evolution processes such as
grain growth and recrystallization. Geodesic paths give a conve-
nient reference for changes in grain boundary configuration. The
computation of physical parameters, such as grain boundary energy
and mobility, along these geodesic paths can provide key insights
into structure-property relationships. Framing the metric in terms
of these paths, then, is a natural response to the issue of finding a
metric; the geodesic metric, defined as the length of the shortest
path between two configurations, can naturally describe the as-
sumptions we make when constructing a representation for grain
boundaries.

Paths in grain boundary space, let alone geodesic paths, are
difficult to construct because of the numerous a priori constraints
or equivalence relations present in the parametrization of a grain
boundary. Defining a geodesic metric was explored by Morawiec in
Ref. [7], but his metric had intrinsic difficulties associated with the
space on which he defined geodesics. This was primarily because
the definition of grain boundaries as the product space of a
boundary plane unit normal vector and a misorientation
S? x SO(3) mixes two very different quantities, a rotation and a
vector, which makes the definition of a geodesic metric non-
intuitive. This manifests in particular oddities corresponding to
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the definition of a consistent reference frame; depending on the
choice of reference frame, a change in the misorientation can
change the boundary plane normal vector. Moreover, the symme-
trization of the geodesic is challenging in this framework, since the
symmetries of the grain boundary normal depend on the misori-
entation [8,9].

In order to alleviate these issues, Olmsted [10] proposed the
representation of grain boundaries with rotations with respect to a
reference frame attached to the grain boundary plane. This
framework naturally suggests a geodesic metric: the Riemannian
metric on SO(3) x SO(3). However, the specification of a grain
boundary with two rotations has an intrinsic symmetry — the
rotational freedom of the reference frame in the plane (which we
refer to as the “U(1) symmetry”) — with respect to which the
Riemannian metric cannot be analytically minimized. This led
Olmsted to construct a “local” approximation of the geodesic metric
in Ref. [10]. In order to more globally approximate the geodesic
metric, we construct an octonion representation for a grain
boundary on the 7-sphere, S, that overcomes challenges associ-
ated with both S? x SO(3) and SO(3) x SO(3). Employing this rep-
resentation, we then find the geodesic metric on the 7-sphere and
account for the various symmetries of present for grain boundary
configurations. This leads to a metric that 1) correctly determines
the angular distances between grain boundaries with a common
normal or misorientation (cases for which the angular distance is
known) and 2) closely approximates the geodesic metric on
SO(3) x SO(3) for all grain boundary pairs while maintaining the
ability to be analytically minimized with respect to the U(1) sym-
metry. This leads to the ability to compute symmetrized geodesic
paths in grain boundary configuration space.

Thus, this paper is laid out as follows: we begin by making our
language more precise in sections on grain boundary geometry,
quaternions, and octonions. We then walk through the construction
of an octonion representation for grain boundaries via pairs of
quaternions, and we apply the symmetries of the grain boundary,
including crystal symmetry. We show that, in the no-boundary
case, the arc-length distance on S’ recovers the Mackenzie distri-
butions for randomly-sampled disorientation angles and for all
crystal symmetries. We show that, for special boundary pairs with
either a common misorientation or a common boundary normal,
the arc-length Q results in precisely the crystallographic angle be-
tween the boundary normals, or the misorientation angle,

respectively. Finally, we show that an extension of spherical linear
interpolation can be used to interpolate grain boundary octonions
along geodesics on S?/ ~; projection of these geodesics onto the
grain boundary manifold SO(3) x SO(3)/ ~ then result in approxi-
mate geodesics. Additional derivations and examples of these
findings can be found in the Supplementary Material.

2. Definitions

Grain boundaries are traditionally described in terms of a
misorientation (or disorientation) and a unit grain boundary
normal. The schematic in Fig. 1 (a) shows grain A represented as the
central (green) sphere, and grain B as the surrounding (gray)
sphere. With respect to the sample reference frame in the lower
left, the orientation of each grain is described by means of unit
quaternions g4 and gg, which bring the external reference frame
into coincidence with the respective grain reference frames. The
misorientation quaternion can then be defined by qy = qgqj and
the misorientation angle follows from the dot product of the qua-
ternions cos(w/2) = qa+qp. The grain boundary plane is described
by a unit vector (inward or outward) normal to the grain A sphere.
One can define the grain boundary plane with respect to either
grain as ny (outward) or ng (outward to B), and several normals
with corresponding surface patches are shown in Fig. 1(a). This
description is widely used despite the fact that it requires mixing of
two very different quantities, namely rotations and unit vectors.

An alternative description, constructed by Olmsted [10], defines
the grain boundary plane to be the z=0 plane in a Cartesian
reference frame; as illustrated in Fig. 1(b), grain A occupies the half
space z> 0 whereas grain B occupies the lower half z< 0. The ori-
entations of grains A and B are described by means of two unit
quaternions g4 and gg with respect to a reference frame affixed to
the plane z = 0; note that these quaternions are different from the
ones introduced in the first description. Since there is only one
possible (fixed) orientation for the grain boundary plane, there is
no need to consider the normal vector. Instead, the two orienta-
tions suffice to uniquely describe the grain boundary. The quater-
nion pair (g, gg) belongs to the manifold SO(3) x SO(3); this can be
reduced to a 5-dimensional manifold by incorporating the fact that
any rotation of both grains together around the normal to the
boundary plane leaves the grain boundary invariant. This 1-D
rotational degree of freedom can be removed from the parameter

U(1) symmetry
around gb normal

(b)

Fig. 1. (a) traditional definition of grain boundary parameters (N4, qy); (b) grain boundary parameters (g4, qp) with respect to a unique grain boundary plane.
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space, resulting in the 5-D quotient space SO(3) x SO(3)/U(1). The
advantages of this approach primarily derive from the fact that we
have a Cartesian product of the same space; if necessary, the grain
boundary normals as well as the misorientation can always be
derived from the knowledge of g4 and gg by appropriate quaternion
products derived in section S1 of the Supplementary Material.

Three equivalence classes, or degeneracies which reduce the
space of grain boundaries, must be accounted for when defining a
distance: the grain exchange symmetry, the no boundary singu-
larity, and crystal symmetry. Grain-exchange symmetry refers to
the notion that a grain boundary remains the same if the two grains
are exchanged across the interface. The no-boundary singularity
refers to the stipulation that for all grain boundary configurations
with an identity misorientation, i.e. the perfect crystal state, the set
of boundary plane inclinations map to the same perfect crystal
grain boundary. Crystal symmetry refers to the set of rotations in
each constituent grain's point group that leaves a perfect crystal
invariant. Crystal symmetry becomes relatively simple to imple-
ment in the grain boundary plane reference frame — we simply
enforce the symmetry of g4 and gg.

For our purposes, each rotation can be represented as a unit
quaternion g€ S>cH. S? is a double cover of the rotation group
SO(3), meaning that for every rotation, there are two equivalent
quaternions, g and — g; SO(3) is thus isomorphic to the quotient
group S3/Z,, where 7, is the cyclic group of order 2. Hence, SO(3) x
SO(3) is isomorphic to S3x S3/7, x ZyCHx H/Zy x 7. The
appearance of the product group H x H, an 8-D group, suggests that
grain boundaries might benefit from a description in terms of
octonions O, i.e., 8-D hypercomplex numbers. While the use of an
8-D space to describe quantities that are inherently 5-D might
appear to be unnecessarily complicated, the fact that the octonions
form a normed division algebra provides a large array of tools for
algebraic manipulation. Moreover, octonions have a natural rela-
tionship to S7, of which SO(3) x SO(3) can be seen as a sub-
manifold. Hence, we describe a grain boundary by means of an
octonion o, formed by the concatenation of the two quaternions g4
and qgg, i.e., 0 = (qa,qp). Since octonions are likely to be unfamiliar
to the materials community, we will begin by recalling briefly the
use of quaternions to represent 3D rotations; then we describe
octonions in some detail and explain how they can be used to
obtain a natural description of grain boundaries.

3. Theoretical derivations
3.1. Quaternions revisited

Consider a general rotation unit quaternion derived from the
axis-angle pair fQa:

=[c, s a],

. . 6 . 6.
q=qo +iq1 +Jq2 +kq3 = [qo.q] = [cos? sin;a
(1)

where a is the unit axis vector (aj + aj + aZ = 1), 0 the rotation
angle (positive for counterclockwise rotations), and i> = j* = K =
ijk = — 1, with (i,j, k) the imaginary units; the last equality in (1)
defines a short-hand notation, with c=cos(6/2) and s=sin(¢/2). The
norm of the rotation quaternion can be computed as

HqH:\/W:[q%+q¥+q%+q%}%:1, )

where the absence of a multiplication sign in the second part in-
dicates the standard quaternion product; the quaternion conjugate
operation is defined as ¢* = [qg, — q]. Quaternion multiplication is

defined by using the dot and cross products as follows:

P q=[Poqo — P-4, Pod + qoP + P x q]. (3)

The misorientation quaternion, gm, for a pair of grains A and B
with orientations g4 = [ca,Sad] and g = [cp, sgb] with respect to an
external reference frame can be determined by first rotating one
grain back to the reference orientation and then applying the sec-
ond rotation:

Gm=qpdy. and qaqg= (dB qa) = G- (4)
Using eq. (3) we obtain:

qm = {CACB 4 spspa-b, —sacpa + caspb — s4spa x b|. (5)

The standard dot product can be generalized to quaternions:
4 1 .
da*ds =Y qaidsi = 5 (@m + dim) = caCg +saspa-b, (6)
i=1

which is recognized as the scalar part of iy and g;;,.

The dot product between two unit quaternions can be used to
determine the misorientation angle w between the two orienta-
tions represented by the quaternions:

(,l) —
5=
It can be shown that w corresponds to the geodesic arc length
between the two quaternions on the 3-sphere S3; w(q,, qg) satisfies
the conditions for a metric, hence w can be used to define the
“distance” between two orientations. Once  is known, one can use
the spherical linear interpolation (SLERP) expression to smoothly
interpolate, at a constant angular rate, between the two orienta-
tions without ever leaving S> (setting 6 = w/2):

q(t) = SLERP(qa4, qp; t)
_sin[(1 — t)0)]
~ sinf

cos qa+Qg— W = 2 arccos|caCp + sAsBa-E . (7)

sin[t 6]
sin 4 a5

Clearly we have q(0) = g4 and q(1) = gg. In the following sec-
tions, we propose a model for grain boundaries using pairs of
quaternions in the form of 8-D hypercomplex numbers known as
octonions. We will show that many of the expressions above have
analogues in the context of grain boundary pairs.

da+ (t€[0,1]) (8)

3.2. Definition of grain boundary octonions

Two rotation quaternions can be combined into a single
octonion as follows:

0=(qa,98) =94 +q8J, 9

where ] is a new imaginary unit with > = — 1; the ordered product
of the four quaternion units (1,1i,j,k) with J produces four new
imaginary units (J, ], jJ, kJ) which are four of the seven imaginary
units of the octonion. The explicit expression for the octonion thus
becomes:

0=qap+iqa1 +]Jqaz +Kkqa3 +]qso +ilqp1 +ilgs2 + Klgp 3
(10)

There are a number of different notational systems in use for the
imaginary units [11], but we have no need for them in the
remainder of this paper, since we will always describe octonions as
pairs of quaternions. The complex conjugate of an octonion, o*, can
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be obtained by changing the sign of all seven imaginary parts.

The octonions make up a “normed division algebra”, O, over the
field of the reals, which means that the eight components all belong
to R; that one can define addition, subtraction, multiplication and
division operations (the latter with the exception of division by
zero); that there is a bilinear product on the vector space; and that
there exists a quadratic form, Q, such that Q(a b) = Q(a)Q(b), with
a,be 0. The norm of the octonion can be defined from:

0o

7 3
- va@ - |3d. an

i=0

In the present paper, we will in particular be interested in unit
octonions, i.e., |[o]| = 1, that are generated by concatenating two
rotation quaternions, i.e., 0 = (qa,qg)- Since each quaternion itself
has unit norm, this octonion has norm /2, so we introduce a
normalization factor:

off =3 (Jonl? + flaof?) =112

0= - (a5.98)—
= da,qs

Unit octonions live on the 7-sphere, S7, and we will refer to a
unit octonion formed from two unit quaternions as a grain
boundary octonion (GBO). The manifold SO(3) x SO(3) is a sub-
manifold of S’; although we can define distances directly on SO(3) x
SO(3), the action of the various symmetries on the GBO is consid-
erably simpler on the ambient manifold S’. In particular, deriving
distances on SO(3) x SO(3)/U(1) requires the numerical solution of
a partial differential equation, while distances on S’/ ~, where ~
represents all the quotient conditions, provide an analytic
approximation to these geodesics.

The product of two octonions is defined by means of a multi-
plication table. To facilitate the computation of such a product, we
make use of the Cayley-Dickson construction which expresses
octonion multiplication in terms of quaternion products:
(a,b)(c,d) = (ac — d*b,da + bc*) <a, b,c,des? cH), (13)
where the pairwise products are ordered (since the quaternion
product is not commutative). This expression, along with the
conjugation rule (a,b)” = (a*, — b), is valid for the multiplication of
complex numbers, quaternions, and octonions, and can be used
recursively to implement numerical algorithms that operate with
any of the hypercomplex numbers. In what follows, we will use the
Cayley-Dickson construction to compute the product of two
octonions as a linear combination of four quaternion products.

3.3. The grain boundary octonion product

To compute the regular octonion product o 0, between two
GBOs 07 and o, we begin by writing each octonion as a pair of
quaternions:

and 03 = (qc,qp) =qc +dpJ.
(14)

We write the quaternions more explicitly using the angle-axis
pair representation w@n as:

01 =(qa,q8) = qa + 4],

qi = [c;, siny], (15)

where i€ {A,B,C,D}, and ¢; = cos(w;/2), s; = sin(w;/2) with w; the
rotation angles and n; = a, b, ... representing the unit rotation axis
vectors.

Each GBO represents a grain boundary in the representation of

Fig. 1(b). By analogy with the misorientation quaternion, g, we can
determine the misorientation octonion o, between GBOs 01 and 0,
by first undoing one grain boundary using o3 and then applying the
second one 0;:

om =030}, and 0705 = (0;0%) =0}, (16)
where octonion conjugation implies that the sign of all seven

imaginary components is reversed.
This octonion product is then written explicitly as:

* 1 * 1 *
01 03 = 5(4a,48)(9c, p)” = 5 (9a,q8) (4c: —9p)
1 * *
=5 (94 9t + 9P 98, —Ap 9a + g8 4c),

where we have employed the conjugation rule in the first step and
the Cayley-Dickson construction in the final step. The four quater-
nion products can be worked out explicitly using eq. (3), paying
attention to the correct ordering, and result in the following
expression for the GBO misorientation octonion in terms of the
rotation angles and axes of the individual quaternions:

1 PN ~ o~ > ~
0105 = 5 (CACC + CBCp + SpSca-c€ + sgspb-d,spcca + sgcpb

— €4Sc€ — cpspd — Sasca x €+ sgspb x d, —cacp
+ cpCc + Saspa-d — sgscb-€,s54cpa + Spccb + cpsc€
— caspd + S45pa x d + Spscb x E)
(17)

Since the octonions form a normed division algebra, the norm of
an octonion product is equal to the product of the norms, so that the
octonion above has norm 1; this means that GBO multiplication of
the form o; 05 occurs on the “surface” of s7.

The conventional dot product can be generalized to octonions by
using the Euclidean inner product as follows (see section S5 in the
Supplementary Material for a brief discussion of Euclidean and
Grassman inner and outer products and their relations to the
octonion product):

7
] * *
010y = E 0“02,,-:5(01 05 + 03 07). (18)
i=0

The octonion dot product is thus given by:

1 PN ~ o~
01°0; :i(CACC—FCBCD +sAsCa-c+sBsDb-d>. (19)

In terms of the quaternion dot products from the previous
section, we can write the GBO dot product as:

1 1 ) ) Q
01+02 =5 (qa~qc +qp-dp) =5 (COS%‘F COS%)EC05§~

(20)

By definition, the geodesic arc length Q on S" is a metric on the
unit n-sphere embedded in "1, The arc length between two GBOs
can thus be computed as:

Q = 2 arccos|oq <0, (21)

The geodesic arc length Q naturally satisfies the conditions to be
a metric on S’ and can be taken as a “distance” between the two
GBOs. For normalized octonions, we have:
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[0 w
COSﬁ + COSﬂ

Qppcp =2 arccos1 3 5

2

1
=2 arccos5|da-qc +9p-dp|- (22)

4. Incorporation of symmetries

To make the definition of the geodesic distances between GBOs
more useful, we need to apply a number of symmetries to bring the
mathematical space to the correct dimensionality. In this section,
we apply each of these symmetries in turn: U(1) symmetry around

da39c,0 — 9c;3940 + 9839p,0 — 93980 + (da X qc)3 +

from the quaternion dot products:

) _ gieg) () = i) + s - R0

cos (27)

The value of { for which Q is minimal can be determined
analytically by putting the first derivative of the octonion dot
product with respect to { equal to zero and solving for {; after some
algebra, the result can be written as:

u=>0

L 12
tmin={ 5t 20 (28)

(29)

uw=2 arctan(
da*dc +4p-qp

the grain boundary normal; grain exchange symmetry; the no-
boundary condition; and crystallographic symmetry.

4.1. U(1) symmetry around the boundary plane normal

As is clear from Fig. 1(b), the octonion representation introduced
above has a degeneracy with respect to the z axis; any rotation of
the pair of grains around z does not change the grain boundary
character. If we represent a rotation by an angle { around the z axis
by the quaternion g, (), with

£l

q:(§) = {cosi, siniz}z[cz,s: E], (23)

then the individual quaternions g; for the grain rotations of the
previous section can be transformed to q',.(ﬁ) = q;qz({). The rotation
of quaternion qc is readily shown to result in:

qc(§) =qcqz(%) = (CCC: — Cz5¢S¢, [Sc <C:Cx + SgCy)7

5C< — S+ c:cy) C2ScCy + CCS';] )E(C'C(C), c (Z)),
and a similar relation for g, ({). To obtain all the equivalent GBO
pairs under U(1) symmetry, we replace the quaternions q¢ and qp

in equation (19) by their primed versions; for the dot product this
leads to:

01-05(8) = CAC(0) + CoC(£) + Sasea-€ () + spspb-d ({);
(24)

the GBO misorientation angle Q should then be selected to be the
smallest angle with respect to the U(1) rotation angle {:

. 1
Q = min 2 arccos5|qa-+qc (€) + 4a*dp ()] =Lppc p' (Cmin)-

(25)
or, equivalently:
Q_ 1] wac(®) wpp (§)
cosj = m(axi cosT + cosT . (26)

The quaternion misorientation angles w;; ({) are determined

(qp x %)3)_

Note that the denominator contains dot products between
quaternions, not vectors; in the numerator, only the z-components
of the vector cross products contribute. Evaluating eq. (25) for
¢ = min Will produce the smallest value for the GBO misorientation
angle Q and explicitly implements the U(1) symmetry with respect
to the grain boundary normal. Since the minimization process can
be expressed in closed form, there is no need for a numerical
minimization algorithm.

4.2. Grain exchange symmetry

Grain exchange symmetry can be implemented by exchanging
A< B, and leaving (C, D) unchanged; this results in a different dot
product:

01+0,(0) = CgCr(0) + CAC(0) + 5gScb+€ () + Spspa-d (0);
(30)

We can perform a similar minimization with respect to the U(1)
symmetry, this time with respect to an angle ¢. The value of ¢ for
which the dot product is maximal is given by the same expressions
(28, 29), but with A and B interchanged everywhere.

The actual GBO misorientation is then the smaller of the two
obtained by grain exchange symmetry:

Q = min{Qapcp (Emin)> CeAcD (Tmin) }- (31)

Eq. (31) represents the implementation of both U(1) symmetry
and grain exchange, and is a central result of this paper.

4.3. Double covering of the quaternions

The unit quaternions form a double cover of SO(3) because
quaternions q and —q represent the same rotation. Hence, the
octonions (+p,+q)/v/2 all represent the same grain boundary. To
determine the smallest GBO misorientation angle for a pair of GBOs,
it is sufficient to check only the following two cases: (qq,
0)/V2—(4c,90)/vZ and (qa, — G5)/vV2—(qc.qGq)/V2 to cover all
possible combinations. Combining this with the grain exchange
symmetry of the previous section, a total of four cases must be
examined to determine the smallest GBO misorientation angle:
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Q= min{QABC’D’ (Cmin)> @BAcD (Tmin)s QAEC/D’ (Cmin) )

) (32)
QBZC'D' <0min) }

4.4. The No-Boundary condition

Since we formulate our metric as a geodesic metric, we are
explictly working on a manifold. This condition, that our space be a
manifold, is broken if we apply the quotient group associated with
the no-boundary equivalence relation - in Section 6.3 we show that
the no-boundary group does not satisfy the quotient manifold
theorem. On the other hand, if we “warp” the manifold such that
our metric satisfies the no-boundary equivalence, this “warping” is
defined arbitrarily, as mentioned by Morawiec in Ref. [7].

Thus, when we expressly work with geodesic metrics, quantities
intrinsic to Riemannian manifolds, it is necessary to include the no-
boundary condition within our configuration space. In the absence
of a grain boundary, the quaternions g4 and gg are identical, so that
the no-boundary grain boundary octonion (NBO) becomes 0 = (¢,
qa)/V2. When we compute the dot product of two NBOs,

071(c sad,ca,S4a) and o—l(c Sc€,cc,ScC)
1 \/ZA7A7A7A 2 \/§C7C’C7C’
(33)
we obtain:
Q ~ o~ w
COS= = 01+03 = CACC + SpSC A+C€ = COS—AC (34)

2 2

In other words, when we have no boundary, then the GBO
misorientation angle Q reduces to the regular quaternion misori-
entation angle w between the two grain orientations.

If we generate random normalized GBO pairs (01,0,) and
compute the misorientation angle Q for each pair, then we obtain
the histogram shown in Fig. 2. The curve labeled “Boundary Pair” is
the result of generating 10® random GBOs (by sampling
SO(3) x SO(3) x SO(3) x SO(3) using the cubochoric sampling al-
gorithm described in Ref. [12]) and computing the geodesic dis-
tances after enforcing both the U(1) and grain exchange (GE)
symmetries (using equation (31)). This represents the distribution
of the difference between grain boundaries, which is intrinsically
related to the triple junction character of a material under a uni-
form grain boundary distribution. When the analysis is repeated for
“No Boundary” octonion pairs of the form (qa, qa)—(qc,qc) the
curve labeled “No Boundary” is obtained; this curve is identical to
the misorientation distribution in the absence of crystal symmetry,
and the analytical solution (2/)sin®(w/2) is superimposed on the
histogram as a continuous white line. The geodesic distances on S’
are thus consistent with those on S? when the grain misorientation
in each boundary pair goes to zero.

4.5. Crystallographic symmetry

Consider a material with rotational point group % of order Np;
the symmetry elements of this group can be expressed as (passive)
rotation quaternions S; with i1, Np]. The set of symmetrically
equivalent orientations for a given quaternion g can be computed as
{Si q.i€[1,Np]}.

If we write the geodesic arc length of eq. (31) as:

Q = Q(01,02) = Q((qa,98), (4c, qp)); (35)

0 T \
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Fig. 2. Histogram of the GBO misorientation angle Q in degrees for 108 randomly
generated unit GBO pairs; the histogram uses a bin sizes of 0.25° and the vertical axis
is in %. The curve labeled “Boundary Pair” is obtained after application of U(1) and
grain exchange (GE) symmetry. The “No Boundary” curve represents no-boundary
pairs (qa.qa)(qc.qc) and is in full agreement with the analytical solution (super-
imposed as a white continuous line).

for the GBO pairs (qa,qs)—(qc, qp), and the symmetrically equiva-
lent angles as:

Qijir = Q((Si 94,Sj q8) (Sk qc,S1 Gp))» (36)

then the true GBO pair misorientation angle M is given by:

M(01702) = M((qA’ qB)7 (qC7 qD)) = min{Qijl€17 (iajv k’ l) = [1’Np} }
(37)

Since grain exchange symmetry is already taken care of in the
computation of Q, the cardinality of this set is equal to Ng. The
minimum value in this set produces the smallest geodesic arc
length between symmetrically equivalent GBO pairs. If we apply
this relation to a no-boundary GBO pair (qq, ga)—(qc, qc), then we
have:

Mng((da,qa), (dc, qc)) = min{Q (S; ga,Sj qa, Sk 9c>S1 dc),
(i,j, k., )€ [1,Np] }.
(38)

The resulting angles Myg are distributed according to the well-
known Mackenzie misorientation curves, as shown in Fig. 3. The
dashed curves show the Mackenzie distributions for the 11 rota-
tional point group symmetries, computed by randomly generating
108 GBO pairs. The solid curves show the distributions of the
minimal geodesic arc length M (in degrees) for each of the point
groups, and are combined in a single plot on the lower right. These
curves include U(1) symmetry, grain exchange symmetry, crystal-
lographic symmetry, and the fact that quaternions form a double
cover of SO(3), i.e., in each computation, all quaternions q with
negative real part were replaced by — g. The distribution curves for
the no-boundary case are in full agreement with the theoretical
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Fig. 3. Histograms of the distributions of the no-boundary geodesic arc length Myg (dashed curves) and the boundary pair geodesic arc length M (solid curves), both in degrees, for
each of the rotational point groups. The plots on the lower right show a superposition of all the Myg (right) and M (left) distribution curves. Note that the different plots use different
intervals along horizontal and vertical axes; the dashed curves in the final two plots correspond to the absence of crystallographic symmetry.

curves available in the literature [4].

4.6. Example computations of the octonion metric

In this section, we provide two examples of the computation of
the octonion metric Q for special boundary cases, namely a pair of
boundaries with common grain boundary normal and different
misorientation, and a pair with common misorientation and
different grain boundary normals. Details of the derivation can be
found in section S-1 of the Supplementary Material.

For the first example, we use a pair of symmetric [010] tilt
boundaries with boundary normal [001]; the rotation angles are
6, = +arctan(1/5) and 6, = =zarctan(1/2). The resulting grain
boundary octonions are then given by:

1 01 . 0 01 . 04 .
01 = ﬁ (cosj, 0, smj, 0, cosj, 0, —sin 5 0),
1 b, . 0 b, . 0
0y = ﬁ (cos 5 0, smi, 0, cos 5 0, —smj, O). (39)
Application of the octonion metric then results in:
Q 01— 6,
cos7 = cosT, (40)

so that the angle between the grain boundary pairs is Q = |6; —
6,] =15.2551°, which is precisely the difference in the tilt angles
of 1 =11.3099° and 6, = 26.5650°.

The second example involves a pair of grain boundaries with a
common misorientation described by a misorientation quaternion
pm = [v2/3, 1/V6[1,1,0]], and boundary normal pairs of
my 5 = [312]/[132] and mc,p = [712]/[336] in the respective grain
reference frames. As described in detail in supplementary section
S1.2.2, the resulting octonions are given by:

01 =[0.38975, | — 0.26595, —0.83458, 0.28432],
0.76752,[0.058036, —0.63839, 0.0000]];

0, =[0.57440, [ — 0.34865, —0.71731,0.18433],
0.90417, [0.025084, —0.42643, 0.0000]],

where we have left the vector parts of the individual quaternions
between square brackets. Taking into account U(1) symmetry and
the grain exchange symmetry, the geodesic arc length Q is readily
shown to be 29.206°, which is precisely the angle between the
boundary normals [312] and [712] (assuming cubic symmetry).

These examples, which are worked out in significantly more
detail in section S1 of the Supplementary Material, show that the
geodesic arc length on S” reduces to the expected angles for these
two special boundary pair cases.
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Fig. 4. Schematic illustration of the various spaces involved in the computation of the geodesic are length between grain boundary octonions; see text and Supplementary Material

for a complete explanation of all objects.

5. Schematic representation of the geodesic arc length
computation

Despite the limitations of our ability to visualize higher
dimensional spaces, it is instructive to create a pictorial represen-
tation of the steps followed in the derivations above, in particular to
clarify the relations between the quaternions and octonions
involved. Consider four random quaternions belonging to S3,
which is a double cover of the rotation group SO(3). We only
consider unit quaternions with positive scalar part, or, equivalently,
the Northern hemisphere of the 3-sphere, S3; we can represent
this hemisphere as a 3-D ball of unit radius, B> (see right side of
Fig. 4), by performing an angle-preserving stereographic projection
from the 3-sphere, using the following transformation:

q ~ w
S = =ntan-. 41
1+q0 4 ( )

The random quaternions g; (i€ {A, B, C,D}) used to generate this
figure are given by:

qa = [0.15643449,0.23280039, 0.93120158,0.23280039];
gqp = [0.30901697,0.63403773,0.31701887,0.63403773];
qc = [0.30901697,0.63403773,—-0.31701887, —0.63403773];
gp = [0.15643449,0.23280039, —0.93120158, —0.23280039],

and can be represented by four points in the stereographic ball.
Since g¢ and qp are used to implement U(1) symmetry, and we
consider them as a pair in an octonion, we represent the set of
equivalent octonions (qc(£),qp({)) with {e[-2m,27] as a curved
surface inside B> in which the two quaternion points are connected

by an arc segment that is the stereographic projection of the
geodesic arc between the two corresponding points on S3; the arcs
highlight the changing relative position of the points as U(1)
symmetry is applied. The original positions of qc and qp are indi-
cated by yellow spheres connected by a yellow (geodesic) arc; the
positions of g4 and gg are indicated in cyan. Due to the equal-angle
nature of the stereographic projection, the trajectories of each in-
dividual quaternion q({) are circles; the portions of the circles
outside the stereographic projection ball correspond to quaternions
with negative scalar part which can be folded back into the B3 ball,
similar to using the North pole as the projection point for points in
the Southern hemisphere of the conventional 2-D stereographic
projection. The two circular paths for q¢(¢) and gqp(¢) are indicated
by small orange spheres with increments of 2° in ; an arc is drawn
every 5° between corresponding sphere pairs. Note that the rather
busy right half of Fig. 4 is built up in several simpler steps in section
S3.2 of the Supplementary Material.

Fig. 4 shows on the left hand side a pictorial representation of
the 7-sphere, S. The quaternions g4 and qg are mapped onto the
two grain exchange related unit octonions (ga,qg) and (gg,qa)
(omitting the normalization factor), and are represented by points
on 7. Similarly, the quaternion orbits q¢({) and qp(Z) are mapped
as o({) onto the octonion sphere; in section S2.1 of the Supple-
mentary Material we show that this one-parameter curve o({) is a
great circle on S’; all points along this circle represent the grain
boundary C—D.

For the quaternions q¢({) and qp({), we apply equation (28) to
find the minimal angles {;, = 126.81° and o, = 47.26°; the
corresponding quaternion pairs are represented on Fig. 4 in green
for qc({min)—4p({min)» and in red for gc(0min)—4p(0min)» along with
the corresponding geodesic arc projections. Using equation (24),
we compute the geodesic arc lengths for the pairs to be
Qacpp = 113.07° and Qpcap = 124.89°; the arcs are drawn inside
the B3 ball in green for AC—BD and in red for BC—AD. The
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corresponding geodesic distances between the octonions (g, gg)
and (qg, q4) and the nearest point on the orbit o’Z(C) are indicated in
the same colors on S’; the shortest of the two arc lengths, Qpyip, is
taken as the metric distance between the grain boundary pairs A—B
and C—D, in this case Q = 113.07°. It should be noted that the two
green arcs inside B> connecting g4 to qc({min) and gz to qp(min)
correspond to the single geodesic curve between the octonions (qa,
qs) and 0, (Cmin) = (dc(Cmin)s dp(Cmin)). Tepresented by a green
point, on S7.

In section S1 of the Supplementary Material, we provide several
practical examples using the octonion representation. These ex-
amples include general expressions for deriving the traditional
grain boundary normal and misorientation (n,qr) from a GBO;
deriving a GBO from the traditional (n,qm) descriptor; and
computation of the GBO misorientation angle for a pair of bound-
aries with common misorientation but different normals and a pair
with common normals but different misorientation.

6. Spherical linear interpolation of octonions (0SLERP)
6.1. Derivation of the interpolation relation

Once the geodesic distance Q between two GBOs is known, one
can define the octonion spherical linear interpolation (0SLERP) in
the same way as the SLERP relation for quaternions. Consider two
normalized grain boundary octonions o; and 0,; the GBO misori-
entation between them is then given by cosfl = 07 -0, (setting § =
Q/2). If we want to smoothly interpolate between o, and o,, we
need an expression of the following form:

r(t) = a(t)oq + b(t)oy, t€10,1], (42)

where r(t) is the interpolated octonion, r(0) = o4, r(1) = 05, and
a(t) and b(t) are interpolating functions that we need to determine.
Taking the dot product of this expression with respect to 0, and o,
we obtain the following system of equations:

01-1(t) = a(t)o1-01 + b(t)01-03;

0, +1(t) = a(t)oy+01 + b(t)03+0,.

The dot products o;+0; are equal to 1, and 040, = cosf; for the
dot products on the left hand side, we want to have a linear increase
of the angular parameter of the form tf, which results in:

cos[t 0] = a(t) + b(t)cos 0;

cos[(1 — t)f] = a(t)cosf + b(t).

Solving these coupled equations, and simplifying the trigono-
metric functions, we find:

_sin[(1 — t)0]
- sind

sin[td)
sinf -

a(t)

To verify that these relations produce an interpolation on the
GBO unit sphere S’ we must verify that r(t) r*(t) = 1.

bt = (43)

r(0)r(t) = (a(t)or + b(t)oz)(a(t)oy + b(t)o3);
= a?(t)010] + b?(t)0203 + a(t)b(t) [0105 + 0,0%];

For unit octonions we have o; o = 1; the term 0y 05 + 0, 0} is
seen to be equal to 2cos#, so that:

a?(t) + b%(t) + 2a(t)b(t)cosh = 1,

Hence, the interpolated GBOs lie on s7 for all values of t. Thus

we conclude that the spherical linear interpolation expression for
octonions (oSLERP) is given by:

sin[(1 — t)0)
sin 6

sin[tf)]
sinf 2

(tcc010-2).

This relation allows for a smooth transition, along a geodesic
path on S7, from unit grain boundary octonion o; to 0,. As
described in more detail in supplementary section S6, the inter-
polated octonion r(t) has unit norm, but the two component qua-
ternions deviate slightly from having unit norm themselves.
Renormalizing the individual quaternions for each value of t en-
sures that the entire interpolated trajectory remains inside the
space of GBOs; this renormalization has been applied to each of the
examples in the following section. As shown in section S6, the
renormalization gives rise to a small excess arc length over the
geodesic length Q; numerical analysis shows that this excess arc
length is always smaller than 7.5°, with the majority being smaller
than 1°, so that the interpolated trajectories using the renormalized
octonions provide an accurate approximation of the true geodesic
trajectories.

r(t) = 0SLERP(01, 05; ) =
(44)

6.2. oSLERP examples

The octonion Spherical Linear Interpolation or oSLERP described
in the previous section can be used to smoothly change the grain
boundary character between two grain boundary octonions, and,
hence, move continuously from one grain boundary to any other
grain boundary along the shortest possible geodesic path in S’. This
motion can be animated using 3-D rendering software, and in this
section we explain the basic steps involved in the animation pro-
cess and illustrate them with a few examples; additional examples
are available in section S3 of the Supplementary Material. In all
examples we assume that the grain boundary normals are defined
with respect to cartesian reference frames attached to each of the
grains.

The representations in Fig. 1 can be taken as two starting points
for the rendering of grain boundary interpolation. In the first
approach (Fig. 1(a)), grain A is represented by the stationary center
sphere equipped with a cartesian reference frame, as shown in
Fig. 5(a); grain B corresponds to the outer sphere which rotates into
the correct orientation relative to A. The red-green-blue vectors
denote the x—y—2z cartesian axes, respectively, and are drawn inside
the central sphere for grain A and on the surface of the central
sphere for grain B. The grain boundary plane normal is represented
by a small planar surface patch and a pair of (yellow) normal vec-
tors (inward and outward). The rendering in Fig. 5 shows the case of
the pair of symmetric tilt boundaries described in detail in section
S1 of the Supplementary Material; a geodesic distance of
Q =15.2551° is used and the animation available in the
Supplementary Material section S4 is carried out for increments of
0.25°, resulting in 30 movie frames (recall that the interpolation
angle 6 is equal to half of Q). Fig. 5(a,b,c) shows the start, middle and
end frames, respectively. On the bottom row, an alternative
rendering is used in which grain A is still stationary, and both grains
are represented by truncated cubes with their respective reference
frames. It is straightforward to convert this rendering into one in
which the boundary plane is kept stationary, and both grains move
with respect to the plane.

The second interpolation example involves two randomly
selected boundaries with the following quaternion expressions in
the boundary reference plane:
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(e)

Fig. 5. (top row) Rendering of the interpolation between two symmetric tilt boundaries (defined in section S1 of the Supplementary Material); a-b-c represent frames from the
start, middle and end of an animation available in section S4 of the Supplementary Material. (bottom row) Rendering of the same interpolation, but now the grains are represented
by truncated cubes, with grain A on one side of the boundary plane and B on the other side.

ga = (0.622794, [ — 0.351864, —0.463453, —0.523001]);
gs = (0.720344,[0.493901, —0.468380, 0.133365));
gc = (0.900054, [0.016806, —0.247981,0.357945]);

qp = (0.423425,[ — 0.349539, —0.657148, —0.516420]).

The smallest geodesic distance between the grain boundary
pairs AB and CD is Qp,i, = 53.7725° in the absence of crystallo-
graphic symmetry, and Q,;, = 21.8264° for the cubic symmetry
group 432. In the latter case, the equivalent quaternions corre-
sponding to the smallest geodesic distance are given by:

gqa = (0.463453, [ — 0.523001,0.622794,0.351864);
gp = (0.840554,[0.443544,0.178166, —0.254938));
qc = (0.744587,(0.513413,0.138661, —0.403448)]);

qp = (0.657147,[ — 0.516420,0.423425,0.349539]).

Fig. 6 shows four frames (out of 107) from the interpolation in
the absence of crystallographic symmetry, as well as four frames
(out of 43) for the cubic symmetry case. Inspection of the first and
last image in each series shows that the grain boundaries are
identical, but the bottom row shows different crystallographically
equivalent grain boundaries that have a smaller misorientation
angle.

6.3. Further comments on the No-Boundary singularity

As mentioned by Morawiec in Ref. [7], we can enforce the no-
boundary equivalence ed geometry, e.g., with the
function (fi,M)— (ny/1 —Re(M)?> ,M) as done by Patala in
Ref. [13]; however, this arbitrarily distorts paths in grain bound-
ary space (there exist many functions that apply this distortion).
The perspective brought by the Olmsted framework of rotations
from the grain boundary reference frame is a mechanical one: if
we model grain boundary evolution as mediated by local grain
rotations, in any warped geometry satisfying the no-boundary
equivalence the same rotations necessary for mediating grain
boundary evolution require more work for high-angle grain
boundaries than low-angle grain boundaries. Although this is a
sensible assumption for low-3 boundaries, the relative cost of
crystallographic evolution is over-estimated for high-energy
high-angle grain boundaries. Placing an a priori distortion on
the space of grain boundary octonions will thus significantly
affect the resulting mechanical perspective in an unjustified
manner.

By working with geodesics, there is also a tacit supposition that
the configuration space of grain boundaries is a manifold. The
stipulation that our grain boundary space be a manifold is a
practical one: we want it to be possible to “walk” in our space of
grain boundary configurations in a continuous manner. The stip-
ulation that all “non-boundary” configurations be the same, i.e.
NB = {(ny, ) ~ (Ny, I) V(Nq, I), (N3, HES?x SO (3)}, is not
consistent with this approach. We can see this by constructing a
group for which the orbits correspond to the equivalence class NB
in SO (3) x SO (3)/ ~.
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Fig. 6. (top row) Rendering of the interpolation between two random grain boundaries without application of crystallographic symmetry; the total misorientation angle is Q,;, =
53.7725°. (bottom row) Interpolation for a symmetrically equivalent grain boundary pair (under cubic 432 symmetry) for a rotation angle of Q,;;, = 21.8264°. Full animations are

available in section S3 of the Supplementary Material.

6—{ ve=s014).(xy) 250(3) x50(3): (xy)— { E X EY 1Y

(45)

Let M=SO(3)xSO(3) and D= {(x, x) Vx&S0(3)}. Suppose that
there exists some converging series p;M —D such that p; —»peD.
Since p;&D, for all geG:g-p;= p;. Thus, g-p; converges to p.
However, 3g <G such that g-p=p. Thus, G does not act properly on
M, and NB does not satisfy the quotient manifold theorem. More
concretely, consider a subbasis for the product topology of SO(3) x
S0(3)

#={VYUe % :UxSO(3)}u{VVe 7 :50(3) x V} (46)

where 7 and 7 are the topologies on SO(3) inherited from R4.
Now consider the topology .7~ generated by the subbasis .%. For
some Ry €U,R, =S0(3), if (R,R1) ~ (Ry,Ry), for any open set A in
.7 that includes (R, R5), there does not exist a disjoint set from
another open set B — when generating the topology, any finite
intersection AnB will always include (Rq,R;) ~ (Rz,R;) — which
implies that .7~ not Hausdorff. The physical intuition behind these
topological arguments is that when grain boundaries pass
through the no-boundary configuration during crystallographic
evolution, they should maintain their “momentum” in configu-
ration space, such as to not “snap into” an arbitrary low-angle
configuration afterwards; all discontinuous behavior should be
placed in the energy functional, not the manifold and its
accompanying metric.

6.4. Connection to the Riemannian metric on S° x S3

In Ref. [10], Olmsted formulated his metric as an approximation
to the standard geodesic (Riemannian) metric on S x S3 of the
form

des, o =\ o2 + %, (47)

where a = arccos([Tr(A~!C) — 1]/2) and § = arccos([Tr(B~'D) — 1]/
2) are the geodesic metrics on the two constitutive 3-spheres, and
the capital letters represent the rotation matrices for each of the
grains. Olmsted proposed the following approximation

doimsted = \/3 - Tr(A_lc) +3- Tl‘(Bf]D) (48)

valid for small angles, since dgs s cannot be analytically mini-
mized with respect to the U(1) symmetry. Olmsted's original
formulation in Ref. [10] included a v/2 scale factor; however, in
order to reconstruct the correct misorientation in cases when a =
6, we modify both the Olmsted metric and the Riemannian metric
by a scale factor of 1/v2:

dos, 0 = 75 Va2 + . (49)

1 - -
doimsted = ﬁ \/3 - TI‘(A lc) +3- TI'(B ]D) (50)

This renormalization results in both the Olmsted and the Rie-
mannian metric producing the correct values for the GBOM angles
of section 4.6.

Fig. 7 shows the results of a comparison between the Olmsted,
Riemannian, and octonion metrics for a set of 500,000 randomly
selected grain boundary pairs. The gray scale plots represent 2-D
histograms in inverted contrast with a bin size of 0.25° x 0.25°;
the darkness is proportional to the base-10 logarithm of one plus
the total number of counts in each bin. On the top row, the metrics
are compared in a pairwise fashion, with dgjpgteq VS. dg3, 3 in (a),
octonion VS- dg3 &3 I (b), and doimsted VS- doctonion 1N (€). Note that in
each case, the relationship is surjective, i.e., for every value of
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Fig. 7. 2-D histogram plots of the octonion, Olmsted, and S* x S* Riemannian metric (the latter two scaled by a factor of 1/+/2), for a random set of 500,000 grain boundary pairs.
The top row shows the pairwise histograms and the bottom row displays the residuals of the Olmsted (d) and octonion (e) metrics with respect to the Riemannian metric.

doctonion there is a range of dojmsteq Values and vice versa. The center
plot in (b) shows that the range is particularly narrow when
comparing the octonion and Riemannian metrics. On the bottom
row, the residuals are shown for the Olmsted (d) and octonion (e)
metrics with respect to the Riemannian metric; note the different
vertical scales, reflecting the fact that the octonion metric is a better
approximation of the Riemannian metric than the Olmsted metric.
These numerical calculations show that the deviation of the
geodesic paths on S7 are minimal, and re-normalizing the octonion
such that ||qa|| = ||gs|| provides a good approximation of the
“true” geodesic on SO(3) x SO(3) after symmetrization.

7. Discussion and conclusions

We have defined a geodesic metric between grain boundary
pairs based on the mathematical concept of octonions, i.e., eight-
component hyper-complex numbers that form a normed division
algebra and are widely used in other areas of mathematics and
physics. We define a grain boundary octonion (GBO) as a pair of
quaternions, (g, qg), where each quaternion describes the grain
orientation with respect to a reference frame attached to the grain
boundary plane, with the z axis normal to the plane. When properly
normalized, these unit octonions live on the 7-sphere, S’, and they
are further characterized by the fact that ||ga|| = ||gp||, i.e., they
form a 6-D sub-manifold of S7, isomorphic to S3 x S>. Since the
orientation of the reference frame vectors in the plane of the
boundary can be freely chosen, each GBO has U(1) symmetry with
respect to the z-axis of the reference frame; in other words, all
octonions of the form (g4 q:({),gp q-({)) with {[-2m, 27] repre-
sent the same grain boundary. This further reduces the dimension
of the space to 5-D.

We have presented analytical expressions for the inner product
between two unit GBOs; this product corresponds to the cosine of
the geodesic arc length Q between the two unique grain boundary
octonions on S”/ ~. Numerical analysis of pairs of random GBOs
produced a distribution curve for the GBO misorientation angle in
the absence of crystallographic symmetry, which can describe the
distribution of differences in grain boundaries. We provided several
examples in the Supplementary Material of the use of GBOs for
numerical computations; in particular, we have shown that the
metric produces the expected results for the special cases of
boundary pairs with the same boundary plane but different
misorientation, and boundary pairs with the same misorientation
but different boundary planes. Numerically, the geodesic metric
can be implemented using only quaternion-based operations. At no
point is it necessary to use the octonion multiplication table, since
the Cayley-Dickson construction makes it possible to perform
octonion multiplication in terms of lower order quaternion prod-
ucts; the octonion approach is crucial, however, to obtain the
proper definition of the geodesic metric. We have also derived an
octonion version of the spherical linear interpolation approach
(oSLERP), which allows for the smooth interpolation between any
two pairs of grain boundaries. Animations of rendered represen-
tations of the octonion interpolations are made available as Sup-
plementary Material.

In this work, we expressed our description of the grain bound-
aries using the ambient manifold S’/ ~ >S50 (3) x SO (3)/ ~. This
afforded us the ability to derive an analytic minimization of the
U(1) symmetry around the grain boundary plane, which is not
possible directly on the sub-manifold SO (3) x SO (3)/ ~. For the
purposes of comparing grain boundaries, this is highly preferable,
since numerically solving for the metric repeatedly is



T. Francis et al. / Acta Materialia 166 (2019) 135—147 147

computationally costly, especially on the scale necessary for
computing GBOM histograms. Although the geodesics are different
on SO (3) x SO (3)/ ~, we can reasonably assume that the geodesic
structure on the ambient manifold is a good approximation with an
algebraically clear interpretation. However, when considering the
Hamiltonian mechanics on the configuration manifold, it will be
necessary to work directly on SO (3) x SO (3)/ ~, since the paths on
S7/ ~ maintain a constant angular velocity on S’ but not on each
constituent SO(3). Clearly, there are limitations to both approaches.

There is one important observation to be made regarding our
definition of grain boundary octonions: the GBOs, as defined here,
do not form a group under the octonion algebra. In addition to the
fact that octonion multiplication is non-associative, the identity
octonion, o; = (1,0,0,0,0,0,0,0), is not a GBO; indeed, while o,
does have a unit norm, the component quaternions (1,0,0,0) and
(0,0,0,0) do not have the same norm, i.e., they do not both belong
to S3. This means that there is no identity GBO, and thus GBOs do
not form a group. One could consider the no-boundary octonion
(NBO), (¢,9)/+/2, to be some sort of identity object. This would be
similar to considering the absence of a rotation to be the identity
rotation; the absence of a grain boundary could be considered to be
the “identity boundary”, but the problem then arises that any unit
quaternion q can be used to define the NBO, which would mean
that the identity boundary is infinitely degenerate, violating the
need for a unique identity element. It is unclear at this point
whether or not the lack of group properties for the GBOs is a sig-
nificant problem, and further theoretical work in this area will be
needed.

There are many interesting consequences arising from the use of
octonions to describe grain boundaries. The mathematical litera-
ture on octonions is very rich and extensive, and the results pre-
sented in this paper represent only the very first attempts to
incorporate these hypercomplex numbers into the realm of mate-
rials science. Octonion theory has strong connections to other
mathematical areas, including geometric algebra, as well as physics,
where octonions represent some of the basic mathematical objects
of string theory. In our explorations of the use of octonions to
describe grain boundaries, several questions have come up which
we believe to be relevant areas for further research:

e The curved surface formed by the quaternion pair
(qc 92(),qp qz(%)) in Fig. 4 determines the configuration space.
Is there a way to specify the configuration of these surfaces, for
example using Pliicker coordinates, so as to have a closed-form
expression without the need for minimization?

e How well do GBO geodesics correspond to experimentally-
observable changes in grain boundary configuration?

e Do changes in grain boundary configuration, especially during
grain boundary motion, seek to minimize the GBOM?

e The traditional vector cross product can only be defined in 3-D
and 7-D spaces (in other dimensions, the wedge product from

geometric algebra takes its place). Is there any special meaning
to be derived from the traditional cross product or the Euclidean
outer product of two GBOs?

e Can we formulate analytical solutions for the GBOM distribu-
tions? Can we predict the curves shown in Fig. 3?

These and other questions form the topic of further ongoing
research.
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