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ABSTRACT
Stars approaching supermassive black holes (SMBHs) in the centres of galaxies can be torn
apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH
as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of
points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in
which field stars approach the binary from the loss cone on parabolic, low angular momentum
orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and
examine the fallback dynamics of the post-disruption debris in the ‘frozen-in’ approximation.
We conclude by calculating the time-dependent disruption rate over the lifetime of the binary.
Throughout, we use a primary mass M1 = 106 M� as our central example. We find that the
tidal disruption rate is a factor of ∼2–7 times larger than the rate for an isolated BH, and is
independent of q for q � 0.2. In the ‘frozen-in’ model, disruptions from close, nearly equal
mass binaries can produce intense tidal fallbacks: for binaries with q � 0.2 and a/rt1 ∼ 100,
roughly ∼18–40 per cent of disruptions will have short rise times (trise ∼ 1–10 d) and highly
super-Eddington peak return rates (Ṁpeak/ṀEdd ∼ 2 × 102–3 × 103).

Key words: black hole physics – stars: kinematics and dynamics – stars: statistics – galaxies:
nuclei.

1 I N T RO D U C T I O N

A star that nears a galactic supermassive black hole (SMBH) is
stretched into a stream of debris when the tidal gravity of the BH
overwhelms the self-gravity of the star (Hills 1975; Kochanek 1994;
Coughlin et al. 2016). If the star originates beyond the sphere of in-
fluence of the SMBH, which we expect for most stars (Lightman &
Shapiro 1977), then roughly half of the debris remains bound and
returns to the BH (Lacy, Townes & Hollenbach 1982; Rees 1988;
Evans & Kochanek 1989). The returning debris dissipates its kinetic
energy through shocks (Rees 1988), forms an accretion disc (Can-
nizzo, Lee & Goodman 1990; Ramirez-Ruiz & Rosswog 2009;
Shiokawa et al. 2015; Bonnerot et al. 2016; Hayasaki, Stone &
Loeb 2016), and emits radiation that illuminates the centre of the
host galaxy for months to years. The sudden brightening from these
tidal disruption events (TDEs) occurs independently of the gaseous
environment in the galactic centre, and can thus reveal otherwise-
quiescent SMBHs. Observations have revealed dozens of TDEs (for
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a review, see Komossa 2015; Auchettl, Guillochon & Ramirez-Ruiz
2017; for recent detections, see Blagorodnova et al. 2017; Hung
et al. 2017), and upcoming wide-field surveys, such as the Large
Synoptic Survey Telescope (LSST), will likely detect hundreds to
thousands more (Strubbe & Quataert 2009).

Tidal disruptions by isolated SMBHs have been studied exten-
sively, both analytically (e.g. Rees 1988; Lodato, King & Pringle
2009; Strubbe & Quataert 2009; Coughlin & Begelman 2014;
Coughlin et al. 2016) and numerically (e.g. Bicknell & Gingold
1983; Evans & Kochanek 1989; Frolov et al. 1994; Guillochon &
Ramirez-Ruiz 2013; Coughlin & Nixon 2015; Tejeda et al. 2017). In
contrast, disruptions by BHs in binary systems have received less at-
tention, even though binary SMBHs are likely pervasive throughout
the Universe as a result of galaxy mergers (Bell et al. 2006), and fre-
quently interact with their field stars (Begelman, Blandford & Rees
1980). Indeed, the interaction between the two alters the binary or-
bital parameters, such as the separation and eccentricity (Begelman,
Blandford & Rees 1980; Mikkola & Valtonen 1992; Quinlan 1996;
Yu 2002; Sesana, Haardt & Madau 2006; Chen et al. 2011; Wegg &
Nate Bode 2011; Arca Sedda et al. 2017), and ejects hypervelocity
stars (Yu & Tremaine 2003; Sesana, Haardt & Madau 2006, 2007).
Some stars should approach close enough to the two BHs to become
tidally disrupted, which can produce observationally distinct TDEs
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if the binary orbital period is comparable to the fallback time of the
debris (Coughlin et al. 2017).

The few studies of TDEs from binary SMBHs have outlined
some of their important features. Chen, Liu & Magorrian (2008)
showed that the TDE rate can fall well below the canonical value
of 10−4–10−5 yr−1 galaxy−1 (Frank & Rees 1976) if the disrupted
stars are on hyperbolic orbits, while Chen et al. (2009) showed that
the rate can be greatly enhanced if the stars are bound to the binary,
which Wegg & Nate Bode (2011) and Chen et al. (2011) confirmed
with more detailed simulations. Li et al. (2015) investigated the
role of the eccentric Kozai–Lidov mechanism (Kozai 1962; Naoz
2016) in the orbital evolution of bound stars, and deduced that stars
could reach nearly parabolic trajectories leading to a disruption,
expanding on earlier work by Ivanov, Polnarev & Saha (2005). Liu,
Li & Chen (2009) and Ricarte et al. (2016) used N-body simulations
to model the fallback of tidally disrupted debris on to the BHs, and
showed that the accretion rate exhibits periodic dips; a signature of
this form may have been detected in a quiescent galaxy (Liu, Li &
Komossa 2014).

Recently, Coughlin et al. (2017) performed the first end-to-end
study of TDEs from SMBH binaries, from the pre-disruption stel-
lar dynamics to the post-disruption hydrodynamics, for a range of
binary mass ratios. Distinct from previous investigations, they fo-
cused on binaries that have exhausted their bound stars through
stellar scattering, and thus modelled the incident stars on initially
unbound, parabolic orbits corresponding to the loss cone’s ‘pin-
hole’ (or ‘full loss cone’) regime (Frank & Rees 1976; Lightman
& Shapiro 1977), similar to many isolated SMBH systems. They
followed the long-lived, chaotic orbits of the stars in the binary po-
tential, and found that (1) the disruption rate increases marginally
over the single BH case, and (2) the disrupted energies and angular
momenta differ appreciably from the input values. These differ-
ences impact the ensuing accretion event, including the time to
peak accretion and the total accreted mass. Hydrodynamic simula-
tions revealed that the behaviour of these features is distinct from the
gravitational perturbations induced by the secondary on the tidally
disrupted debris.

Since most binary SMBHs are likely the product of galaxy merg-
ers, the properties of the galaxies and the details of the merger
will determine the resulting stellar profile and loss cone dynamics
(for a review, see Merritt & Milosavljević 2005; Dotti, Sesana &
Decarli 2012; for earlier work, see e.g. Zier & Biermann 2001;
Milosavljević & Merritt 2001; Yu 2002; Milosavljević & Merritt
2003). In a dry merger, following the dynamical friction phase, the
binary and surrounding stars will settle into a steady-state config-
uration with a fully populated loss cone if the stellar relaxation
time is short compared to the binary coalescence time (Merritt &
Milosavljević 2005). The merger process is complicated and still a
focus of study, though simulations have shown that merging galax-
ies with collisionally relaxed nuclei can lead to binaries with full
loss cones (Gualandris & Merritt 2012).

Though Coughlin et al. (2017) explored a representative range of
binary mass ratios, they restricted their attention to a single binary
separation, and thus the impact of the separation on the properties
of the disrupted stars was unexplored. However, a binary SMBH
in a centre of a galaxy contracts over its lifetime by ejecting stars
(Begelman et al. 1980) and interacting with tidally disrupted debris
(Rafikov 2013; Goicovic et al. 2016, 2017), and the change in binary
separation can influence the rates and features of TDEs.

In this paper, we extend the work of Coughlin et al. (2017) and
investigate the properties of stars disrupted by a binary SMBH
over a range of binary separations and mass ratios. We simulate a

large number of encounters between a star and a binary SMBH in
the point particle limit and under the assumptions of the circular
restricted three-body problem (CRTBP), with the stars initialized on
parabolic trajectories. We compute the disruption rate, explore the
orbital properties of the disrupted stars, use a simple analytic model
to follow the debris, and summarize the dependence of these on the
binary parameters. These results can motivate the initial conditions
for hydrodynamic simulations of gas accretion on to binary SMBHs.
We also record the properties of the stars that escape (i.e. that reach
an escape radius), which is the preponderant end state of our three-
body integrations. A subset of these escape with positive energy
and are thus ejected from the binary, and we use these to calculate
the expected lifetime of the binary. In a companion paper, we plan
to analyse the ejected stars themselves to compare them with past
investigations and to provide an updated sample of statistics.

In Section 2, we describe the setup of our simulations. In Sec-
tion 3, we present the rate of disruption and the orbital properties
of the disrupted stars. We then use the ‘frozen-in’ approximation to
model the dynamics of the post-disruption debris and calculate the
rise time and peak in the fallback rate. We synthesize our results by
calculating the lifetime of the binary SMBH and the time-dependent
disruption rate. We conclude and summarize our findings in
Section 4.

2 SI MULATI ON SET-UP

A binary SMBH becomes ‘hard’ at roughly the separation (Quinlan
1996)

ah = GM1M2

4(M1 + M2)σ 2
(1)

where M1 and M2 are the masses of the primary and secondary,
and σ is the one-dimensional velocity dispersion of the stars in
the surrounding galaxy core. As the binary nears this distance,
dynamical friction ceases to be efficient and further contraction
must occur through another mechanism, notably stellar scatter-
ing (Begelman et al. 1980; Mikkola & Valtonen 1992; Quinlan
1996; Zier & Biermann 2001; Sesana et al. 2006, 2007). The
binary will eventually deplete its bound stars through scattering
or disruption, and further stellar interactions arise from loss cone
scattering.

Stars that can potentially be disrupted must approach the binary
through the loss cone, which is the energy – (low) angular momen-
tum phase space region in which stars can be tidally disrupted (for
an isolated SMBH, see Frank & Rees 1976; Lightman & Shapiro
1977; Cohn & Kulsrud 1978; Magorrian & Tremaine 1999; for a
binary SMBH, see Yu 2002; Yu & Tremaine 2003). Stars that ap-
proach the binary from large distances do so in the ‘pinhole’ (or
‘full loss cone’) regime, in which the loss cone is narrow and has
a full phase space, leading to a uniformly distributed range of peri-
centre distances. For the binary loss cone to remain full, it must
be repopulated on a time-scale short compared to the binary orbital
period, most likely by two-body relaxation (though other processes
may be important in some galaxies, such as secular evolution in a
nuclear disc, as examined by Madigan et al. 2018). These ‘pinhole’
stars are responsible for the majority of tidal disruptions by central
BHs with masses M• ∼ 106 M� (Stone & Metzger 2016); we focus
on this domain in our study.

Stars injected in the pinhole regime are initially on mildly hy-
perbolic orbits and are ‘slow intruders’ (Hills 1989), since their
velocity far from the binary is much less than the binary velocity,
v∞ ∼ σ � vbin (see below for the physical parameters that support
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Table 1. The quantities used to non-dimensionalize variables (with the dimensions length, mass, time, stellar specific energy, and stellar specific
angular momentum) in different sections of the paper, unless stated otherwise. Throughout the paper, if the dimensional character of a variable is
not clear from the context, then we write dimensioned variables with tildes on top and dimensionless ones without them. The parentheses show the
definitions of some variables used in each section.

Section Length Mass Time Specific energy (ε) Specific ang. mom. (�)

Simulation (2) a M = M1 + M2

√
a3/GM GM/a

√
GMa

Disruption (3.1 and 3.2) rt1 M1

√
r3

t1/GM1 GM1/rt1
√

GM1rt1

(a = ã/rt1)

(
td = t̃d/2π

√
r3

t1/GM1

)
Post-disruption (3.3) M∗ τ0 = 2πGM•/(2�ε)3/2

(m = m̃/M∗) (τ = t/τ 0)

Binary inspiral (3.4) rt1 M1 t0 = r4
t1c

5/G3M3
1 GM1/rt1

(a = ã/rt1)
(
t = t̃/t0

)

this). As a result, one can treat the stars as effectively incident on
parabolic orbits (Quinlan 1996). In addition, the binary will expel
most of the incident stars with enhanced velocities and its binding
energy will increase (Quinlan 1996). Since its binding energy is
much larger than the energy imparted to the stars, the binary does
not evolve appreciably in a single encounter. In this case, the system
can be modelled under the assumptions of the CRTBP, in which the
primary and secondary have masses M1 and M2 and move on circu-
lar orbits about their common centre of mass, and the incident stars
have masses M∗ � M1, M2 and do not affect the binary evolution.
There are no closed-form analytic solutions for the general motion
of a star in the CRTBP, so one must perform numerical scattering
experiments to study the tidal disruption statistics.

Although the binary will eject most stars, it will tidally disrupt a
subset of them. A star approaching a massive BH is tidally disrupted
when the tidal force from the BH equals the gravitational self-force
of the star (Hills 1975). This occurs at the BH’s tidal radius rt 

R∗(M•/M∗)1/3, where M• is the mass of the BH, and M∗ and R∗
are the mass and radius of the star. We define this as the criterion
for disruption, though there are additional dependencies on stellar
structure (Guillochon & Ramirez-Ruiz 2013; Mainetti et al. 2017).

We use MATHEMATICA to simulate stars incident on a binary SMBH
in the framework of the CRTBP, in the point particle limit and using
Newtonian gravitational potentials. The binary parameters set the
relevant scales in the problem, namely the semimajor axis a and
the total mass M = M1 + M2, which lead to the binary specific
energy ε = GM/a and specific angular momentum � = √

GMa,
and the time-scale T =

√
a3/GM (which is a factor of 2π off from

the binary orbital period, P = 2πT ). We simulate our scattering
experiments in the units G = M = a = 1, normalizing to these scales.
The binary is then described solely by two dimensionless quantities:
the mass ratio q = M2/M1 and the primary’s tidal radius rt1/a.

Table 1 presents the various scales that we use to non-
dimensionalize our variables in different parts of the paper, unless
otherwise noted. In short, although we vary rt1 = r̃t1/ã and q in our
simulations, in our results, we ultimately interpret this as varying
a = ã/r̃t1 and M2, while holding r̃t1 and M1 fixed. In this paper, if
the dimensional character of a variable is not clear from the con-
text, then we write dimensioned variables with tildes on top and
dimensionless ones without them.

The set-up and initial conditions for our scattering experiments
are similar to those of Coughlin et al. (2017). We set the origin of
the coordinate system to the centre of mass of the binary. A star’s
initial conditions are given by its specific energy ε, specific angular
momentum � relative to the origin, and position. The stars begin

on parabolic (zero energy) orbits with respect to the binary centre
of mass, and are distributed isotropically over a sphere of radius
r = 50. The (square of the) angular momentum of each star, and
thus the pericentre distance, is uniformly sampled from the range
�2 ∈ [0, 4], corresponding to the pinhole regime (Frank & Rees
1976; Lightman & Shapiro 1977; Cohn & Kulsrud 1978; Magorrian
& Tremaine 1999). An integration terminates if the star crosses the
tidal radius of one of the BHs, if it escapes to r = 100, or if the
simulation time reaches t = 104. In a departure from Coughlin et al.
(2017), we record information about both the disrupted and escaped
stars. A large fraction of the ‘escaped’ stars have positive energy
and will thus be ‘ejected’ from the binary; we use this terminology
throughout to distinguish between these two outcomes. We also
explore a larger set of points in the parameter space spanned by
q ∈ [0.01, 1] and rt1/a ∈ [0.001, 0.1] (a/rt1 ∈ [10, 1000]), and
simulate 5 × 106 encounters for each point. For comparison, we
simulated a smaller number of encounters for a few points in our
parameter space with the N-body code REBOUND using the IAS15
integrator (Rein & Liu 2012; Rein & Spiegel 2015), and found
close agreement with our results.

For a primary mass M1 = 106 M� and stars with solar param-
eters, the primary’s tidal radius is rt1 = 2.3 μpc and the range of
separations is a ∈ [0.023, 2.3] mpc. At these scales (M ∼ 106 M�
and a ∼ 10−3 pc), the binary velocity is vbin ∼ √

GM/a ∼ 2000
km s−1, and assuming an environment like the Galactic Centre, the
stellar velocities in the bulge are σ ∼ 100 km s−1 (Gültekin et al.
2009). The velocities thus satisfy σ � vbin, validating the use of
parabolic orbits. To verify this approximation, we ran additional
simulations with stars on slightly hyperbolic orbits with asymptotic
velocities v∞ = 100, 200 km s−1 for several representative points
in our parameter space; we found identical results to our main setup
in all areas.

General relativistic (GR) precession may modify the secular
dynamics of stars caught on long-lived orbits (Will 2014). For
stars bound to a primary with a low-mass secondary, apsidal pre-
cession even counteracts secular evolution from the Kozai–Lidov
mechanism and suppresses the disruption rate (Chen et al. 2011).
Though the stars in our simulations are initially unbound and
have shorter disruption times, we ran additional simulations using
Paczyńsky–Wiita potentials to check the influence of GR preces-
sion (Paczyńsky & Wiita 1980). We found identical results to our
main setup for most of our parameter space; for small q and large
a, we found minor changes, with an increase of �10 per cent in the
disruption rate and a slightly reduced probability of late disruptions
(see Section 3.2).
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Figure 1. (a) The binary BH tidal disruption rate λbin
t = Nt/Ne, where Nt (Ne = 5 × 106) is the total number of disruptions (encounters). The horizontal axis

gives the primary tidal radius rt1 = r̃t1/a and the legend gives the binary mass ratio q = M2/M1. The isolated BH disruption rate (dashed line) is λiso
t = rt1/2a,

and was calculated for a BH with the mass of the primary and stars incident from r = 50a with angular momenta uniformly distributed in �2/GM1a ∈ [0, 4],
where here a is a length-scale factor. (b) The scaled binary BH disruption rate λbin

t /λiso
t . The legend gives the separation a = ã/rt1. In both plots, the error bars

have half-width 20σ , where σ = (λbin
t /Ne)1/2 are the standard deviations assuming a Poisson distribution.

Although we simulate our scatterings in dimensionless units,
physical considerations constrain the domain of applicability of our
results. The BHs must have masses M• ∼ 106 M� in order for
stars in the pinhole regime to be the dominant source of TDEs
(Stone & Metzger 2016), as discussed above. The Schwarzschild
radius rS = 2GM•/c2, the location of the event horizon of a non-
rotating BH, must be much less than the tidal radius for disruptions
to occur and to avoid the effects of strong gravity near the horizon.
For a stellar mass–radius relation of R∗ = R�(M∗/M�)α , the BH
masses should then satisfy

M•
M�

�
(

c2 R�
2G M�

)3/2 (
M∗
M�

)(3α−1)/2


 1.1 × 108

(
M∗
M�

)(3α−1)/2

(2)

For main-sequence stars with M∗ � M�, the parameter α 
 3/4
(Hansen, Kawaler & Trimble 2004). Finally, the binary separation
must be small compared to the gravitational sphere of influence
of the BH system in its galactic environment, and large enough
to neglect gravitational radiation (we include this contribution in
Section 3.4).

3 TIDAL DISRUPTION EVENTS

3.1 Tidal disruption rate

Fig. 1(a) shows the total tidal disruption rate λbin
t = Nt/Ne from

the binary SMBH, where Nt (Ne = 5 × 106) is the total number of
disruptions (encounters). Less than 12 per cent of the encounters end
in disruptions over our parameter range, with the system reaching
this maximum rate when q = 1 and rt1/a = 0.1. The vast majority
of encounters result in stars that cross the escape sphere, with over
86 per cent of the simulations ending with this outcome. The end
state is inconclusive when stars are placed on weakly bound orbits,
neither being disrupted nor expelled by the end time t = 104; this
outcome occurs in less than 2 per cent of the simulations and thus

minimally affects our statistics (see the discussion in Coughlin et al.
2017). Consequently, the escape rate is roughly λbin

esc 
 1 − λbin
t .

Fig. 1(b) shows the scaled tidal disruption rate λbin
t /λiso

t , which is
the rate from the binary BH normalized to the rate from an isolated
BH with the mass of the primary. The rate exhibits several interesting
features in our range of parameters. For low q, the rate increases
with q, and for q � 0.2, the rate is insensitive to q and is in the range
∼2–5. For a given q, the rate increases monotonically with a, since
a larger separation leads to a larger gravitational cross-section for
the binary. As q approaches zero, the rate approaches λbin

t /λiso
t = 1

regardless of the separation, as expected since at q = 0, the binary
system reduces to an isolated BH at the origin with the mass of the
primary.

We studied the rates of disruption by the primary and secondary
(Fig. 2a), and interpret these results as follows. When q is small,
increasing the mass of the secondary creates larger perturbations on
the orbit of the incoming star, which causes the star to remain bound
to the binary for longer and increases the likelihood of disruption,
mostly for the primary. On the other hand, for q comparable to unity,
the secondary mass and tidal radius are more comparable to those
of the primary, so the secondary effectively ‘steals’ disruptions from
the primary with increasing q and the rate remains nearly constant;
this agrees with the findings of Coughlin et al. (2017), who explored
0.1 ≤ q ≤ 1 for a/rt1 = 100.

Fig. 2(b) shows the primary disruption rate relative to the total
binary disruption rate. The primary accounts for nearly all of the
disrupted stars for q = 0.01 and half of them for q = 1, as expected.
Between these limits, the rate is well approximated by a linearly
decreasing function of q and is largely independent of a. Though
the relative rate decreases monotonically with increasing q, the total
primary disruption rate behaves as described above. The relative rate
for the secondary is simply λbin

t2 /λbin
t = 1 − λbin

t1 /λbin
t .

3.2 Orbital properties of disrupted stars

In this subsection, we examine the orbital properties of the dis-
rupted stars, including the behaviour of the orbits, the disruption
time-scales, the centre-of-mass energies and eccentricities, and
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Figure 2. (a) The primary (solid) and secondary (dashed) tidal disruption rates λbin
ti = Nti/Ne, where i = 1(2) refers to the primary (secondary), Nti is

the number of disruptions by the corresponding BH, and Ne = 5 × 106 is the total number of encounters. The horizontal axis gives the binary mass ratio
q = M2/M1 and the legend gives the separation a = ã/rt1. The error bars have half-width 20σ i, where σi = (λbin

ti /Ne)1/2 are the standard deviations assuming
a Poisson distribution. (b) The rate of disruption by the primary relative to the total rate of disruption, λbin

t1 /λbin
t . The errors bars have half-width 20σ , where

σ = (λbin
t1 /λbin

t Ne)1/2.

the amount of bound debris. We use this information in the next
subsection to study the dynamics of the returning debris, namely
how the centre-of-mass energies affect the fallback rate.

The stars in our simulations are initialized on parabolic (zero
energy) trajectories about the binary centre of mass. A disrupted star
typically traces out a chaotic three-body orbit in the binary potential
prior to disruption, and can thus acquire a non-zero centre-of-mass
energy relative to the disrupting BH. For an isolated SMBH, in
contrast, the star’s energy is conserved. To quantify this effect, we
define a critical energy parameter εc for the (non-rotating) star at
the point of disruption:

εc = εcm

�ε
(3)

Here, εcm = v2/2 − GM•/rt is the star’s specific centre-of-mass
energy relative to the disrupting BH, where v is its relative velocity,
and M• and rt are the BH’s mass and tidal radius, and

�ε = GM•R∗
r2
t


 1.9×1017erg · g−1

(
M•

106 M�

)1/3(
M∗
M�

)2/3(
R∗
R�

)−1

(4)

is the energy spread across the radius R∗ of the star due to the
potential of the BH, assuming R∗ � rt.

If the disrupting BH is isolated, then εc characterizes the be-
haviour of the resulting debris. In particular, it partitions the state
of the debris into three main categories: all of the debris is bound
to the BH if εc < −1, part of it is bound if −1 ≤ εc < 1, and all of
it is unbound if εc ≥ 1. In short, a lower value of εc leads to more
bound debris. A star approaching an isolated BH on a parabolic
orbit would be disrupted with εc = 0, corresponding to half of the
debris remaining bound and half escaping. In Section 3.3, we dis-
cuss in more detail the relation between εc and the behaviour of the
post-disruption debris.

The value of εc that a star acquires at disruption generally cor-
relates with the type of orbit it follows when approaching the dis-
rupting BH. A star will have εc ≥ 1 if its velocity is roughly in the
opposite direction to that of the BH, leading to a head-on encounter.
It will have εc < −1 if its velocity is in the same direction as the

BH, typically approaching it from behind, leading to a lower relative
velocity between the two. This outcome tends to occur when the
star becomes bound to the primary on a tight, long-lived, pseudo-
circular orbit in the direction of the binary rotation. And finally, it
will be disrupted with −1 ≤ εc < 1 if it approaches in an intermedi-
ate way, such as with a combination of a glancing angle or a modest
relative velocity.

Fig. 3 shows the projection in the xy-plane of the orbits of two
disrupted stars for q = 0.2 and rt1 = 0.01a. The orbits give a sense
of the motion of a typical star on the path to disruption: the stars are
bound to the primary and perturbed by the secondary, both in the far
field and in close encounters, until an eventual disruption. The stars
shown are disrupted fairly early, fewer than 11 binary orbits after
the first encounter (at 
 26.5 binary orbits, see below). The stars are
disrupted with −1 ≤ εc < 1, since they approach the disrupting BH
on an elliptical orbit (primary) or at a glancing angle (secondary)
after orbiting the binary several times.

Fig. 4 shows histograms of the probabilities tft for the time of
disruption td = t̃d/2π

√
r3

t1/GM1 for a = 100, where ft are the
probability density functions (PDFs). Over 10 per cent of disrup-
tions occur in a star’s first encounter with the binary, which corre-
sponds to the peak at the leftmost point in each of the histograms. For
low q, the probability drops after the earliest time and then increases
to a local maximum at a later time; for q � 0.1, the disruption prob-
ability decreases monotonically with time, most likely approaching
a local maximum after the simulation time. The disrupted stars sat-
isfy these trends for all separations that we explored. With apsidal
precession included, the probabilities remain unchanged for most
of our parameter space; for q = 0.01 and a � 100, the probabilities
are slightly lower at late times, leading to an earlier local maximum.

The probability distributions can be understood by considering
the typical orbits of disrupted stars. A star takes approximately
503/2

√
2/(6π) = 26.5 binary orbits to move from its initial position

at r = 50a to its first encounter with the binary. The star can be
disrupted at this time due to a chance encounter with one of the
BHs, more commonly with the primary for lower q, so the disruption
probability peaks at this earliest time with a value �10 per cent. This
time corresponds to td = 26.5/

√
(1 + q)/a3, which is the location

of the leftmost bin in each of the histograms. If the star is not
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4014 S. Darbha et al.

Figure 3. The projection in the xy-plane of the orbit for a star disrupted by the primary (left) and secondary (right). The binary has unit separation and
parameters q = 0.2 and rt1 = 0.01a. The binary is rotating counterclockwise and has its centre of mass at the origin. The transparent grey circles indicate the
locations of the primary (larger) and secondary (smaller), and the black circles at the centres show the tidal radii to scale. The top left corners show the input
parameters, including the initial stellar angular momenta �0 = �̃0/GMa. The bottom left corners show several parameters at the point of disruption, namely
the times of disruption td = t̃d/2π

√
a3/GM (i.e. in binary orbits), and the stars’ critical energies εc and eccentricities e.

Figure 4. The probabilities tft for the time of disruption td =
t̃d/2π

√
r3

t1/GM1, for a = 100 and q = 0.05 (solid), 0.2 (dashed), and
0.8 (dotted). The logarithmic bin widths are �t = 0.02 and the heights give
the probabilities in each bin. For M1 = 106 M� and Sun-like stars, td = 104

corresponds to roughly 3.2 yr. The leftmost bin in each histogram contains
td = 26.5/

√
(1 + q)/a3, which is the time at which the stars first encounter

the binary.

disrupted at this earliest moment, it remains bound and follows a
chaotic orbit until it is eventually disrupted after many encounters.
For low q, the star is bound explicitly to the primary and its orbit is
gradually perturbed by the smaller secondary, preferentially being
disrupted after a number of binary orbits, most often by the primary.
As a result, the probability drops after the time of first encounter
and then gradually increases to a local maximum. For q � 0.1, both
the primary and secondary have sizable disruption cross-sections,
so the probability decreases monotonically. Binaries with different
separations exhibit similar behaviour.

The impact parameter of a disrupted star is given by β = rt/rp

(Carter & Luminet 1982), where rt is the tidal radius of the BH and
rp is the star’s pericentre distance relative to the disrupting BH if it
were to continue on its trajectory as a point particle. Coughlin et al.
(2017) showed that the PDF of β for stars disrupted by a binary BH
with q = 0.2 and rt1 = 0.01a is well described by fβ = 1/β2, and this
scaling arises when the pericentres of disrupted stars are uniformly
distributed. We find that the PDFs are accurately described by this
scaling for most of our parameter space, though they exhibit slightly
steeper power laws for close separations and low-mass ratios. The
BH will undoubtedly swallow the star if the pericentre is within
the BH’s Schwarzschild radius, or equivalently when the impact
parameter is

β ≥ βs = R∗c2

2G(M2•M∗)1/3

 23.6

(
M•

106M�

)−2/3( 〈ρ∗〉
〈ρ�〉

)−1/3

(5)

where M• is the BH mass, M∗ and R∗ are the star’s mass and radius,
and 〈ρ∗〉 = 3M∗/4πR3

∗ is the star’s mean density. This outcome
occurs with probability p 
 1/βs.

Fig. 5 shows the PDFs for the relative eccentricity of disrupted
stars for a = 500, given by

e =
√

2�2
cmεcm

(GM•)2
+ 1 (6)

where εcm and �cm = |rcm × v| are the (dimensioned) specific en-
ergy and angular momentum of star’s centre of mass relative to the
BH at its tidal radius, and M• is the mass of the BH. The distribu-
tions are peaked at e = 1 (a parabolic orbit), which was the initial
eccentricity relative to the binary, and are more narrowly centred
around this value for the primary (0.99 � e � 1.01) than the sec-
ondary (0.99 � e � 1.08). As q approaches one, the PDFs for the
primary and secondary become similar and symmetric about e = 1,
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Tidal disruptions by SMBH binaries 4015

Figure 5. The PDFs for the eccentricity of disrupted stars relative to the disrupting BH calculated at the tidal radius, for a = 500 and q = 0.05 (solid), 0.2
(dashed), and 0.8 (dotted). The left-hand panel shows disruptions by the primary and the right one shows those by the secondary. The bin widths are 2 × 10−4

(primary) and 10−3 (secondary). The relative eccentricity is given in equation (6). A star on a parabolic orbit disrupted by an isolated BH has an eccentricity
e = 1, as marked by the red line. For binaries with smaller separations, the PDFs become wider but have similar shapes and retain their peaks at e = 1 (Fig. A1
in Appendix A).

Figure 6. The PDFs for the critical energy εc (equation 3) of disrupted stars relative to the disrupting BH calculated at the tidal radius, for a = 500 and
q = 0.05 (solid), 0.2 (dashed), and 0.8 (dotted). The left-hand panels show disruptions by the primary and the right ones show those by the secondary. The bin
widths are �ε = 0.01 (primary) and 0.05 (secondary). The red lines mark εc = −1, 0, +1, if they are in a histogram’s domain. The stellar debris is bound to a
different extent in the regions the lines delimit: if εc < −1, then all of the debris is bound to the BH; if −1 ≤ εc < 1, then part of it is bound; and if εc ≥ 1,
then all of it is unbound. If εc = 0, half of the debris remains bound and half escapes, which occurs when a star on a parabolic orbit is disrupted by an isolated
BH. For binaries with smaller separations, the PDFs become wider while retaining their peaks at εc = 0 (a factor of 10 decrease from a = 500 to 50 leads to
a factor of 10 increase in the widths); the histograms for the primary become more concentrated at εc = 0, and those for the secondary roughly preserve their
shape (Fig. A2 in Appendix A).

as expected; as q decreases, the PDF for the primary becomes nar-
rower and favours bound elliptical orbits (e < 1), and that for the
secondary becomes broader and favours unbound hyperbolic orbits
(e > 1). The distributions become broader for smaller separations,
while preserving their general shape (Fig. A1).

Fig. 6 shows the PDFs for the critical energy parameter εc (equa-
tion 3) of disrupted stars relative to the disrupting BH for a = 500.
The PDFs have their global maxima near εc = 0. For q < 1, the
primary is spread narrowly about this maximum (−0.5 � εc � 0.6)
and preferentially produces mostly bound debris (εc < 0), and the
secondary is broader (−0.5 � εc � 1.6) and produces mostly un-
bound debris (εc ≥ 0); the two become more similar and symmetric
as q approaches 1, as required. For q = 0.2, the PDF for the primary
exhibits a double-peaked structure, with one maximum at εc = 0
and one slightly lower. The PDFs show similar trends for tighter

binaries (Fig. A2). The distributions become wider by a factor of 10
as a decreases by a factor of 10 (from a = 500 to 50); the histograms
for the primary become more concentrated at εc = 0, and those for
the secondary roughly preserve their shape.

The general trends in the PDFs for e and εc can be explained by
considering the BH masses and velocities. For low q, the primary is
much more massive than the secondary, so stars follow bound orbits
about the primary that are gradually perturbed by the secondary
until a disruption. If a star is disrupted by the primary, which is
the more probable outcome, it will thus likely be on a bound orbit
(e < 1). In contrast, a disruption by the secondary will likely occur
due to a chance encounter, and the star will typically be on an
unbound orbit relative to the secondary (e > 1). As q approaches
one, the PDFs for e and εc become more symmetric about their
peak values of zero and one, respectively, as they must be equal for
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4016 S. Darbha et al.

Figure 7. The average critical energy 〈εc〉 of disrupted stars relative to the disrupting BH calculated at the tidal radius, for stars disrupted by the primary (left)
and secondary (right). The value of εc in an individual disruption event determines the general behaviour of the debris: if εc < −1, then all of the debris is
bound to the BH; if −1 ≤ εc < 1, then part of it is bound; and if εc ≥ 1, then all of it is unbound. If εc = 0, half of the debris remains bound and half escapes,
which occurs when a star on a parabolic orbit is disrupted by an isolated BH.

Figure 8. The fraction fb of stars with at least some debris bound to the disrupting BH (εc < 1), for stars disrupted by the primary (left) and secondary (right).
The curves for the primary and secondary become equal when q = 1 (lightest grey), as expected from symmetry.

q = 1. The width of the distributions can generally be understood by
considering the velocities of the binary constituents, which are v1 =
q(1 + q)−1√GM/a for the primary and v2 = (1 + q)−1√GM/a

for the secondary. Both velocities scale as v ∼ a−1/2, so a tighter
binary leads to higher BH velocities and thus a wider spread in the
PDFs for e and εc. A larger q, though, leads to a higher v1 and a
lower v2, which causes the PDFs for v1 to widen and the ones for
v2 to narrow.

Fig. 7 shows the average εc versus a for different q. The primary
exhibits a complicated behaviour. For q = 0.01, 〈εc〉 
 0 for all
separations. For all values of q, 〈εc〉 approaches zero at large sepa-
rations. For small a, it decreases with q until about q = 0.1, so more
than half of the stellar debris will remain bound to the primary on
average in this regime. The mean then increases with q, and for
q = 1, it decreases monotonically towards zero with increasing a.
In between these last two values of q, there is a trade-off and 〈εc〉
does not exhibit monotonic behaviour. The secondary behaves more
straightforwardly. The mean has a very large value at small a and
q, so much of the debris will be unbound on average in this regime,
and it decreases monotonically with increasing a and q.

Fig. 8 shows the fraction of the disrupted stars that have at least
some amount of bound debris over our parameter range. For wide
separations (a � 200), most stars disrupted by either the primary

(�95 per cent) or secondary (�50 per cent) have some bound debris,
regardless of the mass ratio. As the binary contracts, the fraction
decreases monotonically for both BHs; for the primary this decline
is more rapid for larger q, and for the secondary it is more rapid for
smaller q. However, the total TDE rate remains constant for q � 0.2
(Fig. 1b), so a larger q in this range effectively shifts bound debris
from the primary to the secondary. The curves for the primary and
secondary become equal when q = 1, as expected.

3.3 Return dynamics of post-disruption debris

The debris from a TDE can become bound to the binary system.
A detailed study of its dynamics would require a simulation in
the gravitational potential of the BHs. In lieu of this, we estimate
the fallback properties by making the ‘frozen-in’ approximation,
analytically modelling the debris in the potential of the disrupting
BH only. If the debris promptly circularizes into an accretion disc
and the radiation diffuses out rapidly, then the accretion rate and
light curve will track the fallback rate. Analytic studies have argued
that the bolometric light curve will generally follow the fallback
rate (Lodato & Rossi 2011), and recent parametric light-curve fits
(coupled with a filter function to estimate the viscous time) have
suggested that the time delay may be less than a few days (Mockler,
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Tidal disruptions by SMBH binaries 4017

Figure 9. The fraction fm of bound-debris disruptions that satisfy the criterion for the ‘frozen-in’ model (equation 7), for stars disrupted by the primary (left)
and secondary (right). The model is accurate for 500 � a < 1000, and represents an average behaviour for a � 500 (Coughlin et al. 2017).

Guillochon & Ramirez-Ruiz 2018). However, the intermediate steps
may be inefficient, and in many cases, it may not be possible to
directly translate a fallback rate through to a light curve (Shiokawa
et al. 2015; Bonnerot et al. 2016; Hayasaki et al. 2016; Sa̧dowski
et al. 2016). We focus on the behaviour of the fallback rate in this
subsection, noting that its implications depend on the details of the
accretion process. We describe our model below, but first give its
domain of applicability.

The rise time and peak fallback rate calculated from our model
will be accurate when the apocentre of the peak returning debris
is within the Roche lobe of the disrupting BH, rpeak < rRoche. For
disruptions by the primary, this condition becomes (in units of
G = M = a = 1)

�2
peak(1 + q)

1 − [2εpeak�
2
peak(1 + q)2 + 1]1/2

<
0.49q−2/3

0.6q−2/3 + ln(1 + q−1/3)
(7)

where εpeak and �peak are the peak returning specific energy and an-
gular momentum, and where we used a common expression for the
characteristic size of the Roche lobe (Eggleton 1983; Frank, King &
Raine 2002). The condition for the secondary can be obtained with
the replacements q → q−1 and rt1 → rt2. Coughlin & Armitage
(2018) additionally examined the time-scales over which this single
BH assumption remains valid.

Fig. 9 shows the fraction of bound-debris disruptions that sat-
isfy the above constraints. The model is robust for disruptions by
wide binaries (500 � a < 1000), and quickly deviates as the bi-
nary tightens (a � 500). However, Coughlin et al. (2017) showed
that the single BH model reflects the average accretion behaviour
observed in hydrodynamic simulations for a = 100, and can thus
be interpreted in that sense for tight binaries. Importantly, in Sec-
tion 3.4, we show that gravitational radiation dominates the binary
inspiral beginning at a ∼ 100, which suppresses the likelihood of
tidal disruptions below this distance. With these qualifications in
mind, we present the results from our model over the full range of
separations, but focus on the range 100 � a < 1000.

The ‘frozen-in’ model that we use is similar to that of Lodato
et al. (2009) and Coughlin & Begelman (2014), though with one
important difference: a star disrupted by a binary SMBH can have
a non-zero centre-of-mass energy (Section 3.2). To briefly summa-
rize, we use the impulse approximation in which the star moves
as a rigid, non-rotating body until it reaches the tidal radius of the
disrupting BH, at which point the gravity of the BH overwhelms

the self-gravity of the star, and the post-disruption stellar debris el-
ements then travel on independent orbits in the potential of the BH.
The energies of the debris elements are thus conserved, and are set
solely by their kinetic and potential energies at the tidal radius; the
former is the same for all of the elements since the star is not rotat-
ing. Since R∗ � rt1, rt2, the star at the tidal radius can be divided into
debris slices, each with a constant energy. We assume the stars are
Sun-like and have uniform density ρ∗ = 3 M�/4πR3�. This model
allows us to derive simple analytic results for the properties of the
debris.

If m̃ is the mass of an individual debris slice and t is the time after
disruption, then we can define the dimensionless mass m = m̃/M∗,
and time τ = t/τ 0 using the time-scale

τ0 = 2πGM•
(2�ε)3/2


 41 d

(
M•

106M�

)1/2(
M∗
M�

)−1(
R∗
R�

)3/2

(8)

where �ε is the energy spread across the star due to the BH
(equation 4). The parameter τ 0 contains the properties of the star
and BH involved in the disruption event. For Sun-like stars and
M• = 106 M�, an interval of τ = 1 corresponds to about 41 d. In
these units, the mass fallback rate for the debris is

dm

dτ
= 1

2
τ−5/3

(
1 − ε2

c − 2εcτ
−2/3 − τ−4/3

)
(9)

where the critical energy must be in the range εc < 1 for the disrup-
tion to produce some bound debris.

For a star disrupted with critical energy εc, the most bound debris
returns at a time τmb = (1 − εc)−3/2 and the peak return rate occurs
at τpeak = 27

[
(4ε2

c + 45)1/2 − 7εc

]−3/2
. We can then define the rise

time as

τrise = τpeak − τmb

= 27
[
(4ε2

c + 45)1/2 − 7εc

]−3/2 − (1 − εc)−3/2 (10)

For disruptions in which all of the stellar debris is bound (εc < −1),
the return rate has a finite duration and the least bound debris returns
at τ lb = (−1 − εc)−3/2.

Fig. 10(a) shows the mass return rate dm
dτ

for four different values
of εc. The curves all exhibit cut-offs at early times corresponding to
the return time of the most bound debris. Fully bound stars (εc <−1)
also have a finite return time for the least bound debris, shown by
the abrupt drop in the curve for εc = −2 at τ 
 1. Partially bound
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4018 S. Darbha et al.

Figure 10. (a) The mass return rate dm
dτ

(equation 9; see surrounding text for the definitions of m and τ ) for four values of εc, corresponding to a partially bound
star (εc = 0.5), a fully bound star (εc = −2), a star exactly at the boundary of the two (εc = −1), and one slightly above it (εc = −0.99). For M• = 106 M� and
Sun-like stars, an interval of τ = 1 corresponds to roughly 41 d. (b) The rise time trise = τ 0τ rise = τ 0(τ peak − τmb), the time �t90 = τ 0�τ 90 = τ 0(τ 90 − τmb)
for 90 per cent of the mass to return, and the time �tSE = τ 0�τSE spent super-Eddington, as a function of the dimensionless peak fallback rate Ṁpeak/ṀEdd

(equation 11; see surrounding text for the parameters used), all for M• = 106 M�. The red vertical lines correspond to slices in which (1) left: Ṁpeak = ṀEdd

(εc = 0.668); (2) centre: εc = 0; and (3) right: εc = −1.

stars with −1 < εc < 1 exhibit the characteristic τ−5/3 scaling
at late times derived for disruptions by a single BH (Rees 1988,
updated in Phinney 1989). A star at the boundary (εc = −1) has
dm
dτ

∼ τ−7/3 at late times, slightly steeper than the previous case.
The curves for εc = −0.99 and −1 show these two different return
rates, which begin to diverge at roughly τ 
 20. The abrupt change
arises because we model the stars with uniform density, leading to
a density discontinuity at the stellar radius.

The dimensioned peak mass return rate Ṁpeak can be expressed
in units of the Eddington accretion rate ṀEdd as

Ṁpeak

ṀEdd
= κεc√

6π3G
〈ρ∗〉1/2

(
M•
M∗

)−3/2 (
dm

dτ

)
peak

(11)

For Sun-like stars of uniform density, the mean stellar density is
〈ρ∗〉 = 3 M�/4πR3� = 1.41 × 103 kg m−3, and the opacity, dom-

inated by ionized hydrogen, is κ = σ T/mp = 0.04 m2kg−1. We
use a radiative efficiency of ε = 0.1. The rate Ṁpeak/ṀEdd, though
dimensionless, depends on the BH mass and the stellar parameters.

Fig. 10(b) shows the rise time trise = τ 0τ rise (equation 10), along
with the time �t90 = τ 0�τ 90 = τ 0(τ 90 − τmb) for 90 per cent of the
debris to return and the duration �tSE = τ 0�τ SE of super-Eddington
fallback, plotted versus Ṁpeak/ṀEdd, all for M• = 106 M�. The
rise time and peak return rate are inversely related: disruptions
with lower εc have shorter durations and higher peak return rates.
Disruptions with preferentially bound debris (εc < 0) have rise
times trise � 23 d (τ rise � 0.55) and super-Eddington fallback rates
Ṁpeak/ṀEdd � 43, where the limits here give the values for the
canonical case εc = 0. Of particular note, disruptions with fully
bound debris (εc < −1) exhibit distinguishing behaviour, with
short rise times trise � 6.6 d (τ rise � 0.16) and large fallback rates
Ṁpeak/ṀEdd � 4.2 × 102.

In a TDE by an isolated SMBH, the rise time and peak luminosity
can probe the BH mass (through trise ∼ M1/2

• and Ṁpeak/ṀEdd ∼
M−3/2

• ) if the surrounding stellar population is well constrained, and
inform us about the stellar environment (through trise ∼ M−1

∗ R3/2
∗

and Ṁpeak/ṀEdd ∼ 〈ρ∗〉1/2) if the BH mass is known. If the SMBH
is in a binary, then for some range of q and a, these two indicators

may exhibit qualitatively different behaviour than in the single BH
case, and can then be used to confirm the presence of a binary and
characterize its properties. The two depend on the critical energy
εc of the disrupted star (equation 3) through their dimensionless
counterparts τ rise and

(
dm
dτ

)
peak

, and εc in turn depends on q and a
(Figs 6 and A2).

We investigate the properties of the bound post-disruption debris
using a primary mass M1 = 106 M�. We examine the distributions
in the rise time and peak return rate over our parameter range, and
calculate the fraction that are prompt (trise � 10 d) and have highly
super-Eddington fallback (Ṁpeak/ṀEdd � 2 × 102) with respect to
the disrupting BH, as this behaviour is extreme for a single BH.
These values correspond to εc � −0.6 for disruptions by the primary
(M1 = 106 M�), though both will not correspond to a single range
for the different secondary masses.

We can summarize our findings as follows. For tight (a � 100),
nearly equal-mass (q � 0.2) binaries, a sizable portion of the bound-
debris disruptions will be short duration, highly super-Eddington
TDEs. For tight, unequal-mass binaries, the low-mass secondaries
also have a large proportion of bound disruptions with this be-
haviour. Wide binaries (a � 500) nearly always produce bound
disruptions with εc = 0 for all mass ratios; for unequal masses, this
implies that the secondary mostly produces disruptions with short
rise times and super-Eddington peak rates. We outline these results
in Figs 11–14 (and A3–A4, and A7–A8) and describe them in more
detail in the rest of this subsection.

First, though, we note that to connect these results to total dis-
ruption rates for a given BH, one must multiply these probabilities
(which assume that a bound disruption has occurred), with the rel-
ative probability of disruption (Fig. 2b) and the probability that a
disruption has some bound debris (Fig. 8). We present these total
probabilities in Figs A5–A6 and A9–A10, and save this final anal-
ysis for Section 3.4 when we study the binary merger and calculate
the closest separation at which we expect to observe disruptions.

Fig. 11 shows histograms of the probabilities tft for the rise time
trise = τ 0τ rise (equation 10) for M1 = 106 M�, q = 0.2, and a range of
values of a. As the binary tightens, the distribution becomes broader
and flatter and the peak shifts to lower values. The tight binaries
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Tidal disruptions by SMBH binaries 4019

Figure 11. The probability tft that the bound debris of the disrupting BH will produce a rise time trise = τ 0τ rise for a primary mass M1 = 106 M�, q = 0.2,
and a = 1000 (solid), 100 (dashed), and 10 (dotted). The left-hand panel shows disruptions by the primary and the right one shows those by the secondary. The
logarithmic bin widths are �t = 0.05 and the heights are the probabilities in each bin. The red line marks the rise time trise = τ0(3

√
3 − 53/4)/53/4 for a TDE

from a star with εc = 0 (parabolic orbit, half of the debris is bound) disrupted by the appropriate BH. Fig. A3 in Appendix A presents similar histograms for a
range of q in our parameter space.

Figure 12. The median rise time Med(trise) in the mass return rate for a primary mass M1 = 106M•. The left-hand panel shows disruptions by the primary and
the right-hand panel shows disruptions by the secondary. The error bars have half-width 20στ 0, where σ = √

fb/Ne are the standard deviations assuming a
Poisson distribution and Ne = 5 × 106 is the total number of encounters.

(a � 100) tend to produce prompt TDEs, with ∼65–25 per cent
(∼85−50 per cent) of bound-debris disruptions by the primary (sec-
ondary) having trise ∼ 4 × 10−2–10 d (trise ∼ 4 × 10−2–10 d), where
the lower limit depends on a. In contrast, the bound-debris disrup-
tions by wide binaries (a � 500) are nearly always similar to the
canonical case from an isolated BH (εc = 0, half of the debris re-
mains bound), namely with τ rise 
 0.55 (
 23 d for M1 = 106 M�,
and 
 10 d for M2 = 0.2M1). In our model, the rise time of a dis-
rupted star is determined by the mass of the disrupting BH (equa-
tion 8) and by the value of εc (equation 10, Fig. 10a). Therefore,
the trends for tight and wide binaries arise due to the trise ∼ M1/2

•
scaling (which locates the peak) and due to the distribution of εc

discussed previously (which determines the shape) (Fig. 6).
The rise time distribution varies with the mass ratio (Fig. A3).

For tight (a � 100), nearly equal-mass (q � 0.2) binaries, the
primary (secondary) produces ∼25−40 per cent (∼55−35 per cent)
of its bound-debris disruptions with trise � 10 d for a 
 100, and
∼65−85 per cent (∼85−80 per cent) for a 
 10. In this range of
q, the secondary begins ‘stealing’ disruptions from the primary
and accounts for an increasing fraction of the total disruption rate

(Fig. 2a), though as the binary tightens a decreasing fraction of
disruptions by both BHs will have bound debris (Fig. 8), leading to
a trade-off.

Tight, unequal mass binaries have a lower fraction of bound-
debris TDEs that are prompt on average. For q ∼ 0.05 over the
range a � 100, the primary (secondary) produces ∼33−15 per cent
(∼85−62 per cent) of its bound-debris disruptions with trise � 10 d,
though the high fraction for the secondary is diminished in the
observed rate, since for this value of q, the primary produces the
bulk of disruptions (Fig. 2), and most debris from the secondary
is unbound (Fig. 8). However, if the secondary disrupts a star in a
chance encounter, then it has a high probability of producing a TDE
with a rise time several orders of magnitude shorter than one by the
primary.

Wide binaries (a � 500) produce bound-debris disruptions
peaked and concentrated near τ rise 
 0.55 (corresponding to εc = 0)
over the entire range of q, though for lower q the rise time distri-
butions for the secondary are skewed towards higher values since
their distributions of εc are skewed towards more partially bound
(0 < εc < 1) debris. Nearly all disruptions by both the primary
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4020 S. Darbha et al.

Figure 13. The probability ṀfṀ that the bound debris of the disrupting BH will produce a peak return rate Ṁpeak/ṀEdd (equation 11; see surrounding text
for the parameters) for a primary mass M1 = 106 M�, q = 0.2, and a = 1000 (solid), 100 (dashed), and 10 (dotted). The left-hand panels show disruptions by
the primary and the right ones show those by the secondary. The logarithmic bin widths are �Ṁ = 0.1 and the heights are the probabilities in each bin. The
red line shows the peak return rate for a TDE from a star with εc = 0 (parabolic orbit, half of the debris is bound) disrupted by the appropriate BH. Fig. A4 in
Appendix A presents similar histograms for a range of q in our parameter space.

Figure 14. The median peak fallback rate in units of the Eddington rate Med(Ṁpeak/ṀEdd) (equation 11; see surrounding text for the parameters used) for a
primary mass M1 = 106 M�. The left-hand panel shows disruptions by the primary and the right-hand panel shows those by the secondary.

and secondary will have some bound debris for any q (Fig. 8). For
q � 0.2, both BHs have a sizable disruption rate (Fig. 2). For q �
0.2, this value of τ rise for the secondary yields trise = τ 0τ rise � 10 d,
but its relative rate of disruption is small (Fig. 2), so again these
disruptions are rare, but a chance encounter with the secondary will
most likely result in a TDE with a short rise time.

The median rise time Med(trise) reflects the dependence of the
distribution on q and a, and is presented in Fig. 12. The curves
clearly illustrate the trend described in the preceding paragraphs:
for nearly equal-mass BHs in a close binary, most bound disruptions
will produce TDEs with durations several times shorter than those
by isolated BHs. In unequal-mass binaries, most disruptions by the
secondary with bound debris can also produce such events for all
separations. Wide binaries will nearly always produce disruptions
with εc = 0; for a low-mass ratio, most bound-debris disruptions by
the secondary will also have a short rise time.

Fig. 13 shows histograms of ṀfṀ for the peak return rate divided
by the Eddington rate (equation 11; see the text for the parame-
ters used) with respect to the disrupting BH, for M1 = 106 M�,
q = 0.2, and a range of values of a. Fig. A4 shows these
histograms for different values of q. The rise time and peak rate

are inversely related (Fig. 10b), so the distributions exhibit analo-
gous behaviour to those for tft , but with high peak rates instead
of short rise times. For tight binaries (a � 100) with q � 0.2, the
primary (secondary) produces ∼25−40 per cent (∼65−35 per cent)
of its bound-debris disruptions with Ṁpeak/ṀEdd � 2 × 102 for a

 100, and ∼65−85 per cent (∼90−80 per cent) for a 
 10. For
q ∼ 0.05 over the range a � 100, the primary (secondary) pro-
duces ∼33−16 per cent (∼90−78 per cent) of its bound-debris dis-
ruptions with Ṁpeak/ṀEdd � 2 × 102. Wide binaries (a � 500)
replicate the canonical, isolated SMBH case with Ṁpeak/ṀEdd 
 43
for M1 = 106 M� (
 480 for M2 = 0.2M1). Fig. 14 shows the me-
dian of Ṁpeak/ṀEdd as function of a for different q, which collects
these results over the parameter space.

3.4 Binary inspiral

The binary SMBH will eject most of the incoming ‘pinhole’ stars
(Quinlan 1996). The stars are ‘slow intruders’ (Hills 1989), so they
will escape with enhanced energies and the binary will contract.
The binary shrinks predominantly by this loss cone scattering un-
til it begins to emit gravitational radiation and ultimately merges
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Figure 15. (a) The critical separation ac at which gravitational radiation overtakes stellar scattering as the dominant inspiral mechanism, for M1 = 106 M�
and Sun-like stars. The three curves correspond to stellar injection rates that are α = 0.1, 1, and 10 times the injection rate φ = 2a(1 + q)φ0, where φ0 

10−4 yr−1 is the fiducial rate for an isolated BH of mass M• = 106 M�. (b) The binary separation as a function of time for M1 = 106 M� and Sun-like stars,
starting at an initial separation of a = 1000 (2.3 mpc). The injection parameter is α = 1. The points mark the values of ac.

(Begelman et al. 1980; Mikkola & Valtonen 1992; Quinlan 1996;
Sesana et al. 2006, 2007). Since we recorded the state of the ejected
stars, we now proceed to calculate the binary separation as a func-
tion of time from these two sources, and self-consistently calculate
the time-dependent disruption rate. Our simulations contain only
low angular momentum stars from the loss cone, since they alone
can produce TDEs, but those with high angular momentum can still
extract energy from the binary; we exclude this latter contribution
as it is likely small.

In this subsection, we write the binary separation and stellar
specific energies and angular momenta in the units G = M1 = rt1 = 1,
since these parameters are fixed for changing q and a. We define
the dimensionless time t = t̃/t0 using the time-scale

t0 = r4
t1c

5

G3M3
1


 7.7 × 10−1yr

(
M1

106M�

)−5/3 (
M∗
M�

)−4/3 (
R∗
R�

)4

(12)

We use a primary mass M1 = 106 M� and stars with solar parame-
ters where necessary.

The total inspiral rate in these variables is

da

dt
=

(
da

dt

)
ss

+
(

da

dt

)
gw

(13)

where the subscripts denote contributions from stellar scattering
(ss) and the emission of gravitational waves (gw). The contraction
rate due to gravitational radiation emitted by two point particles on
a circular orbit is (Peters 1964)(

da

dt

)
gw

= −64

5

q(1 + q)

a3
(14)

The inspiral rate due to stellar scattering is(
da

dt

)
ss

= −2M∗
M1

φt0
a2

q
〈�ε∗〉(q, a)λej(q, a) (15)

where 〈�ε∗〉 is the average change in the specific energy of the
ejected stars and λej is the stellar ejection rate, both found from our
simulations; M∗/M1 is the ratio of the stellar mass to the primary

mass; and φ is the stellar injection rate from the binary loss cone
(in units of yr−1).

For an isolated SMBH of mass M• = 106 M� with a full loss
cone that remains populated through two-body relaxation, the rate
of removal of stars from the loss cone is roughly φ0 ∼ 10−4 yr−1

(Magorrian & Tremaine 1999; Wang & Merritt 2004; Stone & Met-
zger 2016), which we take to be our fiducial rate. For a binary
SMBH, if the loss cone is full and stars are injected with uniformly
distributed �2 even far from the binary centre of mass, then the
removal rate can be written as φ(q, a) = 2a(1 + q)φ0. Given our
fiducial rate, this is a factor of ∼10 below that calculated by Yu &
Tremaine (2003), but consistent with their scaling with a and in-
sensitivity to q. The time-dependent disruption rate is then simply
ṅbin = φλbin

t , where λbin
t is the disruption rate as a function of q and

a (Fig. 1a). We calculate a(t) and ṅbin as the binary contracts from
a = 1000 (2.3 mpc) to 10 (0.023 mpc).

Fig. 15(a) shows the critical separations ac at which gravitational
radiation overtakes stellar scattering as the dominant contraction
mechanism for α = 0.1, 1, and 10 times the injection rate φ. The
critical separations are largely insensitive to q and α, as a change
in these quantities by two orders of magnitude leads to a modest
change in ac of a factor of ∼6. For the fiducial case α = 1, they fall
in the range ac ∼ 60–170 (0.14–0.38 mpc).

Fig. 15(b) shows the binary separation as a function of time over
our range of q and with an injection parameter α = 1. The binaries
with lower mass ratios merge more slowly; in particular, a binary
with q = 0.01 takes roughly five times as long to merge as one with
q = 1. The BHs rapidly merge once the binaries reach the critical
separations, as seen in the precipitous drop immediately after these
points (marked on the plot).

Since the binary SMBH rapidly merges below ac, we ex-
pect to observe TDEs while its separation a > ac. For α = 1,
the critical separation is roughly ac ∼ 100. We use the re-
sults from Sections 3.1 to 3.3 to estimate the fraction of dis-
ruptions with short rise times and high peak fallback rates, as
these can act as indicators to distinguish binaries from sin-
gle BHs. Close binaries (a 
 100) with nearly equal masses
(q � 0.2) have ∼25−40 per cent (∼55−35 per cent) of bound-debris
disruptions by the primary (secondary) with rise times in the range
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Figure 16. The tidal disruption rate for the binary SMBH, for M1 = 106 M�
and M∗ = M�, starting at an initial separation of a = 1000 (2.3 mpc).
The rate is normalized to the disruption rate ṅiso = φ0 ∼ 10−4 yr−1 for an
isolated BH of mass M• = 106 M�. The injection parameter is α = 1.
After coalescence, the rate is ṅiso = φ0(1 + q)4/3, corresponding to a post-
merger BH of mass M• = M1(1 + q), which we include through a piecewise
function.

trise ∼ 1–10 d and peak fallback rates with respect to the disrupting
BH in the range Ṁpeak/ṀEdd ∼ 2 × 102−3 × 103 (∼2 × 102–104),
both potentially up to an order of magnitude or two different than
for an isolated BH. For binaries in this parameter range, the pri-
mary (secondary) produces ∼90−50 per cent (∼10−50 per cent) of
the disruptions (Fig. 2b), and ∼100−80 per cent (∼55−85 per cent)
of the disruptions by the primary (secondary) will have some debris
bound to the disrupting BH (Fig. 8). All together, ∼15−25 per cent
(∼3−15 per cent) of disruptions for a ∼ 100 and q � 0.2 will be
short, highly super-Eddington TDEs produced by the primary (sec-
ondary), so ∼18−40 per cent of all disruptions in this parameter
range will exhibit this behaviour. Similarly, binaries with a 
 100
and q ∼ 0.05 have ∼15 per cent (∼1 per cent) of these disruptions
produced by the primary (secondary), or ∼16 per cent of the total
number. Wide binaries (a 
 1000) with nearly equal masses
(q � 0.2) have roughly ∼0 per cent (∼4−0 per cent) of the short
rise time disruptions and ∼0 per cent (∼9−0 per cent) of the high
fallback rate disruptions by the primary (secondary). Binaries with
a 
 1000 and q ∼ 0.05 have ∼0 per cent (∼2 per cent), or
∼2 per cent of the total number of disruptions.

Therefore, near-merger, nearly equal mass binaries (those with
a ∼ 100 and q � 0.2) have the highest probability of producing
distinctive TDEs. As the binary prepares to merge, a disruption from
such an event can signal the presence of two BHs. These disruptions
could arise from both long-lived disruptions with partially bound
debris (−1 ≤ εc < 0) and finite duration ones with fully bound
debris (εc < −1). A higher stellar injection rate will lead to a tighter
binary before gravitational radiation takes over (Fig. 15a), and thus
more extreme late-time TDEs.

Fig. 16 shows the time-dependent disruption rate for the binary
SMBH normalized to that for an isolated BH with the mass of the
primary. The latter is simply ṅiso = φ0. At early times, stellar scat-
tering is the dominant inspiral mechanism, and the disruption rate
can be up to an order of magnitude larger than in the single BH case;
for q � 0.05, the rate is ∼6–10 times larger. At late times, gravita-
tional radiation becomes dominant and the binary rapidly merges,
producing an abrupt drop in the rate. In the brief intermediate range

where we expect to observe the distinctive TDEs described above,
the rate declines to ∼5–9 for q � 0.1. After coalescence, we ex-
pect the rate to be that scattered into the tidal radius of the merger
remnant of mass M• = M1(1 + q), which is ṅiso = φ0(1 + q)4/3,
so we include this behaviour through a piecewise constraint at late
times. The time-dependent rate is not quite monotonic in the mass
ratio at early times due to the q-dependence of λbin

t /λiso
t (Fig. 1b).

The total lifetimes are all ∼30 Myr, though have a weak monotonic
dependence on the mass ratio.

Chen et al. (2008) also studied tidal disruptions from unbound
stars scattering off of a SMBH binary, and found a time-dependent
TDE rate that is roughly an order of magnitude smaller than for a
single BH. The discrepancy between our results arises mainly from
a different loss cone model. Chen et al. (2008) focused on nearby
galaxies when calculating their disruption rates, and thus modelled
their stars in the ‘diffusive’ (or ‘empty loss cone’) regime, using
two-body relaxation as the loss cone refilling process. Under these
conditions, the loss cone remains depleted, as stars only intermit-
tently enter the loss cone after many binary orbits and are expelled
promptly. In addition, the stars only populate the edge of the loss
cone and approach the binary with pericentre distances rp ∼ a. The
disruption rate is thus strongly suppressed. We note that the discrep-
ancy in our results does not seem to arise from the initial conditions
of our scattering experiments.

The binaries for our range of q produce a total of nbin
tot ∼

(1.2−1.9) × 104 disruptions over their lifetimes, shrinking from an
initial separation of a = 1000 (2.3 mpc) until the merger in ∼(2.5–
12) × 107 yr. In contrast, Chen et al. (2011) considered a binary
SMBH embedded in a stellar cusp, and found ∼(2.3–6.5) × 104

disruptions over 108 yr. The TDEs in their study arise from bound
stars whose orbits are perturbed until a disruption, thus enhancing
the TDE rate, but if the bound stars become depleted, then the loss
cone will become the only source of disruptions.

4 SU M M A RY A N D C O N C L U S I O N S

A TDE occurs when a star is torn apart by the gravitational field
of an SMBH. A fraction of the stellar debris becomes bound to
the SMBH, and the ensuing accretion provides a means of detect-
ing otherwise-quiescent BHs in galactic nuclei and studying their
properties (and, in principle, the properties of the circumnuclear
medium; e.g. Alexander et al. 2016). Tidal disruptions by isolated
BHs have been studied in detail, but those produced by binary
SMBHs – from which there could arise a number of observationally
distinct phenomena – have only received attention fairly recently.

In this paper, we studied the physics of tidal disruption from
chaotic three-body encounters between stars and a binary SMBH in
the pinhole regime (Frank & Rees 1976; Lightman & Shapiro 1977;
Cohn & Kulsrud 1978; Magorrian & Tremaine 1999), in which stars
approach the binary on initially parabolic, low angular momentum
orbits. We found several important features for disruptions by mas-
sive BH binaries in our range of parameters:

(1) The disruption rate is a factor of ∼2–7 times larger relative
to the rate for a single BH, depends only weakly on the semima-
jor axis a, and is almost entirely independent of the mass ratio
q for q � 0.2 (Section 3.1 and Fig. 1b).

(2) Roughly ∼10−20 per cent of disruptions occur in a star’s first
encounter with the binary for all q and a; if q � 0.1, the probability
of disruption declines monotonically as a function of time, while
systems with q � 0.1 have an increased probability for disruption
at later times before falling off rapidly (see Fig. 4).
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(3) For small q, disruptions by the primary (secondary) produce
preferentially bound (unbound) debris streams, with these prefer-
ences becoming less pronounced as q approaches one (Figs 5–7).

For a primary mass M1 = 106 M�:

(4) In our ‘frozen-in’ model, close, nearly equal mass binaries
(a/rt1 ∼ 100, and q � 0.2) can produce prompt, intense tidal dis-
ruptions, with rise times trise ∼ 1–10 d and peak fallback rates
Ṁpeak/ṀEdd ∼ 2 × 102−3 × 103 with respect to the disrupting BH;
in this parameter space, these account for ∼18−40 per cent of the
total number of disruptions (Figs 11–14, A3–A10, 2, and 8).

(5) Over the lifetime of the binary, the mean time-dependent
disruption rate for q � 0.05 can be a factor of ∼6–10 larger than
that for a single BH (Fig. 16).

In addition to recording disruptions, our simulations also
recorded the stars that cross the escape sphere; over 86 per cent
of the interactions actually terminate with this outcome, and a large
fraction of these are ejected from the binary (i.e. they escape with
positive energy). We assessed the inspiral time-scales of SMBH bi-
naries using the ejection rate and the average energy of the ejected
stars as a function of q and a (Section 3.4). For typical values of the
primary mass, the injection rate of stars, and an initial separation
of 
 2.3 mpc, we found that the time taken for gravitational waves
to dominate the inspiral is roughly ∼30 Myr; after this point, the
binary very rapidly merges (see Fig. 15). We anticipate performing
a more thorough investigation of the properties of the ejected stars
in a companion paper.

We compared the properties of our binary-induced TDEs to those
from an isolated BH. In doing so, we assumed the same initial con-
ditions, namely that the stars approach the BH(s) on parabolic orbits
from isotropically distributed starting points in the pinhole regime
(with uniformly distributed pericentres relative to the origin). How-
ever, different astrophysical conditions can alter the dynamics of
the incoming stars and modify the disruption properties. A binary
SMBH can be embedded in a stellar cusp and disrupt bound stars,
which can greatly enhance the disruption rate (Ivanov et al. 2005;
Chen et al. 2011; Wegg & Nate Bode 2011). The loss cone removal
rate for a single BH can be enhanced if it is refilled by mechanisms
other than two-body scattering, such as resonant relaxation (Madi-
gan, Hopman & Levin 2011), the tidal separation of binary stars
(Amaro-Seoane, Miller & Kennedy 2012), and BH recoil following
a binary coalescence (Stone & Loeb 2011), which can all enhance
the TDE rate. Stars can also orbit a central BH in an eccentric
nuclear disc, and large-amplitude eccentricity oscillations in the in-
ner part of the disc can redirect a subset of stars towards the BH,
increasing the TDE rate (Madigan et al. 2018).

Recent optical surveys have found that TDEs appear to occur
preferentially in post-merger (E+A) galaxies (Arcavi et al. 2014;
French, Arcavi & Zabludoff 2016). While the influence of a binary
SMBH does not likely explain the rate enhancement at the E+A
stage, it seems probable that a binary is present in the centre of many
post-merger galaxies (that is, if each merging galaxy had a central
SMBH and their coalescence was not driven by some mechanism,
such as a third BH, as explored by Silsbee & Tremaine 2017).
Consequently, the effects described in this paper could also affect
some TDEs occurring in E+A galaxies.

Our results concerning the fraction of bound material, the peak
fallback rate, and the time to peak fallback (Figs 8–14) assumed
that the motion of the stellar debris was ‘frozen-in’ by the tidal
field of the disrupting SMBH. The tidal radius is typically small
compared to the binary separation, so this approximation is valid

when the apocentre of the peak debris is small compared to the
Roche lobe radius of the disrupting BH, leading to an early evolution
in which the debris is influenced only by the gravitational field of
the disrupting BH (Section 3.3). This condition holds rigorously
when the BHs are widely separated (Fig. 9) and in an average sense
at smaller separations (verified by the simulations in Coughlin et al.
2017). However, for ‘general’ disruptions where some portion of
the debris stream may become unbound, eventually the material
will recede beyond the Roche lobe of the disrupting SMBH. At
that point, the total fraction of bound material can be altered by
the gravitational potential of the binary and the accretion rate can
exhibit different behaviour (Coughlin & Armitage 2018). We leave
an analysis of these effects to a future investigation.
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A P P E N D I X A : A D D I T I O NA L F I G U R E S

In this appendix, we expand the figures presented in the paper to compare the behaviour of disruptions over the range of binary mass ratios q
and separations a that we explored. In addition, we present the full probabilities of observing particular types of TDEs given that a disruption
has occurred (Figs A5–A6 and A9–A10).

Figure A1. The PDFs for the eccentricity of disrupted stars relative to the disrupting BH calculated at the tidal radius, for a = 500 and q = 0.05 (solid),
0.2 (dashed), and 0.8 (dotted). The upper panels show the results for a = 500 and the lower ones for a = 50. The left-hand panel shows disruptions by the
primary and the right one shows those by the secondary. For a = 500, the bin width is 2 × 10−4 for the primary and 10−3 for the secondary, and for a = 50,
they are 10 times larger. The relative eccentricity is given by e = √

2�2
cmεcm/(GM•)2 + 1, where εcm and �cm = |rcm × v| are the specific energy and angular

momentum of the centre of mass of the star relative to the BH at its tidal radius, and M• is the mass of the BH. A star on a parabolic orbit disrupted by an
isolated BH has an eccentricity e = 1, as marked by the red line.
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4026 S. Darbha et al.

Figure A2. The PDFs for the critical energy εc of disrupted stars relative to the disrupting BH calculated at the tidal radius, for a = 500 and q = 0.05 (solid),
0.2 (dashed), and 0.8 (dotted). The left-hand panels show disruptions by the primary and the right ones show those by the secondary. The upper panels show
the results for a = 500 and the lower ones for a = 50. The upper panels have bin widths �ε = 0.01 (primary) and 0.05 (secondary), and the bottom ones have
bins a factor of 10 larger. The red lines mark εc = −1, 0, +1, if they are in a histogram’s domain. The stellar debris is bound to a different extent in the regions
the lines delimit: if εc < −1, then all of the debris is bound to the BH; if −1 ≤ εc < 1, then part of it is bound; and if εc ≥ 1, then all of it is unbound. If εc = 0,
half of the debris remains bound and half escapes, which occurs when a star on a parabolic orbit is disrupted by an isolated BH.
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Figure A3. The probability tft that the bound debris of the disrupting BH will produce a rise time trise = τ 0τ rise for a primary mass M1 = 106 M� and
a = 1000 (solid), 100 (dashed), and 10 (dotted). The probabilities for each histogram sum to 1. The top panels show the results for q = 0.05, the centre ones
for q = 0.2, and the bottom ones for q = 0.8. The left-hand panels show disruptions by the primary and the right ones show those by the secondary. The
logarithmic bin widths are �t = 0.05 and the heights are the probabilities in each bin. The red line marks the rise time trise = τ0(3

√
3 − 53/4)/53/4 for a TDE

from a star with εc = 0 (parabolic orbit, half of the debris is bound) disrupted by the appropriate BH.
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Figure A4. The probability ṀfṀ that the bound debris of the disrupting BH will produce a peak fallback rate Ṁpeak/ṀEdd (equation 11; see surrounding text
for the parameters used) for a primary mass M1 = 106 M� and a = 1000 (solid), 100 (dashed), and 10 (dotted). The probabilities for each histogram sum to 1.
The top panels show the results for q = 0.05, the centre ones for q = 0.2, and the lower ones for q = 0.8. The left-hand panels show disruptions by the primary
and the right ones show those by the secondary. The logarithmic bin widths are �Ṁ = 0.1 and the heights are the probabilities in each bin. The red line shows
the peak return rate for a TDE from a star with εc = 0 (parabolic orbit, half of the debris is bound) disrupted by the appropriate BH.
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Figure A5. The probability tft that a disruption by the binary will produce debris with a rise time trise = τ 0τ rise for a primary mass M1 = 106 M� and
a = 1000 (solid), 100 (dashed), and 10 (dotted). The probabilities for each histogram sum to (λti/λt)fb, where i = 1 (2) refers to the primary (secondary), and
these quantities depend on q and a (Figs 2b and 8). The top panels show the results for q = 0.05, the centre ones for q = 0.2, and the bottom ones for q = 0.8.
The left-hand panels show disruptions by the primary and the right ones show those by the secondary. The logarithmic bin widths are �t = 0.05 and the heights
are the probabilities in each bin. The red line marks the rise time trise = τ0(3

√
3 − 53/4)/53/4 for a TDE from a star with εc = 0 (parabolic orbit, half of the

debris is bound) disrupted by the appropriate BH.
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Figure A6. The probability ṀfṀ that a disruption by the binary will produce debris with a peak fallback rate Ṁpeak/ṀEdd (equation 11; see surrounding text
for the parameters used) for a primary mass M1 = 106 M� and a = 1000 (solid), 100 (dashed), and 10 (dotted). The probabilities for each histogram sum
to (λti/λt)fb, where i = 1 (2) refers to the primary (secondary), and these quantities depend on q and a (Figs 2b and 8). The top panels show the results for
q = 0.05, the centre ones for q = 0.2, and the lower ones for q = 0.8. The left-hand panels show disruptions by the primary and the right ones show those by
the secondary. The logarithmic bin widths are �Ṁ = 0.1 and the heights are the probabilities in each bin. The red line shows the peak return rate for a TDE
from a star with εc = 0 (parabolic orbit, half of the debris is bound) disrupted by the appropriate BH.
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Figure A7. The probability that the bound debris of the disrupting BH will produce a rise time trise < t (d) for a primary mass M1 = 106 M� and different
a. The maximum probability is 1. The top panels show the results for q = 0.05, the centre ones for q = 0.2, and the bottom ones for q = 0.8. The left-hand
panels show disruptions by the primary and the right ones show those by the secondary. The black line marks the rise time trise = τ0(3

√
3 − 53/4)/53/4 for a

TDE from a star with εc = 0 (parabolic orbit, half of the debris is bound) disrupted by the appropriate BH.
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Figure A8. The probability that the bound debris of the disrupting BH will produce a peak fallback rate Ṁpeak/ṀEdd > Ṁ/ṀEdd for a primary mass
M1 = 106 M� and different a. The maximum probability is 1. The top panels show the results for q = 0.05, the centre ones for q = 0.2, and the bottom ones
for q = 0.8. The left-hand panels show disruptions by the primary and the right ones show those by the secondary. The black line shows the peak return rate
for a TDE from a star with εc = 0 (parabolic orbit, half of the debris is bound) disrupted by the appropriate BH.
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Figure A9. The probability that a disruption by the binary will produce debris with a rise time trise < t (d) for a primary mass M1 = 106 M� and different a.
The maximum probabilities are (λti/λt)fb, where i = 1 (2) refers to the primary (secondary), and these quantities depend on q and a (Figs 2b and 8). The top
panels show the results for q = 0.05, the centre ones for q = 0.2, and the bottom ones for q = 0.8. The left-hand panels show disruptions by the primary and
the right ones show those by the secondary. The black line marks the rise time trise = τ0(3

√
3 − 53/4)/53/4 for a TDE from a star with εc = 0 (parabolic orbit,

half of the debris is bound) disrupted by the appropriate BH.
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Figure A10. The probability that a disruption by the binary will produce debris with a peak fallback rate Ṁpeak/ṀEdd > Ṁ/ṀEdd for a primary mass
M1 = 106 M� and different a. The maximum probabilities are (λti/λt)fb, where i = 1 (2) refers to the primary (secondary), and these quantities depend on
q and a (Figs 2b and 8). The top panels show the results for q = 0.05, the centre ones for q = 0.2, and the bottom ones for q = 0.8. The left-hand panels
show disruptions by the primary and the right ones show those by the secondary. The black line shows the peak return rate for a TDE from a star with εc = 0
(parabolic orbit, half of the debris is bound) disrupted by the appropriate BH.
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