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ABSTRACT
Supermassive black holes (SMBHs) in galactic nuclei can eject hypervelocity stars (HVSs).
Using restricted three-body integrations, we study the properties of stars ejected by circular,
binary SMBHs as a function of their mass ratios q = M2/M1 and separations a, focusing
on the stellar velocity and angular distributions. We find that the ejection probability is an
increasing function of q and a, and that the mean ejected velocity scales with q and a similar to
previous work but with modified scaling constants. Binary SMBHs tend to eject their fastest
stars towards the binary orbital plane. We calculate the ejection rates as the binary SMBHs
inspiral, and find that they eject stars with velocities v∞ > 1000 km s−1 at rates of ∼ 4 × 10−2

− 2 × 10−1 yr−1 for q = 1 (∼ 10−4 − 10−3 yr−1 for q = 0.01) over their lifetimes, and
can emit a burst of HVSs with v∞ > 3000 km s−1 as they coalesce. We integrate the stellar
distributions over the binary SMBH inspiral and compare them to those produced by the
‘Hills mechanism’ (in which a single SMBH ejects a star after tidally separating a binary star
system), and find that N ∼ 100 HVS velocity samples with v∞ � 200 km s−1 are needed to
confidently distinguish between a binary and single SMBH origin.

Key words: black hole physics – stars: kinematics and dynamics – stars: statistics – galaxies:
nuclei.

1 I N T RO D U C T I O N

Supermassive black holes (SMBHs) in the centres of galaxies can
eject stars with velocities ṽ � 1000 km s−1 (Hills 1988; Yu &
Tremaine 2003; Brown 2015). These hypervelocity stars (HVSs)
can be used to probe galactic BHs and their stellar environments.
In particular, the properties of HVSs can reveal the presence of a
single or binary SMBH in a galaxy’s core (Yu & Tremaine 2003),
illuminate a galaxy’s star formation history (Kollmeier & Gould
2007), and constrain the shape of a galactic potential generated by
both ordinary and dark matter (Gnedin et al. 2005; Kenyon et al.
2014; Rossi et al. 2017; Fragione & Loeb 2017).

Several hypervelocity stars have been observed in the Milky
Way (Brown et al. 2005, 2015), and the high-precision data from
the Global Astrometric Interferometer for Astrophysics (GAIA)
(Kenyon et al. 2014; Boubert et al. 2018; Brown et al. 2018;
Marchetti, Rossi & Brown 2018a; Marchetti et al. 2018b) and the
Large Synoptic Survey Telescope (LSST) (LSST Science Collab-
oration et al. 2009) will likely produce a catalogue of thousands
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more. Indeed, HVSs are currently detectable only near the Milky
Way (a constraint that will continue into the near future), and those
observed will likely originate from the Galactic Centre (GC) (Brown
2015). A subset may also arise from satellite galaxies, particularly
the Large Magellanic Cloud (LMC) (Edelmann et al. 2005; Gua-
landris & Portegies Zwart 2007; Boubert & Evans 2016; Erkal et al.
2018), and a small number may come from the Andromeda galaxy
(M31) (Sherwin, Loeb & O’Leary 2008).

SMBHs can expel HVSs by three general classes of encounters:
(1) a stellar binary encounters a single SMBH as a ‘slow intruder’
(i.e. the velocity of the binary centre-of-mass at infinity relative to
the SMBH is lower than the binary orbital velocity; Hills 1989), the
black hole replaces one of the stars in an exchange collision, and the
dislodged star departs with a high velocity (the ‘Hills mechanism,’
Hills 1988); (2) a single star encounters a binary SMBH as a ‘slow
intruder,’ and is ejected with an enhanced velocity after extracting
some of the binary SMBH energy (Yu & Tremaine 2003); and (3)
a star is bound to one SMBH and is ejected after an encounter with
the second SMBH (Gualandris, Portegies Zwart & Sipior 2005;
Guillochon & Loeb 2015). The rates of ejection and the properties
of HVSs differ depending on the means of production.

Although HVSs can be produced by other means, including a su-
pernova explosion by one constituent of a compact binary (Blaauw
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1961), close encounters between single stars (Yu & Tremaine 2003),
close encounters between star clusters and central SMBHs (Arca
Sedda et al. 2017; Fragione et al. 2017), and scattering between stars
and stellar mass black hole clusters in the potential of an SMBH
(Miralda-Escudé & Gould 2000; O’Leary & Loeb 2008), most are
expected to have SMBH origins (Yu & Tremaine 2003; Gualandris
et al. 2005; Brown 2015), and thus the production channels listed
above have been investigated in detail. Hypervelocity stars produced
by the Hills mechanism have been studied extensively (e.g. Hills
1988; Yu & Tremaine 2003; Bromley et al. 2006; Kenyon et al. 2008;
Rossi, Kobayashi & Sari 2014; Brown 2015). An SMBH binary
origin for HVSs (henceforth labelled the ‘SMBHB mechanism,’
including both 2 and 3 above) has also received attention (Quinlan
1996; Zier & Biermann 2001; Yu & Tremaine 2003), both when the
binary ejects incident unbound stars (Yu & Tremaine 2003; Sesana,
Haardt & Madau 2006, 2007b) or bound stars (Sesana, Haardt &
Madau 2008), the latter most often when an IMBH inspirals to-
wards an SMBH (Gualandris et al. 2005; Baumgardt, Gualandris &
Portegies Zwart 2006; Levin 2006; Sesana, Haardt & Madau 2007a;
Löckmann & Baumgardt 2008; Sesana et al. 2008).

Several features of the velocity distribution of HVSs have been
illuminated that can be used to distinguish these two mechanisms.
For example, the SMBHB mechanism can eject stars at a rate up-
wards of ∼10 times higher than the Hills mechanism. The average
ejection velocity of the Hills mechanism depends on the mass of
the stellar binary, whereas that of the SMBHB mechanism is ag-
nostic to the stellar properties (Hills 1988; Yu & Tremaine 2003).
SMBH binaries can produce velocity distributions with more vari-
able extrema owing to the additional channels and degrees of free-
dom available in their interactions with stars (Gualandris et al.
2005; Baumgardt et al. 2006; Sesana et al. 2006, 2007a). HVSs (all
those with ṽ � 1000 km s−1) produced by the Hills mechanism are
ejected isotropically, whereas those from the SMBHB mechanism
have a more complicated angular behaviour: for circular SMBH
binaries, HVSs are preferentially ejected in the binary orbital plane
for nearly equal-mass ratios and wider binaries, but more isotrop-
ically for lower mass ratios and tighter binaries (Zier & Biermann
2001; Baumgardt et al. 2006; Levin 2006; Sesana et al. 2006). The
Hills mechanism will eject HVSs as long as there is a continuous
supply of stellar binaries, whereas the SMBHB mechanism ejects
a burst of HVSs in t ∼ 1 − 10 Myr; this occurs when both a con-
tracting binary SMBH ejects incident unbound stars (Sesana et al.
2006, 2007b) or inspirals through a stellar cusp (Baumgardt et al.
2006; Levin 2006; Sesana et al. 2008).

In order to determine the specific mechanism that produces ob-
served HVSs arising from different galaxies, and thus infer the ex-
istence or binarity of SMBHs in a given galactic nucleus, one must
undertake a systematic study of the properties of HVSs produced by
binary SMBHs, and compare them to those produced by the Hills
mechanism under realistic conditions. At present, this comparison
can help to distinguish between the presence of a single or binary
SMBH in the Milky Way, one of its satellite galaxies, or even An-
dromeda. As astrometry improves, this analysis can be extended to
other nearby galaxies.

This paper is the second in a two-part sequence. In the first part,
we investigated the statistics of tidal disruption events (TDEs) by
binary SMBHs over a range of binary mass ratios and separations
(Darbha et al. 2018),1 extending the work of Coughlin et al. (2017)

1There were a few minor mistakes in the published version of the first paper.
There was a mistake in the error bars in Figures 7, 12, and 14, and in the

(also see Coughlin & Armitage 2018 for an application to an ob-
served event). In this paper, we study the hypervelocity stars ejected
by these SMBH binaries over the same parameter range. The set-up
and inputs of our simulations partly overlap with those of previous
studies, though we focus more exclusively on circular, nearly equal-
mass SMBH binaries and have a more densely populated parameter
space in mass ratio and separation, so our results can corroborate
earlier work and have the potential to reveal new features.

In Section 2, we briefly recapitulate our simulation set-up; a
more detailed overview can be found in Darbha et al. (2018). In
Section 3, we present the ejection probability and the properties of
the ejected stars, namely their velocity and angular distributions.
We then present the time-dependent ejection rate as the SMBH
binary contracts due to stellar scattering and gravitational wave
emission. In Section 4, we compare the integrated distributions
for stars ejected by a binary and single SMBH, a more realistic
treatment than previously considered in this parameter regime. To
conclude, we present the number samples needed to distinguish
between the SMBHB and Hills mechanisms, and to identify the
progenitor’s properties. We summarize our results in Section 5.

2 SI MULATI ON SET-UP

We study the properties of hypervelocity stars ejected by ‘hard’
SMBH binaries when the stars are initially incident from the loss
cone in the ‘pinhole’ (or ‘full loss cone’) regime (Frank & Rees
1976; Lightman & Shapiro 1977; Cohn & Kulsrud 1978; Magor-
rian & Tremaine 1999). A binary SMBH becomes ‘hard’ at roughly
the separation (Quinlan 1996)

ãh = GM1M2

4(M1 + M2)σ 2
, (1)

where M1 and M2 are the masses of the primary and secondary,
and σ is the 1D velocity dispersion of the stars in the galactic
nucleus. We discussed our assumption of ‘hard’ binaries and the
‘full loss cone’ regime in the first part of this two-paper sequence
(Darbha et al. 2018), and direct the reader there for a more detailed
discussion.

Stars incident from the loss cone can be ejected only if they
are not first tidally disrupted. A star that approaches an SMBH
too closely gets tidally disrupted when the tidal gravity from the
SMBH overwhelms the self-gravity of the star. Disruption occurs
at the tidal radius, which is roughly equal to r̃t � R∗ (M•/M∗)1/3,
where M• is the black hole mass and M∗ and R∗ are the star’s
mass and radius. We adopt this definition of the tidal radius and
assume that all stars that enter it are completely disrupted, ignoring
complications owing to stellar structure (Lodato, King & Pringle
2009; Guillochon & Ramirez-Ruiz 2013; Mainetti et al. 2017).

We outlined our set-up and described its domain of validity in
our first paper (Darbha et al. 2018). To briefly summarize, we use
Mathematica to simulate stars incident on a binary SMBH in the
circular restricted three-body approximation, in the point particle
limit, and using Newtonian gravitational potentials. We write our
simulation parameters in the units G = M = ã = 1, where M = M1

+ M2 is the total binary SMBH mass and ã is its separation. The
SMBH binary is then described by two dimensionless quantities:
the mass ratio q = M2/M1 and the primary’s (dimensionless) tidal

caption describing them in Figure 12. The notation and terminology were
also unclear at times. We have corrected similar work in this paper, which
can be used for reference.
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Table 1. The quantities used to non-dimensionalize variables (with the dimensions length, mass, time, velocity, and stellar specific energy) in different sections
of the paper, unless stated otherwise. Throughout the paper, if the dimensional character of a variable is not clear from the context, then we write dimensioned
variables with tildes on top and dimensionless ones without them. The parentheses show the definitions of some variables used in each section.

Section Length Mass Time Velocity Specific energy (ε)

Simulation (2) ã M = M1 + M2

√
ã3/GM vbin = √

GM/ã GM/ã

Ejection probability (3.1) r̃t1

(a = ã/r̃t1)
Ejection properties (3.2) r̃t1 M1 v0 = √

GM1/r̃t1

(a = ã/r̃t1) (v = ṽ/v0)
Ejection rate (3.3) r̃t1 M1 t0 = r̃4

t1c
5/G3M3

1 GM1/r̃t1

(a = ã/r̃t1)
(
t = t̃/t0

)

Comparison (4): Binary SMBH r̃t1 vbin = √
GM/ã

(a = ã/r̃t1) (v = ṽ/vbin)
Comparison (4): Binary star a∗0 = 1 au v∗ = √

Gmtot/ã∗
(a∗ = ã∗/a∗0) (v = ṽ/v∗)

radius rt1 = r̃t1/ã. We set the origin of the coordinate system to the
binary SMBH centre of mass. The stars begin on parabolic (specific
energy ε = 0) orbits with respect to the origin, and are distributed
isotropically over a sphere of radius r = 50. The specific angular
momentum � of each star is sampled such that its square is uniformly
distributed in the range �2 ∈ [0, 4] (yielding uniformly distributed
pericentres rp ∈ [0, 2]), which corresponds to the ‘pinhole’ (or ‘full
loss cone’) regime. An integration terminates if the star crosses the
tidal radius of one of the BHs, if it escapes to r = 100, or if the
simulation time reaches t = 104. A large fraction of the ‘escaped’
stars have positive energy and will thus be ‘ejected’ from the binary
SMBH; we use this terminology throughout to distinguish between
these two outcomes. We explore many points in the parameter range
q ∈ [0.01, 1] and rt1 ∈ [0.001, 0.1] (ã/r̃t1 ∈ [10, 1000]), and simulate
5 × 106 encounters for each point. For comparison, we simulated
a smaller number of encounters for a few points in our parameter
space with the N-body code REBOUND using the IAS15 integrator
(Rein & Liu 2012; Rein & Spiegel 2015), and found close agreement
with our results.

Though we vary these two binary SMBH quantities in our simu-
lations, we ultimately interpret these in our results as varying ã and
M2 while holding r̃t1 and M1 fixed. Note that we do not hold the
total mass M fixed, in contrast to other studies. In this paper, if the
dimensional character of a variable is not clear from the context,
then we write dimensioned variables with tildes on top and dimen-
sionless ones without them. Table 1 presents the different scales
we use to define dimensionless variables in different sections of the
paper, unless otherwise noted.

We take as our main example a primary with mass M1 = 106 M	
and stars with solar parameters. The primary’s tidal radius is then
r̃t1 = 2.3 μpc and the range of separations is ã ∈ [0.023, 2.3]
mpc. The characteristic orbital velocity of a binary SMBH is
vbin = √

GM/ã ∼ 2000 km s−1 for M ∼ 106 M	 and ã ∼ 10−3 pc,
and the velocities of the stars in the bulge are σ ∼ 100 km s−1 for
a Milky Way-like galaxy (Gültekin et al. 2009). Since σ 
 vbin,
the stars are ‘slow intruders’ (Hills 1989) and will be expelled with
enhanced velocities in most encounters with the SMBH binary.

For comparison, Quinlan (1996) and Sesana et al. (2006) studied
incident unbound stars on mildly hyperbolic orbits. They set up
their stars with initial velocities ṽi 
 vbin; in this regime, scattering
is not sensitive to the initial velocity (Quinlan 1996), so their mildly
hyperbolic orbits and our parabolic orbits should behave similarly.
The above Authors also initialized the stars with a uniform distri-
bution in b2, where b is the impact parameter, and with pericenters

r̃p ≤ few × ã. Since ṽi 
 vbin and r̃p ∼ ã, the uniform distribution
in b2 implies a roughly uniform distribution in rp as well, as in this
work. However, they adopted stricter criteria to classify an event as
an ‘ejection’ than we do (Section 3); in particular, they imposed an
additional velocity cutoff to incorporate the bulge gravity.

3 HYPERVELOCI TY STARS

In this section, we study in detail the influence of the binary mass
ratio and separation on the stellar ejections. We examine the ejec-
tion probability (Section 3.1) and the properties of the ejected stars
(Section 3.2), in particular their distributions in velocity and direc-
tion.

Throughout this paper, we use the following terminology to dis-
tinguish between two possible end states for expelled stars. We label
a star as ‘escaped’ if it reaches r100 = r̃100/ã ≡ 100 and terminate
the integration, as these stars have effectively left the binary SMBH
sphere of influence in most galaxies. We label a star as ‘ejected’ if it
escapes with positive specific energy ε = ε̃/(GM/ã) > 0, and will
thus reach r = r̃/ã → ∞ if the binary SMBH is the only source
of gravity. In a multipole expansion of the binary SMBH potential
(written in its centre-of-mass frame and evaluated at a field point
at r100), the dipole term vanishes and the ratio of the quadrupole to
monopole terms is �� = 2/�� = 0 ∼ (1/r100)2 = 10−4. The monopole
term thus dominates, so the specific energy ε100 of the ejected
stars at r100 will be roughly conserved, and their velocities will be
v∞ = ṽ∞/vbin � √

2ε100 as r → ∞.

3.1 Ejection probability

Fig. 1 shows the escape probability λesc = Nesc/Ne, where Nesc (Ne =
5 × 106) is the number of escapes (encounters). Stars escape the
simulation in most encounters (≥86 per cent), and are disrupted
(≤12 per cent) or time-out (≤2 per cent) for the rest. The escape
probability is largely independent of q = M2/M1 for q � 0.2, and
for a given q, it decreases as the binary SMBH contracts. At large
separations, equal-mass SMBH binaries cause more stars to escape,
and at small separations the opposite trend holds, with a transition
at a = ã/r̃t1 � 100, where λesc is roughly independent of q over the
entire range we explored.

Fig. 2 shows the ejection probability λej = Nej/Ne for the SMBHB
mechanism, where Nej (Ne = 5 × 106) is the number of ejections
(encounters). The probability is a monotonically increasing function
of both a and q, and is roughly independent of a for a � 100 and of
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Figure 1. The escape probability λesc = Nesc/Ne for the SMBHB mechanism, plotted versus (a) a = ã/r̃t1 and (b) q = M2/M1, where Nesc (Ne = 5 × 106) is
the number of escapes (encounters), and where an ‘escape’ occurs when a star crosses the sphere at r̃/ã = 100. The error bars have half-widths 5σ , where σ =
(λesc/Ne)1/2 are the standard errors assuming a Poisson distribution.

Figure 2. The ejection probability λej = Nej/Ne for the SMBHB mechanism, plotted versus (a) a = ã/r̃t1 and (b) q = M2/M1, where Nej (Ne = 5 × 106) is
the number of ejections (encounters), and where an ‘ejection’ occurs when a star crosses the sphere at r̃/ã = 100 with positive energy. The error bars have
half-widths 10σ , where σ = (λej/Ne)1/2 are the standard errors assuming a Poisson distribution.

q for q � 0.2. The probability is lower than the escape probability,
since a subset of stars that cross the escape sphere are on very weakly
bound elliptical orbits. This reduction is more pronounced for lower
mass ratios, since a lower mass secondary tends to only lightly
perturb the incident stars, shifting them from an initial parabolic
orbit to a highly elliptical one.

The mass ejection rates found by Quinlan (1996) and Sesana
et al. (2006) for circular SMBH binaries exhibit a different trend
from the ejection probabilities that we find here. Their rates decrease
with increasing ã/ãh and their curves for different q crossover. This
difference is likely due to the stricter definition of an ‘ejection’ that
they adopt while studying the hardening of the binary, as mentioned
before. We incorporate cutoffs for the velocities tof the ejected
stars in Section 3.2, and find a similar dependence as the above
Authors.

3.2 Properties of ejected stars

We now turn to the properties of the ejected hypervelocity stars,
namely their velocity (Section 3.2.1) and angular (Section 3.2.2)
distributions. We rewrite our variables in the units G = M1 = r̃t1 =
1, since these quantities are fixed for different SMBH binary mass
ratios and separations. In particular, the velocities are normalized

using the scale

v0 =
√

GM1

r̃t1

� 4.4 × 104 km s−1

(
M1

106 M	

)1/3 (
M∗

1 M	

)1/6 (
R∗

1 R	

)−1/2

.

(2)

The characteristic circular velocity of a binary SMBH of total
mass M and semi-major axis ã is then simply vbh = √

GM/ã =
v0

√
(1 + q)/a, where a = ã/r̃t1, or dimensionally

vbh � 2070 km s−1

(
M

106 M	

)1/2 (
ã

1 mpc

)−1/2

. (3)

Where necessary, we consider as our central example a primary
with mass M1 = 106 M	 and stars with solar parameters, yielding
v0 � 4.4 × 104 km s−1.

3.2.1 Velocity distribution

Fig. 3 shows the mean velocity 〈ṽ∞〉 of the ejected stars. The curves
show the data points fit to the function (based on the work of Yu &

MNRAS 482, 2132–2148 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/482/2/2132/5132880 by U
niversity of W

isconsin-M
adison Libraries user on 21 June 2019



2136 S. Darbha et al.

Figure 3. The mean velocity 〈ṽ∞〉 of the ejected stars as a function of
the binary SMBH separation ã and for several mass ratios q = M2/M1.
The error bars have half-widths 100σ e, where σe = σ/

√
Nej is the standard

error in the mean and σ is the standard deviation. The curves that fit the
data are given by equation (4). The dimensioned axes were calculated for
M1 = 106 M	 and stars with solar parameters.

Tremaine 2003, discussed below)

〈ṽ∞〉 � κv0

(
q

1 + q

)1/2 (
ã

r̃t1

)−1/2

, (4)

where κ is a q-dependent dimensionless parameter. The parameter
is in the range 0.97 ≤ κ ≤ 1.06, and we find that it is well described
by κ � αe−βq + γ for q � 0.05, where α � 0.10, β � 2.5, and γ �
0.96. It decreases for lower q, as we find κ � 1.02 for q = 0.01. The
mean is thus set by the velocity of the reduced mass μ = M1M2/(M1

+ M2) of the circular SMBH binary, 〈ṽ∞〉 ∼ (Gμ/ã)1/2, since an
incident star effectively encounters this on average; the parameter
κ describes the mean deviation from this, which is on the order of
a few per cent.

Yu & Tremaine (2003) approximate the mean velocity as 〈ṽ∞〉 �√
2〈ε̃∞〉, where they express the mean specific energy of the

ejected stars as 〈ε̃∞〉 � KGμ/ã for a dimensionless constant K
that parametrizes the energy the stars extract from the binary SMBH
(Yu 2002). Yu & Tremaine (2003) find a constant κ � √

3.2 � 1.79
(from K � 1.6) using the typical hardening rate H � 16 found by
Quinlan (1996). If we use this definition of 〈ṽ∞〉 instead and fit our
data to equation (4), then we find 1.19 ≤ κ ≤ 1.33, lower than that
used by Yu & Tremaine (2003), and the same fitting curve for q �
0.05 with α � 0.15, β � 3.4, and γ � 1.2.

Fig. 4 shows the histograms of the probabilities ṽfṼ for the
velocity of escaped (at r̃/ã = 100) and ejected (at r̃/ã → ∞) stars,
where the probability density function (PDF) is fṼ ≡ fṼ (ṽ), for
q = 0.1 and a = 100. The distributions incorporate the presence of
the binary SMBH potential only. The histogram for ṽ100 has a local
maximum at ṽ/vbh = 1/

√
50 (the escape velocity at r̃/ã = 100),

which is the value marked by the leftmost red vertical line; all stars
with velocities to the right of this line are unbound to the binary
SMBH and contribute to the distribution for ṽ∞. For ṽ � 1000
km s−1, the escaped and ejected histograms have identical shapes
since the stellar kinetic energies are much larger than the potential
energies. The two red vertical lines on the right give the range
over which the histograms decrease by a power law p = γ ṽβ . The
middle one shows vpl,1/v0 � k1(q/(1 + q))1/2(ã/r̃t1)−1/2, where k1

is a constant in the range 1 � k1 � 2; this is simply an order-unity
multiple of the velocity of the reduced mass, ṽ = (Gμ/ã)1/2, as it
occurs slightly above the peak, which roughly coincides with the

Figure 4. The probabilities ṽfṼ for q = 0.1 and a = ã/r̃t1 = 100, for the
velocity ṽ∞ of ejected stars at r̃/ã → ∞ (solid) and the velocity ṽ100 of
escaped stars at r̃/ã = 100 (dashed), where the PDF is fṼ ≡ fṼ (ṽ). The
logarithmic bin widths are �ṽ = 0.02. From left to right, the red vertical
lines show ṽ/vbh = 1/

√
50 (the escape velocity at r̃/ã = 100); vpl,1/v0 �

k1(q/(1 + q))1/2(ã/r̃t1)−1/2 where 1 � k1 � 2 (slightly above the peak,
the start of the decreasing power-law region); and vpl,2/v0 � k2(1/(1 +
q))1/2(ã/r̃t1)−1/2, where 1 � k2 � 2 (the end of the decreasing power-law
region). Here, k1 = k2 = 2.

mean. The right one shows vpl, 2/vbh � k2(1/(1 + q)) (or equivalently,
vpl,2/v0 � k2(1/(1 + q))1/2(ã/r̃t1)−1/2), where k2 is a constant in
the range 1 � k2 � 2; this is simply an order-unity multiple of the
velocity of the secondary, ṽ/vbh = 1/(1 + q), which is the largest
velocity scale in the system. These features and the locations quoted
here apply over our entire parameter range, as presented below.

Fig. 5(a) shows the probabilities for the velocity ṽ∞ of ejected
stars (at r̃/ã → ∞ in the presence of the binary SMBH potential
only) for a = 100. The peak shifts by about an order of magnitude
with a 2 orders of magnitude change in the mass ratio. The shapes
of the distributions depend on the mass ratio. For q = 1, there is an
abrupt drop after the peak of the distribution; the power-law region
becomes vanishingly small (since vpl, 1 � vpl, 2), and the peak is
close to the maximum velocity and considerably higher than the
mean in Fig. 3. As q decreases, there is a more gradual decline
from the peak to the maximum velocity; the power-law region is
larger and the peak is closer to the mean. This trend occurs because
lower mass ratio SMBH binaries have lower reduced mass velocities
and thus impart less energy to the ejected stars on average, but they
have higher secondary velocities and can thus still eject stars to high
velocities after close encounters. The red curves show p = γ ṽβ

∞ fit
to the power-law region defined above; the specific values of γ and
β are not particularly illuminating, so we do not present them.

Fig. 5(b) shows the probability distributions for q = 0.1. The
peak again shifts by about an order of magnitude with a 2 order of
magnitude change in the separation. The histograms have similar
shapes, merely shifted along the v-axis for different a. Indeed, the
histograms coincide when plotted in the units ṽ∞/vbh, apart from a
slightly lower maximum velocity for a = 10. The distributions for
the other values of q exhibit this behaviour as well.

The similarity in the histograms for different a is a result of
the scale invariance with respect to a in our simulation set-up and
the small tidal disruption probability over our parameter range.
The small deviation for a = 10 arises because the tidal disruption
probability is higher at this separation (Darbha et al. 2018). Stars
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Ejections by SMBH binaries 2137

Figure 5. (a) The probabilities ṽfṼ for the velocity ṽ∞ of ejected stars at r̃/ã → ∞, where the PDF is fṼ ≡ fṼ (ṽ), for a = ã/r̃t1 = 100 and q = 0.01 (solid),
0.1 (dashed), and 1 (dotted). (b) The probabilities for q = 0.1 and a = ã/r̃t1 = 1000 (solid), 100 (dashed), and 10 (dotted). The logarithmic bin widths are
�ṽ = 0.02. The red curves show the power law p = γ ṽα∞ fit to the regions k1(q/(1 + q))1/2(ã/r̃t1)−1/2 � ṽ∞/v0 � k2(1/(1 + q))1/2(ã/r̃t1)−1/2, where 1 �
k1, k2 � 2.

incident with low angular momenta are both preferentially disrupted
(Coughlin et al. 2017) and preferentially ejected with high velocities
since they experience close encounters with the binary SMBH.
Since an integration terminates when a star is disrupted, the higher
disruption probability implies that fewer low angular momentum
stars are available to undergo high-velocity ejections. This deviation
is thus physical, and we expect to observe it in realistic velocity
spectra.

We compare our results in Fig. 5 to the velocity distributions
found by Sesana et al. (2006) for circular SMBH binaries, and find
rough agreement. We cannot make a direct comparison, since we
have a different criterion for an ‘ejection,’ as noted earlier, and we
plot the probability whereas they plot the PDF. However, we can
still roughly compare the features that are revealed despite these
different approaches. In both works, the distributions have similar
high-velocity ranges; they have high-velocity regions that are well
described by a decreasing power law, and this region is larger for
lower mass ratios (Sesana et al. 2006 use a broken power law to
fit a larger region than we do, so here we are referring to the high-
velocity region after the break); and the velocity distributions at
the escape sphere (shown in this work by the curves for ṽ100 in
Figs 4 and 6) achieve a maximum at the velocity corresponding to
the incident energy, which arises from the stars that are only lightly
perturbed by the binary SMBH.

Fig. 6 shows the probability distributions for the velocity ṽ100 of
escaped stars (at r̃/ã = 100 in the presence of the binary SMBH
potential only) for a = 100. This radius for the escape sphere is less
than or roughly equal to the influence radius of the binary SMBH and
much less than any galactic length scales, and so these distributions
hold regardless of the galactic potential or stellar distribution in
the bulge. The shapes of the histograms change dramatically for
different q, much more than those for ṽ∞. For q = 1, the distribution
is roughly flat for an order of magnitude change in ṽ100, and exhibits
a double peaked structure at the two ends of this plateau, which
correspond to the two red lines on the left in Fig. 4, and has a
vanishingly small power-law region after the higher velocity peak.
As q decreases, the lower velocity peak becomes more prominent,

Figure 6. The probabilities ṽfṼ for the velocity ṽ100 of escaped stars
at r̃/ã = 100, where the PDF is fṼ ≡ fṼ (ṽ), for a = ã/r̃t1 = 100 and
q = 0.01 (solid), 0.1 (dashed), and 1 (dotted). The stars with velocities
ṽ100 � v0

√
(1 + q)/50a are bound to the binary SMBH and will not be

ejected to infinity; this velocity corresponds to the position of the lower
velocity peak. The logarithmic bin widths are �ṽ = 0.02.

the plateau shrinks, and the power-law region grows. For q = 0.01,
the lower velocity peak dominates since the low-mass secondary
tends to only lightly perturb the incident stars from their ε = 0 orbits
into mildly bound or unbound orbits, which results in the stellar
velocities at r̃/ã = 100 clustering around the escape velocity. For
a given q, the histogram has the same shape for different a, simply
shifted along the ṽ-axis as in Fig. 5(b).

Fig. 8(a) shows the probability that an ejected star has a velocity
at r̃/ã → ∞ of ṽ∞ > vc, where vc is a cut-off velocity, for q = 0.1.
The curves are very similar, simply shifted along the vc-axis, due to
the similarity in the underlying distributions (Fig. 5). If we consider
a cut-off velocity like vc ∼ 1000 km s−1, then we see similar trends
as in the mass ejection rates found by Quinlan (1996) and Sesana
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2138 S. Darbha et al.

et al. (2006). Fig. A2 shows the probabilities for different values of
q in our parameter space.

3.2.2 Angular distribution

We parametrize the angle of the ejected stars with the direction
cosine μ = cos θ = vz, ∞/v∞, where θ is the polar angle measured
from the direction normal to the binary SMBH orbital plane. For an
isotropic distribution of ejection directions, μ has a uniform PDF
fM = 1/2 for −1 ≤ μ ≤ 1; note that in this case θ has a PDF
f� = (sin θ )/2 for 0 ≤ θ ≤ π . The ejected stars are uniformly
distributed in the azimuthal angle φ when ejected by a circular
binary with a randomized phase, so we ignore this distribution.
We calculate the angular distributions subject to different velocity
cut-offs vc.

Fig. 7 shows the histograms of the probabilities μfM, where fM

≡ fM(μ) is the angular PDF, for q = 0.1 and two different velocity
cut-offs; Fig. A1 shows this for different values of q. If we examine
a fixed cut-off vc � 200 km s−1, then we see a clear trend: for a
fixed mass ratio, tighter circular SMBH binaries eject stars more
isotropically, whereas wider ones eject them more in the binary
SMBH orbital plane; similarly, for a fixed separation, unequal-
mass circular binaries (i.e. IMBH/SMBH binaries) eject stars more
in the orbital plane, whereas nearly equal-mass ones eject them
more isotropically. Sesana et al. (2006) found the same trend that
we observe for fixed q and changing a; we cannot directly compare
to their results for eccentric binary SMBHs for fixed a and changing
q. Any difference that might arise in the latter case would be due to
the difference in our set-ups, as described previously (Sections 2).

Fig. 8(b) shows the normed mean direction of the ejected stars
with velocity ṽ∞ > vc for q = 0.1; Fig. A2 expands this to the
other q in our parameter space. For a sufficiently high cut-off, a
binary SMBH preferentially emits stars near its orbital plane, with
higher cut-offs needed for tighter binaries and higher mass ratios.
However, this trend is not quite monotonic with velocity for a fixed
q and a. The curves exhibit a small bump towards more isotropic
emission in a region around vpl,1/v0 � k1(q/(1 + q))1/2(ã/r̃t1)−1/2,
shown by the middle red vertical line in Fig. 4, where the size of
the region correlates with the size of the power-law region of the
underlying velocity distribution. This suggests that the stars with
velocities just after the peaks are preferentially emitted near the
orbital plane. There is also a spike at high velocities, though this is
likely due to noise from the low statistics there. These two features
can in principle be used to constrain the binary SMBH mass ratio
and separation.

3.3 Time-dependent ejection rate

In this subsection, we present the time-dependent ejection rate of
hypervelocity stars by a binary SMBH contracting due to stellar
scattering and gravitational wave emission. We examined the time-
dependent tidal disruption rate in Darbha et al. (2018); for a more
detailed discussion of the dynamics of the inspiral, we refer the
reader there (or to earlier work by Zier & Biermann 2001). Here,
we briefly summarize our set-up and modify it to describe HVSs.

We use the units G = M1 = r̃t1 = 1 to write the dimensionless
binary SMBH separation a and the stellar specific energy ε and
angular momentum �. We define the time-scale

t0 = r̃4
t1c

5

G3M3
1

� 7.7 × 10−1y

(
M1

106 M	

)−5/3 (
M∗
M	

)−4/3 (
R∗
R	

)4

(5)

to define the dimensionless time t = t̃/t0. We consider a primary
mass M1 = 106 M	 and stars with solar parameters in what follows.

In these units, the total inspiral rate is

da

dt
=

(
da

dt

)
ss

+
(

da

dt

)
gw

. (6)

The rate of coalescence due to gravitational wave (gw) emission by
two-point particles on a circular orbit is (Peters 1964)(

da

dt

)
gw

= −64

5

q(1 + q)

a3
. (7)

The inspiral rate due to stellar scattering (ss) is(
da

dt

)
ss

= −2M∗
M1

φt0
a2

q
〈�ε∗〉(q, a)λej(q, a), (8)

where 〈�ε∗〉 is the average change in the specific energy of the
ejected stars and λej is the stellar ejection probability, both found
from our simulations; M∗/M1 is the ratio of the stellar mass to the pri-
mary mass; and φ is the stellar injection rate from the binary SMBH
loss cone (in units of yr−1). This is simply φ(q, a) = 2a(1 + q)φ0,
assuming the stars are incident from a full loss cone repopulated
through two-body relaxation and are thus uniformly distributed in
�2 (Frank & Rees 1976; Lightman & Shapiro 1977; Cohn & Kul-
srud 1978; Magorrian & Tremaine 1999), where φ0 ∼ 10−4 yr−1

is the fiducial rate for an SMBH of mass M• = 106 M	 (Magor-
rian & Tremaine 1999; Wang & Merritt 2004; Stone & Metzger
2016). The time-dependent ejection rate for stars with ṽ∞ > vc is
then ṅej(ṽ∞ > vc) = φλej(ṽ∞ > vc), where λej(ṽ∞ > vc) depends
on q and a. We calculate a(t) and ṅej as the binary SMBH contracts
from a = 1000 (ã = 2.3 mpc) to 10 (ã = 0.023 mpc).

Fig. 9 shows ṅej for stars with different velocity cut-offs vc. The
rates are in the range ∼10−3–10−1 yr−1 for q = 1, and drop to
∼10−6 − 10−3 yr−1 for q = 0.01. The SMBH binaries eject a burst
of stars with ṽ∞ � 3000 km s−1 as they are about to coalesce, for
our full range of mass ratios. For vc � 1000 km s−1, the ejection rate
actually declines monotonically for binaries with high mass ratios
(q � 0.2), and only those with low mass ratios (q � 0.05) exhibit
a burst at late times. The ejection rate transitions between these
two phases at vc � 2000 km s−1, where the rate remains roughly
constant over the binary SMBH lifetime for q � 0.5.

This behaviour arises due to a trade-off: as the SMBH binary
contracts, it ejects higher velocity stars (Figs 5, A2), but when grav-
itational radiation begins to dominate, the binary ejects fewer stars
overall since it contracts more rapidly and spends less time at a
given separation (equation 7). For low mass ratios, the first effect
is dominant; a q = 0.01 SMBH binary at a = 1000 ejects few
stars with velocities ṽ > vc ∼ 1000 km s−1 (Fig. A2), but as it con-
tracts, it ejects more stars above this cut-off, larger than the number
suppressed by the gravitational wave coalescence. For nearly equal-
mass ratios, the second effect is dominant; a q = 1 SMBH binary at
a = 1000 already ejects most stars with velocities ṽ > vc ∼ 1000
km s−1 (Fig. A2), and though it ejects slightly more in this range as
the binary SMBH contracts, the rapid coalescence suppresses the
possibility of ejections, and the ejection rate decreases.

A burst thus arises as a result of the decreasing binary SMBH
separation alone, in a time t̃ ∼ 10 − 100 Myr, given that stars are
continually injected from a full loss cone. Earlier work hinted at
this result (Sesana et al. 2006), though here we explicitly fold in
the SMBH binary coalescence rate, which washes out the effect for
nearly equal-mass binaries when vc = 1000 km s−1. Previous studies
have calculated a burst of HVSs over the lifetime of a binary SMBH,
but under different physical conditions. A stable binary SMBH that
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Ejections by SMBH binaries 2139

Figure 7. The probabilities μfM for the direction cosine μ = cos θ = vz, ∞/v∞ of ejected stars at r̃/ã → ∞, for q = 0.1 and a = ã/r̃t1 = 1000 (solid), 100
(dashed), and 10 (dotted). The PDF is fM ≡ fM(μ). The variable θ is the polar angle measured from the direction normal to the binary SMBH orbital plane.
The panels show the distributions after applying the velocity cut-offs Ṽ > vc, where vc is (a) 200 km s−1 and (b) 1000 km s−1. The linear bin widths are �μ =
0.02. The red curve shows the uniform distribution for μ produced by the Hills mechanism.

Figure 8. Statistics of ejected stars with a range of velocity cut-offs vc, for q = 0.1. (a) The probability P (Ṽ > vc) that an ejected star has a velocity at
r̃/ã → ∞ of ṽ∞ > vc. (b) The orientation of ejected stars with velocities ṽ∞ > vc. The orientation is parametrized by μ = cos θ = vz, ∞/v∞, where θ is the
polar angle measured from the direction normal to the binary SMBH orbital plane. For an isotropic distribution, 〈|μ|〉 = 0.5.

ejects incident unbound stars will produce a surge of HVSs when
the binary first becomes hard and expels the stars present in the loss
cone (Sesana et al. 2007b). An IMBH, inspiraling through a stellar
cusp due to dynamical friction, can also produce a burst when it
reaches the centre where the cusp is most dense, promptly ejecting
the high concentration of stars and leaving behind a depleted region
(Baumgardt et al. 2006; Levin 2006; Sesana et al. 2008).

4 C OMPARISON WITH THE HILLS
MEC HANISM

Hypervelocity stars exhibit different properties depending on the
mechanism by which they are produced, and can thus reveal in-
formation about possible massive BH binarity and the distribution
of stars in a galactic nucleus. Here, we compare the distributions
of HVSs ejected by a single and binary SMBH. We first calculate
the integrated distributions for the two production mechanisms with
different parameters (Section 4.1), and then use parameter estima-

tion to study the number of samples required to distinguish between
them (Section 4.2).

To study the properties of HVSs ejected by the Hills mechanism
(Hills 1988), we simulated 2 × 105 encounters between a binary
star and an isolated SMBH using the N-body code REBOUND with
the IAS15 integrator (Rein & Liu 2012; Rein & Spiegel 2015).
Due to scale invariance, we ran our simulations with the simulation
parameters in the units G = mtot = ã∗ = 1, where mtot = m1 + m2

is the total mass of the binary star system with primary (secondary)
mass m1 (m2) and ã∗ is the incident binary star separation. We ran our
simulations for Sun-like stars, m1 = m2 = 1 M	, and a BH of mass
M• = 106 M	. The origin of the coordinate system was set to the
three-body centre of mass. Each binary star was initialized with its
centre of mass on a parabolic orbit at a distance of r = 2000 relative
to the SMBH, and with an isotropically distributed orientation.
The pericentre of the parabolic orbit was sampled uniformly in the
interval rp ∈ [0, 175]; we used a uniform distribution since we
treated the binary loss cone in the ‘pinhole’ regime, and we set this
range since the probability of a Hills ejection drops to zero for rp
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2140 S. Darbha et al.

Figure 9. The time-dependent ejection rate ṅej of stars with velocities
ṽ∞ > vc, where vc is (a) 1000 km s−1, (b) 2000 km s−1, and (c) 3000 km s−1,
for M1 = 106 M	 and Sun-like stars, starting at an initial separation of
a = ã/r̃t1 = 1000 (ã = 2.3 mpc).

≥ 175 (Hills 1988). We stopped the integration if a star escaped to
r = 4000 or if the simulation time reached t = 104; we ignored the
possibility of a tidal disruption as the probability of one is small
(Mandel & Levin 2015). We classify an encounter as a Hills ejection
if at least one of the stars crosses the escape sphere at r = 4000,
one star is unbound and the other is bound to the SMBH, and the
stellar binary energy is positive (i.e. the two stars are on a relative
unbound orbit). We only recorded ejected stars, so we do not need to
distinguish between ‘ejected’ and ‘escaped’ stars here as we did for
the SMBHB mechanism in Section 3.1. We find the same ejection
probabilities versus pericentre distance as in previous studies, and
the same mean ejected velocity of 〈ṽ∞〉 ∼ ã−1/2

∗ m
1/3
tot M1/6

• , where
M• is the black hole mass (Hills 1988; Bromley et al. 2006).

4.1 Integrated distributions

Although the average properties of ejected HVSs can constrain
the nature of their progenitors (Section 3; Yu & Tremaine 2003;
Gualandris et al. 2005), the distributions can reveal more complete
information. In addition, HVSs observed at a given epoch were
produced over an interval of time, and were thus likely sampled
from an integrated PDF for each ejection mechanism. If the stars
were ejected by the Hills mechanism, they were sampled from a
PDF integrated over a range of incident binary star separations. If
they were ejected by a binary SMBH, they may have been sampled
from one integrated over the binary SMBH lifetime (Section 3.3).
In particular, for the Milky Way, GC-origin HVSs observed with ve-
locities ṽ ∼ 1000 km s−1 at Galactocentric distances r̃ ∼ 100 kpc,
roughly the current limit of HVS distance measurements (Boubert
et al. 2018; Brown et al. 2018), would have been produced t ∼
100 Myr ago (ignoring the Galactic potential). If there was a binary
SMBH with separation ã ∼ 2 mpc in the GC in the recent past,
then it would have coalesced in a time T ∼ 30–100 Myr (Fig. 9),
and the HVSs observed at large distances would have arisen from
a PDF integrated over the binary SMBH lifetime. In contrast, if
the binary SMBH had a larger separation, then it would contract
more slowly and would not have coalesced in the past t ∼ 100 Myr,
and the HVSs observed would have arisen roughly from the PDF
of a binary SMBH with a single set of parameters. The other local
sources of HVSs have similar behaviour.

In previous work, authors have studied the integrated distributions
in the context of an IMBH inspiraling towards an SMBH through
a stellar cusp, both for the velocity (Baumgardt et al. 2006; Sesana
et al. 2007a) and the ejection direction (Zier & Biermann 2001;
Baumgardt et al. 2006; Levin 2006), and have compared these with
the Hills mechanism. Here, we compare the integrated distributions
produced by nearly equal-mass binary SMBHs that eject incident
unbound stars with those produced by the Hills mechanism.

4.1.1 Velocity distribution

We first consider the velocity distribution of HVSs ejected by the
Hills mechanism. To simplify our calculations, we define the di-
mensionless binary star separation a∗ = ã∗/a∗0, where the length
scale a∗0 = 1 au, and the dimensionless velocity v = ṽ/v∗, where
v∗(a∗) = √

Gmtot/ã∗ = √
Gmtot/a∗a∗0 is the characteristic circular

velocity of a binary star with total mass mtot and semimajor axis ã∗,
or dimensionally

v∗ � 133 km s−1

(
mtot

2 M	

)1/2 (
ã∗

0.1 au

)−1/2

. (9)
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Ejections by SMBH binaries 2141

Figure 10. The probability distribution ṽfṼ for the velocity of stars ejected
by the Hills mechanism at the escape sphere r = 4000 (dashed) and at r →
∞ (solid), where the PDF is fṼ ≡ fṼ (ṽ|ej, a∗). The ratio of the black hole
mass to the total stellar binary mass is M•/mtot = 5 × 105. The upper ṽ-axis
gives the velocity in km s−1 for a binary star with mass mtot = 2 M	 and
semimajor axis ã∗ = 0.1 au.

The velocity PDF for ejected stars given an initial binary star
separation a∗ is fṼ (ṽ|ej., a∗), where the random variable describing
the end state is E = ej for an ejected star. This can be rewritten
as fṼ (ṽ|ej., a∗) = (1/v∗(a∗))fV (ṽ/v∗(a∗)|ej., a∗). Due to scale in-
variance, the latter distribution simplifies to fV (ṽ/v∗(a∗)|ej., a∗) =
fV (ṽ/v∗(a∗)|ej.), i.e. v = ṽ/v∗ is conditionally independent of a∗
given an ejection. Fig. 10 shows the velocity PDFs for Hills ejections
at the escape radius and at r → ∞, for a black hole mass M•/mtot =
5 × 105. When the stars are infinitely far from the SMBH, the dis-
tribution is peaked at v∞ = ṽ∞/v∗ � 10 and decreases asymmet-
rically away from this point. This conforms to the data presented
by Bromley et al. (2006), who approximate this central region in
the v∞ distribution with a Gaussian. The mean velocity decreases
by a factor of ∼2 as the stars escape the gravitational potential of
the black hole. The distribution is wider for v∞ since the v-axis
is log-scaled, and thus the velocities in the central bin for vesc get
redistributed into a range of bins for v∞.

The PDF for the ejected velocities integrated over a range of
stellar binary separations is fṼ (ṽ|ej) = ∫

fṼ (ṽ|ej, a∗)fA∗ (a∗)da∗.
The ejection probability is independent of a∗, P(ej|a∗) = P(ej),
due to scale invariance. In our model, the stellar binaries in the
galactic bulge have semimajor axes distributed as fA∗ (a∗) = K/a∗
(Heacox 1998; Kobulnicky & Fryer 2007), i.e. a uniform distri-
bution in log a∗, where K is a normalization constant given by
K = [ln (a∗, max/a∗, min)]−1 for a minimum (maximum) separation
of a∗, min (a∗, max). The survivability of a binary star in three-body
encounters in the bulge depends on the ratio of its circular velocity
to the stellar velocity dispersion (Hills 1989), and the encounter
rate (and thus the local stellar density). If v∗ � σ , where σ is the
1D stellar velocity dispersion, then the binary star’s binding energy
will likely increase in an encounter; if v∗ � σ , then its binding
energy will likely decrease in an encounter, either through the bi-
nary star widening or an exchange collision, ultimately leading to
a dissociation after many such encounters. For a Milky Way-like
galaxy, σ ∼ 100 km s−1 (Gültekin et al. 2009), and the velocity
condition roughly becomes a∗, max � 0.1 for binary stars with total
mass mtot = 2 M	. Many binary stars in the Galaxy have velocities

less than σ due to the local density condition, so we take our upper
bound to be slightly higher at a∗, max � 1, though the exact upper
bound is unimportant since it simply translates into a different lower
bound in the ejection velocities. If its separation becomes small, a
stellar binary will undergo mass transfer or experience a merger,
which imposes a rough lower bound a∗, min � 0.001. The integrated
PDF is then

fṼ (ṽ|ej) = K

∫ ln a∗,max

ln a∗,min

1

v∗(a∗)
fV

(
ṽ

v∗(a∗)

∣∣∣∣ ej

)
d(ln a∗). (10)

Fig. 11(a) shows the integrated velocity distribution for stars
ejected by the Hills mechanism for three different ranges of binary
star separations. The lower the range of binary star separations can
extend, the higher the ejected velocities can reach, as expected from
energy conservation in the exchange collision. If the full range a∗ ∼
0.001 − 1 of separations are possible, then the distribution becomes
flat over ṽ∞ ∼ 103−104 km s−1. Otherwise, it is flat over a smaller
range of lower velocities.

The potential of the host galaxy can, of course, modify this dis-
tribution. Rossi et al. (2014) thoroughly studied the velocity dis-
tributions in the Galactic halo of HVSs ejected (presumably) by
the Hills mechanism, including the contribution of the Galactic po-
tential. As in this work, they initialized the stellar binaries with
their centers of mass on parabolic orbits and uniformly distributed
in rp for the full loss cone regime (though they also studied the
empty loss cone regime). The Authors considered the same distri-
bution of binary star separations as in this work, fÃ∗ (ã∗) ∼ 1/ã∗,
though with ã∗,max � 20 mpc (∼4000 au) and ã∗,min � (1 − 10)R∗
(∼0.005 − 0.05 au for R∗ = R	). They studied two different distri-
butions for the component masses. In the full loss cone regime, they
find that the velocity peak occurs at ṽ ∼ 800 km s−1 for equal-mass
stellar binaries with component masses m∗ = 3 M	, which appears
consistent with our result for a∗, min = 0.01 if we were to include
deceleration from a galactic potential (most stars with ã∗,max � 1 au
would not escape the BH potential, so a different upper limit would
not influence the peak location). In addition, they found that the
velocity distribution before the peak depends solely on the Galactic
potential, and after the peak on the properties of the stellar binaries.
This suggests that we examine and compare the high-velocity re-
gions of the velocity distributions, as they may encode information
about the BH sources if the stellar populations are known.

We next turn to the velocity distribution of HVSs ejected by a bi-
nary SMBH. We write the dimensionless binary SMBH separation
a = ã/r̃t1, and define the dimensionless velocity v = ṽ/vbh, where
vbh(q, a) = v0

√
(1 + q)/a is the characteristic binary SMBH cir-

cular velocity given in equation (3). The velocity distribution for a
given binary SMBH mass ratio q and separation a can be expressed
as fṼ (ṽ|ej, q, a), where the random variable describing the end state
is E = ej for an ejected star; Fig. 5 shows this distribution for several
binary SMBH parameters.

To obtain an integrated PDF for the ejected velocities, we must
integrate over the lifetime of the binary SMBH as it contracts.
The details of the inspiral are given in Section 3.3. The integrated
PDF for a given q is fṼ (ṽ|ej, q) = fṼ EQ(ṽ, ej, q)/fEQ(ej, q),
where fṼ EQ(ṽ, ej, q) = ∫

fṼ (ṽ|ej, q, a)P (ej|q, a)fA(a|q)fQ(q)da

and f(ej, q) = ∫
P(ej|q, a)fA(a|q)fQ(q)da. The velocity distribu-

tion for a given q and a can be rewritten as fṼ (ṽ|ej, q, a) =
fV (ṽ/vbh(q, a)|ej, q, a)/vbh(q, a). Though we have the values of
this distribution for the discrete values of a in our parameter
space, we can obtain a continuous version in this case by approxi-
mating fV (ṽ/vbh(q, a)|ej, q, a) � fV (ṽ/vbh(q, a)|ej, q, a′ = 100),
since the shape of fV(v|ej, q, a

′
) is largely independent of a

′
(see
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2142 S. Darbha et al.

Figure 11. The integrated probability distributions ṽfṽ for the velocity ṽ∞ of ejected stars. (a) The distributions for stars ejected by the Hills mechanism,
using the BH mass M = 106 M	 and stellar masses m1 = m2 = M	. The incident binary stars are distributed in semi-major axis as fÃ∗ (ã∗) ∼ 1/ã∗ between
ã∗,max = 1 au and ã∗,min = 0.001 au (solid), 0.01 au (dashed), and 0.1 au (dotted). The integrated PDFs fṼ ≡ fṼ (ṽ|ej.) are given in equation (10). (b) The
distributions for stars ejected by a binary SMBH contracting from ãmax = 2.3 mpc (amax = 1000) to ãmin = 0.023 mpc (amin = 10) due to stellar scattering
and gravitational wave emission, using the primary mass M1 = 106 M	 and Sun-like stars, for q = 0.01 (solid), 0.1 (dashed), and 1 (dotted). The integrated
PDFs fṼ ≡ fṼ (ṽ|ej., q) are given in equation (11).

Fig. 5 and the related discussion in the text). The ejection proba-
bility was previously labelled as λej(q, a) ≡ P(ej|q, a) (Fig. 2). The
PDF for the semi-major axis as the (circular) binary SMBH con-
tracts is simply fA(a|q) = |(dt/da)q|/T(q), where the binary SMBH
lifetime is T(q) = ∫ |(dt/da)q|da, and (dt/da)q is the inverse of the
total contraction rate in equation (6). We integrate the distribution
from amax = 1000 to amin = 10. The integrated PDF is then

fṼ (ṽ|ej, q) =
∫ ln amax

ln amin

[
fV

(
ṽ

vbh(q,a)

∣∣∣ej,q,a′=100
)

vbh(q,a)

]
g(ej, q, a)ad(ln a)∫ ln amax

ln amin
g(ej, q, a)ad(ln a)

(11)

where g(ej, q, a) ≡ λej(q, a)
∣∣∣( dt

da

)
q

∣∣∣. We note that the p(q) terms

and T(q) terms each cancelled out.
Fig. 11(b) shows the integrated velocity distribution of the ejected

stars for three different values of q. The histograms are similar in
shape, with the differences between them arising for the same rea-
sons as in the underlying histograms for fixed separations (Fig. 5a).
The distributions have a precise peak and a power-law decay away
from the peak. Importantly, the binary SMBH coalesces rapidly by
gravitational wave emission beginning around a ∼ 100 (Darbha
et al. 2018), so the high velocities found in the distributions for a �
100 are suppressed (Fig. 5b).

The distributions produced by a binary SMBH are distinct in
shape from those produced by the Hills mechanism, although this
may not fully persist when including the influence of the galactic
potential (Rossi et al. 2014). In addition, for a binary SMBH with
q = 0.1 − 1 and a binary star distribution with a∗, min = 0.01,
the two overlap and are difficult to distinguish. If stellar binaries
in the bulge can shrink to a∗, min ∼ 0.001, then they can reach
much higher velocities than those produced by a binary SMBH; this
high-velocity signature can thus reveal the presence of an isolated
SMBH.

We compare our results to earlier studies, which calculated the
velocity distributions as an IMBH inspirals through a stellar cusp

towards an SMBH (Sgr A∗, specifically) (Baumgardt et al. 2006;
Sesana et al. 2007a). Their setups are very different from the scat-
tering of unbound stars that we consider here, so we cannot make a
direct comparison and do not expect similar outcomes, but a compar-
ison can still highlight different features in the different scattering
regimes.

In Baumgardt et al. (2006), the IMBH (M2 = 103 M	 − 104 M	)
begins on a circular orbit about the SMBH (M1 = 3 × 106 M	) at
ã = 100 mpc and inspirals to ã � 1 mpc. They find that the distri-
butions drop off around ṽ ∼ 2000 km s−1 and are largely insensitive
to the IMBH mass, and that the binary evolves to high eccentricities
by the time it stalls if the IMBH mass is M2 ∼ 104 M	. In Sesana
et al. (2007a), the IMBH (q = 1/729) begins on an eccentric orbit
(e = 0.9) at ã ∼ 30 mpc and inspirals until it stalls at ã ∼ 4 mpc.
The Authors additionally fold in the influence of a model galactic
potential; they find the distribution peaks at ṽ∞ ∼ 700 km s−1. In
contrast, our work examines the domain in which the central stellar
density has been depleted and further contraction arises from stars
incident from a full loss cone; for our primary mass M1 = 106 M	,
the binary SMBH begins at ã = 2.3 mpc. In our work, for q = 0.01,
we find a comparable distribtuion to the above works, with slightly
lower ejection velocities. This suggests that it is difficult to use a
HVS velocity spectrum to distinguish binary SMBHs in the early
slingshot stage from those in the late slingshot stage with a full loss
cone.

In the two studies above, the Authors also compared their re-
sults with distributions from the Hills mechanism. Baumgardt et al.
(2006) analysed fixed stellar binary separations, and found that (for
an SMBH with mass M• = 3.5 × 106 M	) the distributions can be
peaked at higher velocities than those from binary SMBHs if the
stellar binaries are compact (ã∗ � 0.05 au) . Sesana et al. (2007a)
studied both flat and lognormal distributions for the stellar binaries,
and found that the slope of the ejection velocity distribution is flatter
for stars ejected by a SMBH-IMBH binary than those ejected by
the Hills mechanism, and thus the SMBH-IMBH scenario favors
higher velocities.
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4.1.2 Angular distribution

We now calculate the integrated angular distribution from the two
HVS ejection mechanisms. We calculate the distributions subject to
different velocity cut-offs vc; we do this since an observed sample
of ejected stars may exhibit such a cut-off due to the difficulty in
observing low-velocity stars, particularly in the galaxy core where
most are likely located, and since applying such cut-offs often yields
distinguishing features.

For the Hills mechanism, isotropic incident stars produce
isotropic ejected stars, and thus the angular PDF is fM (μ|ej, Ṽ >

vc) = 1/2 for all velocity cut-offs vc and minimum binary star
separations a∗, min. For the SMBHB mechanism, we calculate the
integrated angular PDF fM (μ|ej, q, Ṽ > vc) using Bayesian infer-
ence, as we did with the velocity distributions in Section 4.1.1. We
obtain

fM (μ|ej, q, Ṽ > vc)

=
∫ ln amax

ln amin
fM (μ|ej, q, a, Ṽ > vc)h(ej, q, a, vc)ad(ln a)∫ ln amax

ln amin
h(ej, q, a, vc)ad(ln a)

(12)

where fM (μ|ej, q, a, Ṽ > vc) is the angular PDF given that an
ejection has occurred for a given q, a, and velocity cut-off Ṽ >

vc (Fig. 7); h(ej, q, a, vc) ≡ P (Ṽ > vc|ej, q, a)P (ej.|q, a)fA(a|q);
P (Ṽ > vc|ej, q, a) is the probability that a star has a velocity Ṽ > vc

given that an ejection has occurred for a given q and a (Figs 8a
and A2); and P(ej|q, a) and fA(a, q) are the same as in Section 4.1.1
above. We evaluate this integral by discretizing it at the values of a
in our parameter space.

Fig. 12 shows the integrated angular distribution for two different
velocity cut-offs. For a given q, ejected stars are increasingly con-
centrated in the binary SMBH orbital plane as one applies higher
cut-offs, where lower q require a lower cut-off to begin to see this
effect, as we found for the distributions for fixed q and a (Sec-
tion 3.2.2). Indeed, for a given q and vc, the integrated distributions
are very similar to the corresponding ones for a = 100 (Figs 7
and A1). This is because a ∼ 100 is the closest separation at which
the binary spends considerable time ejecting stars before rapidly
coalescing by gravitational radiation (Darbha et al. 2018), and thus
the separation that produces the largest deviation from isotropic
emission.

Previous studies have examined some features of the ejection
angles during the binary SMBH inspiral, but focused on a binary
SMBH embedded in a stellar cusp (Zier & Biermann 2001; Baum-
gardt et al. 2006; Levin 2006), a different set-up from this work.
The above Authors find different trends as compared to our work.
Baumgardt et al. (2006) found that the ejected stars, with no ve-
locity cut-off, are more isotropically distributed for a lower mass
secondary SMBH, and exhibit an overdensity in the binary SMBH
orbital plane for a higher mass secondary. Levin (2006) found that
the ejected stars exhibit a small anisotropy as the binary shrinks.

4.2 Model fitting

In this subsection, we use Bayesian parameter estimation to calcu-
late the number of HVS samples required to distinguish between
the different integrated distributions, examining first the velocity
distributions (Section 4.2.1) and second the angular distributions
(Section 4.2.2). In what follows, we suppose that we have N sam-
ples of HVSs. Let the random variable D describe the class of dis-
tributions corresponding to a given SMBH progenitor, D = {dsmbhb,
dhills}. Let � label the parameter that parametrizes each class, so

that � = Q for D = dsmbhb, and � = A∗, min for D = dhills. Note that
f�(q|dhills) = f�(a∗,min|dsmbhb) = 0. We drop the random variable
E = ej. We quantify the accuracy of a fit using the Bayesian odds
ratio OR that our set of samples arises from one model (d, θ ) as
opposed to another (d

′
, θ

′
).

4.2.1 Estimation with velocity samples

We first consider the velocities Ṽ1, . . . , ṼN of the samples. The odds
ratio OR given the observed velocities is

OR = fD,�(d, θ |ṽ1, . . . , ṽN )

fD,�(d ′, θ ′|ṽ1, . . . , ṽN )
(13)

= fṼ1,...,ṼN
(ṽ1, . . . , ṽN |d, θ )f�(θ |d)P (D = d)

fṼ1,...,ṼN
(ṽ1, . . . , ṽN |d ′, θ ′)f�(θ ′|d ′)P (D = d ′)

, (14)

where fṼ1,...,ṼN
(ṽ1, . . . , ṽN |d, θ ) is the joint velocity PDF.

The samples are independent, so fṼ1,...,ṼN
(ṽ1, . . . , ṽN |d, θ ) =

fṼ1
(ṽ1|d, θ ) . . . fṼN

(ṽN |d, θ ), where fṼi
(ṽi |d, θ ) is the integrated

PDF for a single sample (equation 10 and Fig. 11a for the Hills
mechanism; equation 11 and Fig. 11b for the SMBHB mechanism).
We have no prior knowledge about the SMBH progenitor, so P(D =
dsmbhb) = P(D = dhills) = 1/2, and f�(q|dsmbhb) = f�(a∗,min|dhills) =
1/3 since we consider three discrete parameter values for each class.
The odds ratio thus simplifies to

OR = fṼ1
(ṽ1|d, θ ) . . . fṼN

(ṽN |d, θ )

fṼ1
(ṽ1|d ′, θ ′) . . . fṼN

(ṽN |d ′, θ ′)
. (15)

As discussed in Section 4.1, a sample of ejected stars may exhibit
a velocity cut-off vc. If we analyse HVSs with velocities Ṽ > vc,
then we can calculate the odds ratio as above by simply replacing
the PDF for the full distribution d with that for the truncated distri-
bution d(Ṽ > vc), namely fṼi

(ṽi |d, θ ) → fṼi
(ṽi |d(Ṽi > vc), θ ) =

fṼi
(ṽi |d, θ, Ṽi > vc). The truncated PDF is

fṼi
(ṽi |d, θ, Ṽi > vc) =

{
fṼi

(ṽi |d,θ )

1−FṼi
(vc|d,θ ) , ṽi > vc

0 , else
(16)

where FṼi
(ṽ|d, θ ) ≡ ∫ ṽ

−∞ fṼi
(ṽi |d, θ )dṽi is the cumulative distri-

bution function (CDF), which is evaluated at vc in the denominator.
To simplify our calculation, we discretize our PDFs with the same
logarithmic bin widths used in Fig. 11.

Fig. 13 shows the velocity-sampled odds ratio as a function of N
for two different velocity cut-offs vc, where the samples are drawn
from the distribution (D = dsmbhb, � = Q = 0.1) and the odds
ratio is calculated relative to this distribution. The true velocity
distribution can be distinguished from the others most easily if the
full distributions are known; in this case, only N ∼ 100 samples are
needed to obtain OR � 10−6. In the intermediate range of cut-offs
200 km s−1 � vc � 1000 km s−1, roughly N ∼ 100 − 300 samples are
needed to distinguish D = dsmbhb with q = 0.1 from D = dhills with
a∗, min = 10−2, since these two distributions overlap heavily here
(Fig. 11), but only N ∼ 50 − 100 samples are needed to distinguish
it from the other mechanisms. Sesana et al. (2007a) find that N �
100 samples are needed to identify the ejection mechanism, and our
numbers are in agreement for the above range of cut-offs. For vc

∼ 2000 km s−1, N ∼ 400 samples are required to discriminate the
SMBHB mechanism with different values of q, though only N ∼
300 samples are needed to rule out the Hills mechanism. For vc �
4000 km s−1, the velocity distributions for the SMBHB mechanism
with different q become very similar (Fig. 11b), and thousands of
samples are needed to distinguish them.
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Figure 12. The integrated angular distributions μfM for the direction cosine μ of stars ejected by the SMBHB mechanism with velocities Ṽ > vc, where the
binary SMBH contracts from ãmax = 2.3 mpc (amax = 1000) to ãmin = 0.023 mpc (amin = 10) due to stellar scattering and gravitational wave emission. We
consider a primary with mass M1 = 106 M	 and Sun-like stars, and the mass ratios q = 0.01 (solid), 0.1 (dashed), and 1 (dotted). The velocity cut-offs vc are
(a) 200 km s−1 and (b) 1000 km s−1. The integrated PDFs fM ≡ fM (μ|ej, q, Ṽ > vc) are given in equation (12). The red curve shows the uniform distribution
for μ produced by the Hills mechanism.

Figure 13. The velocity-sampled Bayesian odds ratio OR (equation 15) as a function of N randomly drawn samples. The samples were drawn from the
distribution (D = dsmbhb, � = q = 0.1), and the odds ratio for each distribution is calculated relative to it. The panels correspond to samples drawn from the
truncated PDF with Ṽi > vc, where vc is a) 200 km s−1 and b) 1000 km s−1.

If the samples are drawn from D = dsmbhb with Q = 0.01 or
1, then we find similar results of N ∼ hundreds of samples for vc

� 2000 km s−1, and N ∼ thousands for vc � 4000 km s−1. If the
samples are drawn from D = dhills with A∗, min = 10−2, then we
find analogous results to D = dsmbhb with � = Q = 0.1 for vc

� 1000 km s−1, though for vc � 2000 km s−1 only N ∼ 50 − 100
samples are needed to distinguish this ejection mechanism from the
others, since the high-velocity behaviour in Hills ejections is fairly
distinct for a given minimum binary star separation.

4.2.2 Estimation with angular samples

We next consider the direction cosines M1, . . . ,MN of the samples.
We proceed as above, but set f�(a∗,min|dhills) = 1 here since the
Hills mechanism ejects stars isotropically regardless of the mini-
mum binary star separation. The odds ratio OR given the observed

directions is then

OR = fM1 (μ1|d, θ ) . . . fMN
(μN |d, θ )f�(θ |d)

fM1 (μ1|d ′, θ ′) . . . fMN
(μN |d ′, θ ′)f�(θ ′|d ′)

, (17)

where fMi
(μi |d, θ ) is the angular PDF for a single sample. If we

generalize this by applying any velocity cut-off vc, then the PDF
is fM1 (μ1|d(Ṽ > vc), θ ) = fM1 (μ1|d, θ, Ṽ > vc) (equation 12 and
the paragraph preceding it, and Fig. 12).

Fig. 14 shows the direction-sampled odds ratio as a function
of N for two different velocity cut-offs, where the samples are
drawn from the distribution (D = dsmbhb, � = Q = 0.1) and the
odds ratio is calculated relative to this distribution. The odds ratio
calculated from the direction cosines requires many more samples to
discriminate between the ejection mechanisms than that calculated
from the velocity distribution. In general, thousands of samples are
required regardless of vc. For vc � 200 km s−1, the distributions
are all exactly or nearly isotropic, and require many thousands of
samples to separate. As one examines increasingly higher velocity
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Figure 14. The direction-sampled Bayesian odds ratio OR (equation 17) as a function of N randomly drawn samples. The samples were drawn from the
distribution (D = dsmbhb, � = q = 0.1), and the odds ratio for each distribution is calculated relative to it. The panels correspond to samples drawn from the
truncated PDF with Ṽi > vc, where vc is (a) 200 km s−1 and (b) 1000 km s−1.

cut-offs, fewer samples are needed to distinguish between the true
distribution and some of the other distributions, but at a sufficiently
high vc, the distributions for the different q all become peaked in the
orbital plane and require many thousands of samples to separate. If
the samples are drawn from D = dsmbhb with Q = 0.01 or 1, then
we find analogous results, albeit with different velocities at which
the behaviour transitions. If the samples are drawn from D = dhills,
then the behaviour is as expected: many thousands of samples are
required for vc � 200 km s−1, and the number of required samples
decreases with increasing vc, reaching roughly N ∼ 1000 samples
for vc ∼ 2000 km s−1.

5 SU M M A RY A N D C O N C L U S I O N S

Galactic supermassive black holes can eject hypervelocity stars
by several mechanisms, and the properties of the ejected stars can
reveal information about their black hole progenitors and the galaxy
in which they reside. In this paper, we studied encounters between
unbound (parabolic, zero-energy) stars incident from a full loss cone
and (hard, circular) binary SMBHs, and examined the properties of
the ejected HVSs as a function of the binary SMBH mass ratio
and separation. Where necessary, we considered a binary SMBH
with primary mass M1 = 106 M	 and an isolated SMBH with mass
M• = 106 M	, and stars with solar parameters. We found several
features of HVSs from binary SMBHs that both corroborate earlier
work and reveal detailed behaviour:

(1) The ejection probabilities are in the range λbin
ej � 0.5 − 0.86,

and are monotonically increasing functions of a and q (where a =
ã/r̃t1 is the dimensionless binary SMBH separation and q = M2/M1

is its mass ratio). The probabilities are largely independent of a for a
� 100, and of q for q � 0.2. These are lower than the probabilities at
which stars reach the escape sphere of our simulations, r̃/ã = 100,
which roughly corresponds to the influence radius of the SMBHs.

(2) The mean velocity of the stars ejected by a binary SMBH is
well described by 〈v∞〉 � κv0(q/(1 + q))1/2(ã/r̃t1)−1/2, where the
constant of proportionality κ is q-dependent. We find it to be in
the range 0.97 ≤ κ ≤ 1.06 for our parameter space, which is less
than the estimate κ � 1.8 found by Yu & Tremaine (2003) (using
〈v∞〉 � √

2ε∞ and the numerical results of Quinlan 1996).

(3) A binary SMBH preferentially emits stars near its orbital
plane, where binaries with lower separations and higher mass ra-
tios require higher velocity cut-offs to observe this effect (Figs 7
and A1); this trend is not monotonic, as the mean polar angle of
ejected stars shows some bumps towards isotropy as a function of
ejection velocity (Fig. 8b). The locations of these bumps suggest
that stars are preferentially emitted near the orbital plane if they have
velocities just after the peak of the velocity distribution (Fig. 5).

(4) As the binary SMBHs in our parameter range contract, they
eject stars with velocities ṽ∞ � 1000 km s−1 at a rate ∼4 × 10−2

− 2 × 10−1 yr−1 for q = 1 (∼10−4 − 10−3 yr−1 for q = 0.01)
(Fig. 9a). For our entire range of q, the binary SMBHs emit a burst
of HVSs with ṽ∞ > 3000 km s−1 as they are about to coalesce; for
lower velocity cut-offs, only those with low mass ratios exhibit a
burst at late times (Fig. 9).

(5) The ejected star velocity distribution integrated over the life-
time of the ejecting binary SMBH has a well-defined peak and
power-law decay away from the peak, in contrast to the gener-
ally flatter distribution for stars ejected by the Hills mechanism
(integrated over typical binary star separations in the surround-
ing bulge) (Section 4). The former will yield lower velocities
than the latter if the stellar binaries can reach a minimum sepa-
ration of ã∗,min ∼ 0.001 au; will be more difficult to distinguish if
ã∗,min ∼ 0.01 au; and will yield higher velocities if ã∗,min ∼ 0.1 au
(Fig. 11).

(6) From a set of HVS samples, one can more efficiently identify
the SMBH progenitor by performing parameter estimation using
the sample velocities as opposed to the directions, and probing
as much of the velocity distribution as possible (i.e. applying a
velocity cut-off Ṽ > vc with vc � 200 km s−1). Roughly N ∼ 100
samples are required when examining the velocities with vc �
200 km s−1 (Fig. 13), whereas thousands of samples are required
when examining the directions with any velocity cut-off (Fig. 14).

We focused on stars ejected directly by an SMBH progenitor,
though HVSs (and more general ‘runaway stars’) can be produced
through several other channels (Section 1). Of the many alternatives,
only the star–BH cluster scenario can produce HVSs with velocities
and at rates even approaching those of the Hills mechanism or
a binary SMBH (Yu & Tremaine 2003; O’Leary & Loeb 2008).
Indeed, the ejection rates by binary SMBHs that we find (Fig. 9)
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are several orders of magnitude larger than those by star-BH cluster
scattering found by O’Leary & Loeb (2008).

We analysed the ejection of incident unbound stars from a full
loss cone. The details of the merger process may depopulate the loss
cone in the far field, suppressing the rate of incident low angular
momentum stars. The binary SMBH components will likely have
bound stars at the earlier stage of the inspiral (Baumgardt et al.
2006; Sesana et al. 2008), so the absence of a full loss cone after
the binary SMBH depletes the inner part of the cusp would make
these bound stars the last source of HVSs.

We presented the velocities of ejected stars in the potential of the
BH progenitors only. The shape of the galaxy can, of course, affect
the properties of the ejected stars (Sesana et al. 2007a,b; Rossi et al.
2014). In particular, a galactic potential may homogenize some
of the HVS properties, making it difficult to distinguish between
different SMBH origins.

In Section 4, we compared HVSs arising from either single stars
incident on a binary SMBH or binary stars incident on an isolated
SMBH. In addition to these, if stellar binaries are incident on an
SMBH binary, then one component of the SMBH binary can eject
hypervelocity stars via the Hills mechanism (Coughlin et al. 2018).
This additional process should be considered when examining the
properties of HVSs to determine their SMBH progenitors; we leave
this investigation to another paper.

Binary SMBHs can also eject hypervelocity binary stars (Lu,
Yu & Lin 2007; Sesana, Madau & Haardt 2009; Coughlin et al.
2018; Wang et al. 2018). The stellar binaries typically depart with
modified semimajor axes and increased eccentricities, and thus have
a shorter merger time-scale than before the encounter (Coughlin
et al. 2018). Isolated SMBHs can eject hypervelocity binary stars
as well by disrupting stellar triple systems (Perets 2009; Fragione
& Gualandris 2018). As with single HVSs, the properties of hyper-
velocity binary stars may depend on their origins and also serve as
a probe of central black holes.
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A P P E N D I X A : A D D I T I O NA L F I G U R E S

In this appendix, we expand some of the figures presented in the
paper to our full parameter space.

Figure A1. The probabilities μfM for the direction cosine μ = cos θ = vz, ∞/v∞ of ejected stars at r̃/ã → ∞ for different binary SMBH mass ratios q and
velocity cut-offs Ṽ > vc. The PDF is fM ≡ fM(μ). The variable θ is the polar angle measured from the direction normal to the binary SMBH orbital plane. The
top panels show the results for q = 0.01, the centre ones for q = 0.1, and the bottom ones for q = 1. The left-hand panels show ejections with vc = 200 km s−1

and the right ones show those with vc = 1000 km s−1. The linear bin widths are �μ = 0.02. The red curve shows the uniform distribution for μ produced by
the Hills mechanism.
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Figure A2. Statistics of ejected stars with a range of velocity cut-offs Ṽ > vc. The top panels show the results for q = 0.01, the centre ones for q = 0.1, and
the bottom ones for q = 1. The left-hand panels show the probability P (Ṽ > vc) that an ejected star has a velocity ṽ∞ > vc. The right-hand panels show the
orientation of ejected stars with velocities v∞ > vc; the orientation is parametrized by μ = cos θ = vz, ∞/v∞, where θ is the polar angle measured from the
direction normal to the binary SMBH orbital plane. For an isotropic distribution, 〈|μ|〉 = 0.5.
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