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ABSTRACT
During the core collapse of massive stars, the formation of the proto-neutron star is accom-
panied by the emission of a significant amount of mass energy (∼0.3 M�) in the form of
neutrinos. This mass-energy loss generates an outward-propagating pressure wave that steep-
ens into a shock near the stellar surface, potentially powering a weak transient associated
with an otherwise-failed supernova. We analytically investigate this mass-loss-induced wave
generation and propagation. Heuristic arguments provide an accurate estimate of the amount
of energy contained in the outgoing sound pulse. We then develop a general formalism for
analysing the response of the star to centrally concentrated mass loss in linear perturbation
theory. To build intuition, we apply this formalism to polytropic stellar models, finding qual-
itative and quantitative agreement with simulations and heuristic arguments. We also apply
our results to realistic pre-collapse massive star progenitors (both giants and compact stars).
Our analytic results for the sound pulse energy, excitation radius, and steepening in the stellar
envelope are in good agreement with full time-dependent hydrodynamic simulations. We show
that prior to the sound pulses arrival at the stellar photosphere, the photosphere has already
reached velocities ∼20–100 per cent of the local sound speed, thus likely modestly decreasing
the stellar effective temperature prior to the star disappearing. Our results provide important
constraints on the physical properties and observational appearance of failed supernovae.

Key words: black hole physics – hydrodynamics – shock waves – waves – methods:
analytical – supernovae: general.

1 I N T RO D U C T I O N

Many massive stars (�8 M�) end their lives in fantastic explo-
sions. However, successfully simulating core-collapse supernovae
– and discerning the underlying mechanism for the explosion itself
– has proven to be extremely difficult. Indeed, the simplest, original
notion that a shock generated during the formation of the neutron
star could propagate through and unbind the stellar envelope was
shown to fail in most cases (Bethe 1990). More recently, simula-
tions of explosions in 1D (e.g. Ugliano et al. 2012; Perego et al.
2015; Sukhbold et al. 2016; see also Pejcha & Thompson 2015 and
Müller et al. 2016 for semi-analytic approaches), 2D (e.g. Bruenn
et al. 2013; Nakamura et al. 2015; Bruenn et al. 2016), and 3D (e.g.
Couch & O’Connor 2014; Lentz et al. 2015; Melson et al. 2015;
Takiwaki, Kotake & Suwa 2016; Chan et al. 2018) have system-
atically investigated the ability of neutrino heating to ‘revive’ this
shock. These studies demonstrated that, although this mechanism
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is capable of re-accelerating the shock in some instances, it is likely
unable to power the most energetic explosions (see also Janka, Mel-
son & Summa 2016). In these cases, some other physical ingredient
is likely necessary, with strong rotation and magnetic fields and
the interplay between the two being a promising possibility (e.g.
Burrows et al. 2007; Mösta et al. 2014, 2015).

While the consensus of what leads to a successful supernova
is still far from established, it is clear that the properties of the
progenitor play an important role in determining the likelihood of a
successful explosion. In particular, stars with a more compact iron
core and a shallower density profile outside the iron core are more
difficult to explode (e.g. O’Connor & Ott 2011; Nakamura et al.
2015; Ertl et al. 2016). It therefore seems likely that, while many
stars do succeed in expelling their outer layers in a supernova, some
may actually be incapable of doing so. These ill-fated stars would
reach the onset of core collapse, form a neutron star, and collapse
to a stellar-mass black hole (BH) through the continued accretion
of the surrounding star.

As pointed out by Kochanek et al. (2008), it might be possible to
detect such disappearing stars as just that: a point on the sky where
a star used to be (and no intervening supernova). Reynolds, Fraser

C© 2018 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/477/1/1225/4935183 by U
niversity of W

isconsin-M
adison Libraries user on 21 June 2019

mailto:eric.coughlin@colorado.edu


1226 E. R. Coughlin et al.

& Gilmore (2015) carried out an archival, Hubble Space Telescope
search for disappearing massive stars, with one potential candidate
(a 25–30 M� yellow supergiant) discovered out of 15 galaxies with
sufficient temporal coverage. More indirect evidence suggestive of
the failure of supernovae arises from the discrepancy between the
rates of star formation and supernovae, with the former exceeding
the latter by at least a factor of 2 (Horiuchi et al. 2011). Observations
have also shown that there is likely a deficit of supernova progen-
itors towards the high-mass end (Smartt 2009, 2015), indicating
that some stars end their lives by quietly fading in underluminous
implosions.

It is also plausible, however, that failed supernovae manifest
themselves observationally as more than just a disappearing star.
In this paper, we analyse a mechanism by which nominally failed
supernovae can in fact eject some mass, potentially powering a
weak transient. This mechanism was first suggested by Nadyozhin
(1980) and investigated further by Lovegrove & Woosley (2013) and
Lovegrove, Woosley & Zhang (2017): the proto-neutron star phase
of core collapse generates a prodigious, short-lived, mass-energy
loss in the form of neutrinos. These neutrinos stream out of the
star with essentially no direct interaction with the outer envelope
on a time-scale of a few seconds, and carry with them ∼few ×
0.1 M� of mass (Burrows 1988). This mass loss creates a nearly
instantaneous drop in the gravitational field according to the outer
layers of the star, where the free-fall time is much greater than
the few seconds over which the neutrinos are radiated. This causes
the now-overpressured star to respond dynamically and expand,
generating an outwardly propagating sound pulse that steepens into
a shock in the outer layers of the star.

Nadyozhin (1980) performed the first hydrodynamical simula-
tions of this mechanism. Lovegrove & Woosley (2013) and Love-
grove et al. (2017) re-investigated the hydrodynamics of this process
and assessed – predominantly numerically and only for red super-
giant (RSG) progenitors – the energetics and appearance of this
relatively low-energy expulsion of the stellar envelope. Fernández
et al. (2018, hereafter F18) performed a numerical study of mass
ejection for a wider range of stellar progenitors, including RSGs,
blue supergiants (BSGs), and Wolf–Rayet (WR) stars. Interestingly,
one case of a failed supernovae associated with an RSG progenitor
may have already been found (Adams et al. 2017a,b).

Despite the fact that the first simulations of this effect date back
nearly 40 yr, there is still no analytic understanding of the generation
and evolution of the shock that ultimately produces the ejection of
some of the stellar envelope in failed SNe. Our primary goal here is
to provide such an understanding, which in turn will provide useful
constraints on the ability of mass loss during failed SNe to generate
observationally detectable transients. In Section 2, we provide the
basic, phenomenological picture of the effect first identified by
Nadyozhin, and we use this basic understanding to approximate the
energy released in the explosion. In Section 3, we pursue a rigorous
analysis of the effects of the mass loss on the stellar structure by
performing a linear perturbation analysis; we present fundamental
equations for, e.g. the velocity induced throughout the envelope in
terms of the eigenmodes of the stellar progenitor, and we derive a
general expression for the energy imparted by the mass loss that
agrees with the results of Section 2. Section 4 applies the results
of Section 3 to polytropic stellar models, and Section 5 applies our
findings to more realistic stellar progenitors. We summarize our
results and conclude in Section 6. Appendix A compares our linear
perturbation theory predictions for the mass-loss-induced evolution
of a polytrope to the results of a 1D, Lagrangian hydrodynamics
code. The early evolution is identical between the two approaches,

validating the analytic methods employed throughout the bulk of
this paper.

2 P H Y S I C A L P I C T U R E A N D E S T I M AT E S

At the onset of core collapse, the formation of the proto-neutron
star is accompanied by the loss of ∼0.1–0.5 M� of mass from the
central core of the star. To first approximation, this mass loss results
in an outward motion of the stellar envelope owing to the reduced
gravitational field, and the velocity profile generated is approxi-
mately given by the solution to the radial momentum equation. In
the limit that the mass loss occurs impulsively, the resultant velocity
profile is simply1

v = GδM

r2
t, (1)

where δM is the mass lost to neutrinos, t is time after the core
collapse, and r is radial distance from the centre of the star. We have
assumed, as we will throughout the remainder of this paper, that the
star is spherically symmetric.

Equation (1) gives the velocity profile that develops throughout
the envelope following the mass loss. This applies in the regions
for which the mass loss is effectively instantaneous, i.e. for which
the local dynamical time is longer than the time over which the
neutrino binding energy is radiated. However, the central regions of
the star instead collapse on to the proto-neutron star, which clearly
violates the scaling given by equation (1). Thus, while equation
(1) gives the initial, dynamical response of the envelope, there is
an additional, pressure-mediated reaction that conveys to the outer
regions of the envelope that the central regions are infalling. This
additional response is in the form of a pressure wave that travels
outward into the envelope at the local sound speed; this pressure
wave ‘tells’ the outward-moving material to stop expanding.

We can use this physical understanding to predict the energy
contained in the sound wave as it travels out into the envelope: since
the sound pulse propagates at the local sound speed, the velocity
everywhere in the star reaches a radially dependent, maximum value
of

vmax = GδMτsc(r)

r2
, (2)

where

τsc(r) =
∫ r

rc

dr̃

cs(r̃)
(3)

is the sound-crossing time from the inner radius rc out to radius r,
and cs(r) is the local sound speed. After the time τ sc, the outward
moving mass shells move back inwards towards the forming neutron
star, and thus the change in velocity induced by the sound pulse is
approximately given by equation (2). Therefore, as the sound pulse
moves outward into the envelope, its energy grows as

�E ∼ 0.5
∫ r

rc

G2δM2τsc(r)2

r4
dMr ∼ GδM2

2α
, (4)

where α is the pressure scale height for radii ∼few rc (τ sc is defined
relative to rc [equation 3] so the energy input is dominated by radii a

1 There are relativistic corrections to this expression that arise from the fact
that the change in the gravitational field is conveyed to the outer layers of
the star at the speed of light; however, these corrections are always small (or
order vff/c, vff being the free-fall velocity), and we will proceed with our
Newtonian approximations.

MNRAS 477, 1225–1238 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/477/1/1225/4935183 by U
niversity of W

isconsin-M
adison Libraries user on 21 June 2019



Mass ejection in failed supernovae 1227

few times larger; see Section 5). For the proto-neutron star problem
of interest, the radius rc is roughly set by smaller of the radius with
a free-fall time of a few seconds (the neutrino diffusion time of
a proto-neutron star) or the radius enclosing ∼2 − 3 M� in the
progenitor, which is the region that collapses to form a BH. This is
rc ∼ 1.5 × 109 cm for typical progenitors (see F18 and Section 5).
Setting δM = 0.2 M�, and α = 3 × rc � 4.5 × 109 cm, we find

�E ∼ 1048erg. (5)

The more detailed calculations for realistic stellar progenitors in
Section 5 corroborate this estimate.

The energy �E estimated in equation (4) is contained in the sound
pulse as it propagates through the stellar envelope. If the sound
pulse remained everywhere linear, the sound wave containing this
energy would reflect off of the stellar surface, resulting in an overall
increase in the energy of the star. However, one can show from linear
theory that the power carried by the sound pulse is approximately
conserved (Dewar 1970; Ro & Matzner 2017), such that the velocity
immediately behind the sound pulse satisfies

4πρv2r2cs � const ∼ Ec

√
4πGρ(rc), (6)

where Ec = GδM2/α, ρ(rc) is the mean density interior to rc and
the right-hand side of this expression results from equation (4) and
applying the left-hand side near the radius rc. Equation (6) implies
that near the surface of the star where the density and the sound
speed become small (or, in the case of an RSG, near the boundary
of the hydrogen envelope where the density drops precipitously),
the velocity will increase to the point where it becomes supersonic,
generating a shock. In particular, using the above expression for the
velocity, dividing by the sound speed, and performing some simple
algebraic manipulations shows that the Mach number is given by

M ∼ δM

Min

√
1

yx2c3
, (7)

where Min is the mass enclosed within rc, and y, x, and c are the
density, radius, and sound speed normalized by their respective
values at ∼rc.

From equation (7), it is evident that the flow will be subsonic
throughout the majority of the envelope. In the central regions
of the star where the pressure and density are roughly constant,
the Mach number can actually decrease ∝ 1/r due to the geo-
metrical dilution of the energy contained in the outgoing sound
wave.

It is only once the pressure disturbance starts to reach the stellar
surface, where the sound speed and density decline appreciably,
that the Mach number will start to increase. The location where
the Mach number equals unity – and therefore results in shocks
– cannot be written down explicitly, but for a given stellar model
and δM, this equation can be solved easily for the approximate
location at which a shock will form. We will investigate this more
in subsequent sections.

Finally, we note that the Mach number given by equation (7)
describes the fluid velocity immediately behind the outgoing pres-
sure wave. However, from equation (1), we see that there is a radial
dependence of the initial acceleration within the star, meaning that
mass shells at smaller radii catch up to those at larger radii. It is
therefore possible that this alone could cause shell crossings (i.e.
shocks) during the initial, dynamical evolution of the envelope, prior
to the sound pulse reaching large radii. This is the most likely to
occur near the stellar surface where the sound speed is small. We
will investigate this in more detail in Sections 4 and 5.

3 G E N E R A L S O L U T I O N S I N T H E
PERTURBATI VE LI MI T

The above analysis provides a rough understanding of the physical
mechanism and energetics associated with mass ejection by neutrino
radiation in otherwise failed SNe. While this picture is qualitatively
and, to a lesser extent, quantitatively consistent with simulations,
a more accurate analysis is possible because the change in mass is
small compared to the total stellar mass itself. The initial response
of the stellar envelope can thus be accurately calculated using linear
perturbation theory. The linear approximation breaks down when
the sound pulse steepens into a shock in the outer, low-density
parts of the star via equation (7). However, the energy in the pulse
is largely determined in the linear phase that we now proceed to
calculate. Moreover, we can use the linear results to accurately
determine where in the stellar envelope the sound pulse transitions
into a shock.

3.1 Equations

The evolution of the stellar envelope is described by the continu-
ity equation, the radial momentum equation, and the gas energy
equation, which respectively read

∂m

∂t
+ v

∂m

∂r
= 0, (8)

∂v

∂t
+ v

∂v

∂r
+ 1

ρ

∂p

∂r
= −GM

r2
, (9)

∂K

∂t
+ v

∂K

∂r
= 0, (10)

where m is the stellar mass contained within radius r, v is the radial
velocity, p and ρ are the respective gas pressure and density, M is
the total mass contained within radius r (which differs from m if
there is a point mass, corresponding in our case to a central neutron
star or BH), and K = p/ργ is the specific entropy of the gas with
γ the adiabatic index. We assumed that the gas obeys an adiabatic
equation of state, and for simplicity, we set the adiabatic index to
a constant (though the inclusion of a radially dependent γ – which
could certainly be relevant for some stars – is straightforward).

At t = 0, the interior of the star collapses to a neutron star,
which radiates a time-dependent amount of mass Mν(t) in the form
of neutrinos. Letting Mν be small relative to the total mass of the
star (which is true in all astrophysical situations), we linearize the
above three equations in that small quantity and keep only first-
order terms; quantities with a subscript 0 will refer to the initial
state of the star prior to the mass loss, while those with a subscript 1
refer to time- and space-dependent perturbations resulting from the
time-dependent gravitational field. We also Laplace transform the
equations in anticipation of an instantaneous and conceivably dis-
continuous mass loss at t = 0, and we denote Laplace-transformed
variables by tildes, i.e.

ṽ1(s, r) =
∫ ∞

0
v1(t, r)e−stdt . (11)

Doing so yields, self-consistently and in line with expectations, the
equation of hydrostatic equilibrium for the unperturbed quantities:

1

ρ0

∂p0

∂r
= −Gm0

r2
. (12)
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Making a number of algebraic manipulations, we find the following
fundamental equation for the linear mass flux F1 = r2ρ0v1:

s2
∗ F̃1 − L[F̃1] = − s∗√

4πGρc
ρ0GM̃ν, (13)

where

L[F̃1] =
(

ρ + ξ 2

γ

∂

∂ξ

[
p

ρξ 2

∂

∂ξ
ln K0

])
F̃1

+ ρξ 2 ∂

∂ξ

[
p

ρ2ξ 2

∂F̃1

∂ξ

]
. (14)

We have also non-dimensionalized this equation by introducing the
following variables:

ρ(r) = ρ0(r)

ρc
, p(r) = p0(r)

pc
, s∗ = s√

4πGρc
,

ξ = r

α
, α2 = γpc

4πGρ2
c

, (15)

where ρc and pc are the central density and pressure, respectively.
Note that α is the pressure scale height introduced in Section 2. In
what follows, we will also use a dimensionless mass loss

δm = δM

4πρcα3
. (16)

In deriving equation (13), we assumed that the initial mass flux in the
star – and hence the initial velocity – was zero. While this assertion
is in line with the fact that the star was initially in hydrostatic
equilibrium, setting the initial velocity to zero also prevents one
from self-consistently allowing the inner regions of the envelope to
fall on to the proto-neutron star. One can surmount this issue by
assuming that there is a small, but non-zero, v0 that is established
during the initial loss of pressure support. By small, we mean that
we continue to ignore terms such as v0∂v1/∂r in the momentum
equation that would formally be present at linear order given a non-
zero v0; this is equivalent to assuming that the initial radial velocity
is small compared to the sound speed.

Appendix B presents the formalism and the resulting equations
that account for this initial flux, and we compare the results to
those in this section. We find, in general, that accounting for this
additional effect only weakly affects our results. Therefore, because
it makes for a simpler analysis and does not significantly alter our
key results, we will henceforth proceed by assuming that the initial
mass flux throughout the star is zero.

3.2 Solutions

We solve equation (13) by expanding the flux in the eigenmodes of
the operator L. In particular, we write

F̃1 =
∑

σ

cσ Aσ (ξ ), (17)

where cσ is a coefficient that depends on s∗, and Aσ is an eigenfunc-
tion that satisfies

L[Aσ ] = −σ 2Aσ . (18)

Because L is in Sturm–Liouville form, the Aσ represent an orthog-
onal basis and can be normalized such that∫

Aσ Aβdξ

ρξ 2
= δσβ . (19)

Note that because the Aσ are eigenfunctions of the linear mass flux
∝ ρξ 2v1, the term in the denominator in equation (19) cancels and
so there is no concern about divergence as either ξ → 0 or ρ → 0.

In our linear theory, the eigenmodes ensure the regularity of the
solutions at the stellar surface by satisfying Aσ (ξ 1) = 0, where ξ 1

is the value of ξ where ρ(ξ 1) = 0 (i.e. the surface). A non-linear
approach would account for the fact that the surface can expand,
and thus the outer boundary condition should take place on this
moving mass shell. While this latter boundary condition is more
physical, our linear approach that imposes the boundary condition
on the unperturbed star will still give a good approximation to the
initial formation and propagation of the sound pulse through the
stellar envelope.

We also require that the eigenmodes satisfy Aσ (ξ c) = 0, where ξ c

is some inner radius greater than zero. Because we are modelling
the formation of the proto-neutron star as a point mass, we cannot
extend our solutions all the way to the origin, which would be
the location of the inner boundary condition in standard, stellar
pulsation theory. Physically, the inner boundary here is assumed to
be just outside the region that collapses to produce the proto-neutron
star, where it is reasonable to assume a nearly hydrostatic solution
during the time over which the neutrino radiation occurs.

Inserting our series solution over the eigenmodes and exploiting
their orthogonality yields the coefficients cσ . We adopt an exponen-
tial form for the mass loss, so that

Mν(t) = −δM
(
1 − e−ω∗τ

)
, (20)

where τ = t
√

4πGρc, ω∗ = ω/
√

4πGρc, and ω−1 characterizes the
time-scale over which the mass is lost. With this choice of Mν(t),
we find for the mass flux

F1 = δM
√

4πGρc

4π

∑
β

ω∗
ω2∗ + β2

Rβ (τ )Aβ (ξ ), (21)

where

Rβ =
{

e−ω∗τ − cos βτ + ω∗
β

sin βτ

} ∫ ξ1

ξc

Aβ

ξ 2
dξ. (22)

The temporal evolution implied by equations (21) and (22) agrees
qualitatively with what we expect: the flux is zero at τ = 0 when
the system is in hydrostatic equilibrium. The neutrino induced mass
loss then generates a time-dependent velocity that, when ω∗ � β,
scales as Rβ ∝ ω∗τ 2, which results from a Taylor expansion with
ω∗τ � 1. On the other hand, if ω∗ � β, then the last term in braces
in equation (22) quickly dominates over the other two, and we have
Rβ ∝ τ , again Taylor expanding for early times. In fact, in this
regime (ω∗ � β and βτ � 1), it is straightforward to show that
equation (21) reduces to the much simpler equation (1).

3.3 Energy

We can manipulate the energy, momentum, and gas energy equa-
tions to yield the following conservation law for the total energy:

∂E

∂t
+ 1

r2

∂

∂r

[
r2F

] = −GMν(t)ρ0v

r2
, (23)

where the energy density E and energy flux F are

E = 1

2

{
ρ0v

2 + ρ0c
2
s

(
ρ1

ρ0

)2

− Gm2
1

4πr4

− m2
1

4πr2ρ0

∂

∂r

[
p0

4πr2ρ0

∂

∂r
ln K0

] }
(24)

and

F = c2
s ρ1v, (25)

c2
s = γp0/ρ0 being the square of the local sound speed.
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The first two terms in the expression for E are from the kinetic
and the thermal energies, respectively. The third term is the change
in the gravitational potential energy of the fluid generated by in-
troducing a mass perturbation m1. The origin of the fourth term is
less obvious, but it can be interpreted as the energy liberated by the
buoyant advection of matter, where the buoyancy comes from the
entropy gradient, ∂K0/∂r , in the stellar interior. When the entropy
gradient is positive, this term creates an additional energy sink, and
effectively translates to a greater difficulty in moving mass shells
upward in the atmosphere. The term on the right-hand side of equa-
tion (23) is the work done by the excess pressure force produced by
the change in mass due to neutrinos, and is ultimately what drives
the time-dependent evolution of the stellar envelope. Note that this
does not show up in the self-gravity term ∝ m2

1 because in our for-
mulation the neutrino-induced mass change applies to the central
point mass, not the gas in the star (only the latter is described by
m1, v1, etc.).

Multiplying equation (23) by 4πr2 and integrating from rc to r1

yields

∂Etot

∂τ
= δE(t), (26)

where

Etot =
∫ r1

rc

4πr2E dr (27)

is the total integrated energy contained in the star (we used the fact
that the flux vanishes at the inner and outer radii). Using the solution
for the flux in terms of the eigenmodes, we can show that

δE(t) = Ec

(
1 − e−ω∗τ

) ∑
β

ω∗
ω2∗ + β2

×
{

e−ω∗τ − cos βτ + ω∗
β

sin βτ

} (∫ ξ1

ξc

Aβdξ

ξ 2

)2

, (28)

where

Ec = GδM2

α
. (29)

Finally, integrating equation (26) over time gives the total energy
contained in the star as a function of the mass lost to neutrinos. Using
the above expression for δE(t), we can show that this integrated
energy is

Etot(τ ) = Ec

∑
β

(∫ ξ1

ξc

Aβdξ

ξ 2

)2
Cβ (τ )

ω2∗ + β2
, (30)

where

Cβ (τ ) = 1

2

(
1 − e−ω∗τ

)2 − ω∗
β

sin βτ
(
1 − e−ω∗τ

)

+ω2
∗

β2
(1 − cos βτ ) (31)

Even though it is somewhat complicated in detail, equation (30)
yields the general result that the total energy imparted by the mass
loss is

�Eν � GδM2

α
, (32)

where α is the pressure scale height. This result confirms the order-
of-magnitude estimates of Section 2, and we see that equation (4) is
accurate up to a dimensionless number related to integrals over the
eigenmodes of the star. This expression for the energy is accurate

to lowest order in the velocity to the central sound speed, which is
generally quite small.

Additionally, it is possible to show that the coefficients Cβ satisfy

Cβ >
1

2

(
1 − e−ω∗τ − ω∗

β
sin βτ

)2

. (33)

The positive definiteness of Cβ (τ ) illustrates that the change in
energy due to the mass loss is always positive. While the increase
in the energy is reasonable – it would have been surprising if a
decrease in the gravitational field of the central object resulted in
a more bound stellar envelope – the total energy change is not
time independent. We will investigate this result in more detail in
Section 4, where we analyse these solutions in the specific case
where the progenitor is a polytrope.

4 PO LY TRO PES

The analysis of the preceding section was completely general and
valid for any stellar progenitor. Here, we focus our attention on the
case when the unperturbed stellar density and pressure profiles are
those of a polytrope, which allows us to explicitly solve for the
eigenmodes and, therefore, the response of the star to the neutrino
mass loss. For our purposes here, a polytrope provides a simple,
physically tenable description of a stellar interior, and suffices to
yield tangible results from the analysis of Section 3. We discuss the
application of these results to real stellar progenitors in Section 5.
The primary difference is that real stellar progenitors are far more
stratified than a single polytrope. Thus, the polytropic model is best
interpreted as an approximation to the stellar structure in the region
outside the iron core that becomes the proto-neutron star but interior
to any very extended hydrogen envelope.

We will analyse the specific cases of γ = 1.4, 1.5, and 1.6 poly-
tropes, focusing primarily on γ = 1.5. We will also assume for
simplicity that the adiabatic index of the perturbations equals the
polytropic index, meaning that the entropy gradient is identically
zero throughout the entirety of the star and the second term in
parentheses on the right-hand side of equation (14) vanishes.

There are three quantities that we can vary in the solutions (and
would likely vary between progenitors), being the total mass lost
to neutrinos, δM, the rate of neutrino-induced mass loss, ω, and the
location of the inner radius, rc. Because all quantities are linear in
the mass loss, δM can be scaled out of the problem, and the mass
flux, velocity, density perturbation, and other first-order variables
can be normalized by this quantity. The other two, however, must
be specified.

In our polytropic model, we are effectively modelling the region
exterior to where the enclosed mass is sufficient to form the neutron
star and, subsequently, BH. The free-fall time at that location is
thus of order the time-scale to radiate the neutrino energy (a few
seconds). We will therefore investigate the consequences of letting
ω∗ vary around values of order unity or larger. Likewise, we will let
the inner radius be between ξ c = rc/α = 0.1 and 1 and investigate
the consequences of letting it vary.

4.1 Velocity, mass density, and energy density

The left-hand panel of Fig. 1 shows the velocity – normalized by
the central sound speed and the total mass lost to neutrinos – as a
function of ξ/ξ 1 (or, equivalently, radius normalized by the radius of
the progenitor), obtained from equation (21) with 600 eigenmodes,
in the envelope of a γ = 1.5 polytrope at the dimensionless times
τ = t

√
4πGρc shown in the legend. For this plot, we set ω∗ = 10
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1230 E. R. Coughlin et al.

Figure 1. Left: velocity as a function of dimensionless radius ξ/ξ1, where ξ1 is the surface of the polytrope, in a γ = 1.5 polytrope, where different curves
are at the times shown in the legend, with ω∗ = 10 and ξ c = 0.5; the blue, dashed curve shows the estimate given by equation (6), and the thick, black curve
shows the density profile of the polytrope scaled by a factor of 5 for clarity. Middle: the velocity profile at a time of τ = 6.86 for ω∗ = 10 (which reproduces
the red curve in the left-hand panel), ω∗ = ∞ (dot–dashed curve), ω∗ = 1 (dotted curve), and ω∗ = 0.1 (dashed curve). Right: the velocity profile at a time of
τ = 6.86 and a variable ξ c, shown in the legend.

Figure 2. Left: the solid lines show the velocity profile throughout a γ = 1.5 polytrope when ω∗ = ∞ and ξ c = 0.5 at the times in the legend; the dashed lines
illustrate the dynamic response v = τ/ξ2 (equation 1), which holds during the early evolution and for radii greater than the radius out to which the sound pulse
has propagated in time τ ; the points show the position of the sound pulse at time τ ; right: the density profile for ω∗ = 10 and ξ c = 0.5 throughout a γ = 1.5
polytrope at the times in the legend. The decrease in density is because the sound pulse propagating out to large radii is a rarefaction wave.

and ξ c = 0.5. The dashed, blue curve shows equation (7) multiplied
by the dimensionless sound speed, and the black curve shows the
dimensionless density profile of the polytrope scaled by a factor
of 5 for clarity. The middle panel illustrates the velocity profile at
a time of τ = 6.88 for ω∗ = 10 (and is identical to the red curve
in the left-hand panel; solid curve), ω∗ = ∞ (dot–dashed curve),
and ω∗ = 1 (dotted curve). The right-hand panel shows the effect of
changing the value of the inner radius, with the dark-red curve being
the velocity profile at τ = 6.86 and ξ c = 0.1, while the light-red
curve corresponds to ξ c = 1.

The left-hand panel of Fig. 1 agrees with the general intuition
established in Section 2: at τ = 0, a sound pulse is launched from
the inner radius, travelling into the envelope and informing the star
of the infalling core. Deep in the interior where the sound speed and
density are roughly constant, the amplitude of the velocity behind
the pulse does not grow substantially owing to the geometrical di-
lution of the energy. At later times, when the sound pulse reaches
the outer extremities of the envelope where the density and sound
speed go to zero, the velocity behind the sound pulse increases
substantially and in approximate agreement with equation (7). The
middle panel of Fig. 1 shows that decreasing ω∗ to ω∗ = 0.1 (i.e. in-
creasing the time-scale over which the mass decreases) significantly
decreases the amplitude of the outgoing sound pulse, because much
of the star responds nearly hydrostatically – rather than impulsively

– to the change in mass loss. By contrast, making the mass loss
instantaneous only marginally changes the amplitude of the outgo-
ing sound pulse. The right-hand panel illustrates that, as expected,
decreasing the inner radius results in a larger velocity amplitude
throughout the envelope.

The left-hand panel of Fig. 2 quantifies the analytic predictions
of Section 2, and shows the early evolution of the velocity profile in
the envelope of a γ = 1.5 polytrope (solid lines) when ω∗ = ∞ and
ξ c = 0.5. The dashed lines represent the dynamic scaling v = τ/ξ 2

(equation 1), which, at early times, we predict holds for radii outside
of the radius that the sound pulse has reached in time τ – the latter
radius shown by the points in the left-hand panel of Fig. 2 (the
height of the point is the dynamic value of the velocity at that time
and radius).

Fig. 2 demonstrates that, for τ � 1, the velocity profile at large
radii is almost exactly equal to the simple analytic expectation of
equation (1). The fact that the velocity changes abruptly at the
sound-crossing radius also substantiates the interpretation that the
boundary conditions at small radii are communicated to the fluid
at the local sound speed. In our calculation, this boundary condi-
tion is that the interior fluid elements return towards hydrostatic
equilibrium, while in the proto-neutron star application the interior
fluid elements would begin to collapse inwards. At later times, the
analytic prediction of equation (1) somewhat underestimates the
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Mass ejection in failed supernovae 1231

Figure 3. The dimensionless kinetic energy (left-hand panel), internal energy (middle panel), and gravitational energy (right-hand panel) at the times shown
in the legend for a γ = 1.5 polytrope, ω∗ = 10, and ξ c = 0.5.

Figure 4. Left: the Mach number, normalized by δm, for a γ = 1.5 polytrope, ω∗ = ∞, and ξ c = 0.5 at the times shown in the legend. Right: the value of the
Mach number immediately behind the sound pulse as a function of ξmax – the location at which the maximum Mach number is reached.

magnitude of the velocity (though the radius at which the velocity
profile peaks is still at the sound-crossing radius). This is because the
differential acceleration implied by v ∝ t/r2 leads to a compression
of the gas, and this compression generates a pressure gradient that
develops over a dynamical time and further accelerates the fluid.

The right-hand panel of Fig. 2 shows the perturbation of the
density induced by the mass loss for ω∗ = 10 and ξ c = 0.5 at the
times in the legend (which are the same as those in Fig. 1). This
figure illustrates that, while the density in the immediate vicinity of
the sound pulse is slightly increased relative to the ambient value,
the inner regions of the star – and particularly those that are close
to the core – have a significantly reduced density. Thus, the sound
pulse that propagates out from the core of the star is actually a
rarefaction wave in the linear theory. This is because the reduction
in the gravitational field due to the decreased central mass causes
the star to expand outwards.

Using our general expression for the flux (equation 21), the energy
density (24) can be written

E = 1

2
δm2ρcc

2
c

{
ek(ξ ) + ei(ξ ) + eg(ξ )

} ≡ Ecetot(ξ ), (34)

where c2
c = γpc/ρc is the square of the sound speed at the centre

of the polytrope, and

ek(ξ ) = 1

ρξ 4

(∑
β

ω∗
ω2∗ + β2

Aβ (ξ )Rβ

)2

, (35)

ei(ξ ) = p

ρ2ξ 4

(∑
β

ω∗
ω2∗ + β2

A′
β (ξ )

∫ τ

0
Rβ (τ̃ )dτ̃

)2

, (36)

and

eg(ξ ) = − 1

ξ 4

(∑
β

ω∗
ω2∗ + β2

Aβ (ξ )
∫ τ

0
Rβ (τ̃ )dτ̃

)2

(37)

are the dimensionless kinetic, internal, and gravitational energies,
respectively. Fig. 3 shows the kinetic energy (left-hand panel), inter-
nal energy (middle panel), and the absolute value of the gravitational
energy (right-hand panel) for a γ = 1.5 polytrope; we set ω∗ = 10
and ξ c = 0.5 for these figures, and the different curves correspond
to the times shown in the legend of each panel.

From Fig. 3, we see that the internal and gravitational terms
dominate the energetics of the inner regions of the star; this result is
reasonable, seeing as the stellar envelope attempts to obtain a new,
hydrostatic equilibrium in the reduced gravitational field. Immedi-
ately behind the sound pulse, there is a large spike in the internal
and kinetic energy, which illustrates that there is an outgoing flux of
energy associated with the travelling wave. This figure also shows
that, while the energy in the pulse is predominantly kinetic while it
is still deep in the interior, the internal energy starts to dominate as
the wave nears the stellar surface.
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1232 E. R. Coughlin et al.

Figure 5. The dimensionless, Lagrangian positions of fluid elements as a function of time within the stellar envelope of a γ = 1.5 polytrope, where different
lines correspond to fluid shells with different initial positions. The three panels correspond to δm = 0.01 (left), δm = 0.05 (middle), and δm = 0.1 (right), and
we set ω∗ = ∞ and ξ c = 0.5 for these panels. The black, dashed line in the middle panel shows the position of the sound pulse as a function of time. Shell
crossings indicate where shocks would form in a non-linear treatment. Note that these occur in two places: at the surface prior to the sound pulses arrival and
as the sound wave reaches large amplitudes in the low-density surface layers of the star.

4.2 Mach number, Lagrangian positions, and shocks

The left-hand panel of Fig. 4 shows the Mach number, normal-
ized by the dimensionless mass loss, in the envelope of a γ = 1.5
polytrope; here we set ω∗ = ∞ and ξ c = 0.5, and the different curves
correspond to the times shown in the legend. This figure demon-
strates that there are two locations – one near the sound pulse and
another near the surface – where the Mach number becomes large.
This finding is consistent with the heuristic arguments of Section 2,
where we posited that one shock should occur immediately behind
the sound pulse owing to the steepening of the wave, but another
could occur near the surface where the dynamic acceleration causes
early (relative to the sound-crossing time through the stellar enve-
lope) shell crossing.

The location at which a shock forms in the envelope due to the
steepening of the sound wave can be approximated from equation
(7) and setting the Mach number to one. The exact value of the
maximum, normalized Mach number as a function of where the
maximum occurs – both of which are functions of time as the pulse
propagates into the stellar envelope – is shown in the right-hand
panel of Fig. 4, where the solid curves correspond to polytropes
with the polytropic index shown in the legend and we set ω∗ = ∞
and ξ c = 0.5. The dashed curves give the prediction that follows
from conservation of wave power [equation (6)], which agrees well
with the full calculation. This figure also shows that, because smaller
γ polytropes have more extended, low-density envelopes, the shock
forms sooner and at smaller radii (relative to the surface) within the
star for smaller γ .

The right-hand panel of Fig. 4 also gives a by-eye estimate of
where the shock forms in the envelope: for physical values of δm
that are much less than one, the Mach number equals unity at
a radius very near the stellar envelope. Specifically, we find for
δm = 0.01, 0.05, and 0.1 that the flow becomes supersonic at radii
of ξ = 0.97, 0.90, and 0.85, respectively for a γ = 1.5 polytrope. In
these cases, therefore, only a small amount of mass is shocked, being
δmshock � 0.1 per cent, 2 per cent, and 8 per cent for δm = 0.01, 0.05,
and 0.1.

In addition to the Eulerian profiles of the fluid quantities, we can
investigate the Lagrangian positions of fluid shells within the stellar
envelope, which are governed by the differential equation

dri

dt
= v(r0,i, t), (38)

where r0, i is the initial position of fluid shell i. Note that, because
it is already a first-order quantity, the velocity only depends on

the initial position of the fluid element in this equation – letting
v = v(ri(t), t) would include higher order terms that are not
self-consistently taken into account by our perturbation approach.

Fig. 5 illustrates the Lagrangian positions of the fluid shells within
the stellar envelope of a γ = 1.5 polytrope, where we set ω∗ = ∞
and ξ c = 0.5. The different lines correspond to different initial
positions in the progenitor, and each panel has a total mass lost
indicated in the upper left corner of the plot. The dashed, black line
in the middle panel shows the position of the travelling sound wave
as a function of time. We see that, for very small values of the mass
loss, the positions of the fluid elements are only slightly perturbed
from their initial positions, and small-amplitude oscillations are
excited in the outer part of the star. However, as δm increases,
fluid elements are increasingly displaced, and this is especially true
for mass shells near the surface of the star where the oscillations
become particularly intense.

We also see from this figure that fluid elements cross after being
‘hit’ by the sound pulse, as these shells at large scale heights in the
atmosphere attempt to return to a new equilibrium and cross in the
process. This shock is thus caused by the steepening of the sound
pulse as it propagates into the more rarefied atmosphere of the star.
There is also a second shock that forms as shells very near the
surface cross prior to being reached by the sound pulse. This shock
is independent of the steepening of the pressure wave, and is related
to the differential acceleration that results from the initial, dynamic
response of the envelope to the gravitational field. Consistent with
Fig. 4 and the discussion in Section 2, we therefore see that there
are two locations at which shocks form in the polytrope – one due to
the steepening of the sound wave, and another from the differential
acceleration caused by the dynamic expansion.

4.3 Total energy

From Fig. 3, we see that the internal energy of the inner regions of the
envelope – through which the sound pulse has already passed – has
been augmented significantly. This additional energy results from
the fact that, as the sound wave passes through the envelope, the star
attempts to reconfigure itself into a new, hydrostatic equilibrium in
the reduced gravitational field. Thus, the kinetic energy originally
contained in the gas is transferred into internal energy.

However, it is also apparent from Fig. 3 that the gas in the
immediate vicinity of the sound pulse has a very localized in-
crease in energy. The precise definition of this ‘sound pulse’ and
its associated energy is somewhat arbitrary, but we define the
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Mass ejection in failed supernovae 1233

Figure 6. The kinetic energy (blue curve), internal energy (orange curve),
gravitational energy (green curve), and the sum of these energies (red curve)
contained in the outgoing sound pulse as a function of time in a γ = 1.5
polytrope with ω∗ = ∞ and ξ c = 0.5; the individual energies follow from the
integrals of equations (35)–(37) over the FWHM of the velocity around the
peak in the pulse. The black, dashed curve shows the analytic approximation
that follows from equation (4), and the purple curve gives the total, integrated
energy in the star (from equation 30).

energy in the sound wave as the total, integrated energy contained
within the full width at half-maximum (FWHM) around the peak
in the velocity profile. The precise limits on velocity used to de-
fine the energy do not significantly affect our results, especially
once the sound pulse nears the surface of the star and the velocity
profile becomes increasingly peaked. This definition also encapsu-
lates the physical idea that it is only fluid elements moving along
with the sound pulse that would ultimately pass through the shock
formed when the sound wave steepens.

Fig. 6 shows the kinetic (Ek), internal (Ei), and gravitational
(Eg) energies contained in the sound pulse, which are given by the
integrals of equations (35), (36), and (37) over the width of the
sound pulse, and the sum of these energies (Epulse) as functions of
time. These curves are for a γ = 1.5 polytrope with ω∗ = ∞ and
ξ c = 0.5. The analytic approximation to the energy introduced in
Section 2 – specifically the first equality in equation (4) – is shown

by the black, dashed curve, and the total energy contained in the
star (equation 30) is given by the purple curve.

Fig. 6 demonstrates that, while the energy contained in the pulse is
not exactly constant in time (indeed, it must be zero at τ = 0 when the
perturbations are everywhere zero), the late-time behaviour – once
the pulse has a well-defined peak in velocity in the outer extremities
of the envelope – of the energy is approximately constant around E
� Ec. We also see that the analytic expression of equation (4) does
a very good job of approximating both the increase in the energy of
the pulse and the average value at later times.

The total energy change in the star induced by the mass loss over-
estimates the energy contained in the outgoing pulse by a factor of
roughly 3. This overestimate is due to the fact that the velocity
increases non-locally within the star from the initial, dynamic re-
sponse, and this additional kinetic energy is not captured in the
integral over the FWHM of the pulse. Furthermore, the inner re-
gions of the star are significantly overpressured, and this increase
in the internal energy (which is a relic of the passage of the sound
wave) is not contained in the outgoing sound wave.

The left-hand panel of Fig. 7 shows how the integrated energy
contained in the sound pulse generated in the envelope of a γ = 1.5
polytrope varies as a function of ξ c and ω∗, the various curves cor-
responding to the values of these parameters shown in the legend.
We see that as long as ω∗ � 1 – which we expect based on physical
grounds – changing the time-scale over which the mass is radiated
does not significantly affect the total energy contained in the outgo-
ing wave (though the growth of the energy is slightly impeded for
smaller ω∗). Similarly, decreasing (increasing) the value of the inner
radius only marginally increases (decreases) the energy contained
in the outgoing pulse.

The right-hand panel of Fig. 7 shows the variation in the mass-
loss-induced energy for different polytropes, given by the polytropic
indices in the legend, when ξ c = 0.5 and ω∗ = ∞. In this figure,
the solid lines represent in the energy integrated over the width of
the sound pulse, the dashed lines are the analytic approximation
from Section 2, and the dotted curves are the total energy contained
in the star (from equation 30). Interestingly, while the analytic es-
timates and the energy in the sound pulse are all fairly similar, the
total energy contained in the star increases substantially for stars
with smaller γ (and more extended envelopes), and the change in
the energy has a more dramatic effect on the restructuring of the

Figure 7. Left: the total, integrated energy over the sound pulse for a γ = 1.5 polytrope, where the different curves correspond to the different parameters
(i.e. ω∗ and ξ c) shown in the legend. Right: the integrated energy in the sound pulse (solid curves), the analytic approximation of the energy in the sound pulse
(dashed curves), and the total energy contained in the star (dotted curves) as functions of time for ξ c = 0.5 and ω∗ = ∞ and the polytropes shown in the legend.
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1234 E. R. Coughlin et al.

Table 1. The properties of the three, fiducial solar metallicity MESA models analysed in F18: the ZAMS
mass, the mass of the star at the onset of core collapse, the radius of the star at the onset of core collapse,
the type of star, the compactness, and the inner radius where we expect the energy to be generated in the
outgoing sound pulse. The last three columns give the analytically predicted upper limit to the surface
Mach number at the time the sound pulse reaches the stellar photosphere, the radius at which the sound
pulse steepens into a shock, and the energy contained in the sound pulse.

Properties of MESA pre-collapse models
MZAMS Mcc Rcc Type ξ2.5 rc Msurf rsh Epulse

(M�) (M�) (R�) (R�) R� 1048 erg

15 10.8 1060 RSG 0.24 0.02 0.3 2.1 1.5
25 11.7 96 BSG 0.33 0.024 0.3 0.37 1.2
40 10.3 0.38 WR 0.37 0.02 1.7 0.22 1.7

stellar interior in the reduced gravitational field. Given that γ = 4/3
polytropes have zero total energy (Hansen, Kawaler & Trimble
2004), this result is reasonable: as γ → 4/3, the relative change
in the energy due to the mass loss becomes more severe, and the
final state of the star is more significantly perturbed from its initial,
hydrostatic one.

5 APPLICATION TO REAL STELLAR
P RO G E N I TO R S

We saw in the previous section that polytropes develop many of the
features exhibited by the simulations of Nadyozhin (1980), Love-
grove & Woosley (2013), Lovegrove et al. (2017), and Fernández
et al. (2018): the mass loss in the core generates an outward-
propagating pressure wave that traverses the star. As it propagates
down the density gradient of the stellar envelope, the sound wave
grows in amplitude, and in a fully non-linear treatment would form
a shock. This shock will subsequently erupt from the surface in a
relatively mild explosion, taking with it some portion of the stellar
envelope.

While this qualitative agreement is encouraging, some questions
remain unanswered. For example, the estimate of the energy given
by equation (4) – which was substantiated by the polytrope models
– relies on specifying the pressure scale height α. For a polytrope,
this is uniquely determined by the central pressure and temperature;
however, the iron core (the true, geometric centre) of a real star is
orders of magnitude denser than the helium envelope, and using the
central scale height would give a much larger estimate of the energy
than would be obtained from, for example, the average scale height
throughout the envelope. Furthermore, real stars are not necessarily
well represented by polytropes, and estimates of where the shock
forms will differ from those found in Section 4.

In this section, we will use our previous results to investigate the
properties of shocks formed by neutrino energy radiation in real
stars, making specific comparisons to the models analysed in F18.
For these purposes, we use some of the properties of the pre-collapse
stellar progenitors from F18 calculated using MESA (Paxton et al.
2011, 2013, 2015). Table 1 summarizes some of the key properties
of these models, along with of the predictions of our analytic results
in this paper.

5.1 Sound pulse energetics

In a real star, collapse is initiated by the cessation of nuclear burning
in the iron core, and the subsequent deleptonization and neutrino
radiation. The resulting loss of pressure support in the interior causes
successive shells of the star to infall on to the newly forming proto-
neutron star. The effective inner radius rc in equation (4) for a real

stellar progenitor depends on the structure of the progenitor, in
particular via the compactness parameter2

ξ2.5 = 2.5

r(Mr = 2.5 M�)/108 cm
. (39)

Note that the free-fall time at the 2.5 M� mass coordinate can be
written as tff (Mr = 2.5 M�) � 0.2ξ

−3/2
2.5 s. For high compactness

ξ 2.5 � 0.2, the free-fall time at the mass coordinate of the maximum
mass of a neutron star is less than the few seconds characterizing
neutrino diffusion out of the proto-neutron star (Burrows 1988). In
this case, the neutron star is formed, radiates only a fraction of its
binding energy in neutrinos, and collapses to a BH on the infall
time-scale at rc � 2.5 × 108 ξ−1

2.5 cm, and hence ω∗ = ω × tff � 1 in
the notation of the previous sections, where tff is the free-fall time
from rc. On the other hand, if the progenitor is not very compact,
with ξ 2.5 � 0.2 (and yet for some reason still does not successfully
explode), the radius enclosing ∼2.5 M� has a long free-fall time
relative to the neutrino diffusion time. In this case most of the
neutrino radiation occurs prior to the collapse to a BH and rc is set
by where the free-fall time is comparable to the neutrino diffusion
time of a few seconds, and ω∗ is again effectively ∼1 given this
value of rc. To bracket both of these regimes, we can define tff(rc)
� min(τ c, τ tov), where τ c ∼ few seconds is the neutrino cooling
time of a proto-neutron star and τ tov is the time for the proto-
neutron star to collapse to a BH. The corresponding values of rc are
given in Table 1. Note that rc ∼ 0.02 R� ∼ 1.5 × 109 cm for most
progenitors. This is true except for the most massive ones with high
compactness (not shown in Table 1), for which the time to form
a BH is short, suppressing neutrino radiation. In these models, the
mass radiated in neutrinos δM will also be correspondingly smaller.

When ω∗ � 1, the total energy contained in the outgoing sound
pulse (that eventually steepens into the shock) is not strongly af-
fected by ω∗, as shown by the left-hand panel of Fig. 7. The analytic
prediction of Section 2, which agrees well with the more exact, per-
turbation analysis (the right-hand panel of Fig. 7), then gives an
energy injection at a given radius of

d�E

d ln r
� 2πρG2δM2τ 2

sc

r
(40)

where τ sc is given by equation (3).
Fig. 8 shows the estimated energy input for solar metallicity

MESA progenitors as a function of radius, for rc = 0.02 R� and
δM = 0.3 M�. Table 1 gives the total energy Epulse integrated over all

2 We utilize the standard notation for compactness but note the possible con-
fusion with the dimensionless polytropic radius from the previous section.
Context should make it clear which is which.
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Figure 8. Analytic estimate (equation 40) of energy input to the sound pulse
as a function of radius, produced by neutrino radiation of δM = 0.3 M�. The
progenitors are solar metallicity MESA models (Table 1). The energy input
is suppressed interior to ∼0.02 R� because the mass collapses to form the
proto-neutron star.

radii. The result is ∼1048 erg. These estimates are in good agreement
with the sound pulse energy in the interior in the full simulations of
F18 (see their fig. 5). We note, however, that the final shock energy
erupting from the surface can be significantly lower in some cases
due to energy lost as the shock propagates through the outer layers
of the star. We defer a theoretical analysis of that phase to future
work.

Finally, we note that the amount of mass that can be ejected
given the energy scale shown in Fig. 8 varies significantly with
progenitor. For RSGs, BSGs, and WR stars, it is ∼5, 0.1, and
10−3M�, respectively, due to the increasing binding energy of the
envelope for more compact progenitors.

5.2 Where does the sound pulse become a shock?

From the analysis of Section 4, the transition from the linear sound
pulse into a shock occurs near the surface where the density and
sound speed drop considerably. For the polytropic models, the linear
theory prediction for the location where the pulse becomes super-
sonic was found by using the general expression for the mass flux
in the star (equation 21). However, conservation of the energy flux
(wave power) associated with the sound pulse also gives approxi-
mately the same results, as shown by the right-hand panel of Fig. 4.

The stellar models presented in F18 range from WRs to RSGs,
and thus have a wide variety of envelope properties. Their simula-
tions demonstrate that the strongest shocks (in terms of the max-
imum Mach number reached and the amount of mass that expe-
rienced the shock) are formed when rc is a small fraction of the
stellar radius, which agrees qualitatively with our analytic findings:
in these instances, the energy is injected at a relatively small ra-
dius and the Mach number has a long time to grow as the pulse
propagates down the density gradient. On the other hand, the WR
progenitors do not generate shocks until very near the stellar sur-
face, which is consistent with the fact that Rcc/rc ∼ 10 in those
cases – the sound wave only significantly steepens as the density
declines drastically near the photosphere.

Fig. 9 shows the Mach number as a function of radius r from
the simulation of a 40 M� WR star analysed in F18. The solid
lines show the results of the full numerical simulations at different
times (ranging from 0 to ∼ 100 s post-mass loss), while the red,
dashed curve gives the analytic prediction from equation (7) with

Figure 9. Solid lines show the Mach number at different times from the
40 M�, WR progenitor analysed in F18. The red, dashed curve shows
the analytic prediction (equation 7) which accurately describes both the
increase in amplitude of the sound pulse and the radius at which M ∼ 1,
where the shock first forms.

the normalization chosen to match the numerical scaling at radii ∼rc.
Alternatively, directly applying equation (7) with δM/Min = 0.058
(which corresponds to the values in the simulation of F18) yields
a similar normalization if the density, radius, and sound speed in
the square root in equation (7) are normalized at radii ∼2 − 3rc,
which is where the energy input peaks (see Fig. 8). This reflects
the fact that linear theory accurately predicts both the energy and
length scales associated with the formation of the sound pulse. Fig. 9
demonstrates that the increase of the Mach number throughout the
star in the linear phase is well matched by the conservation of the
power of the sound pulse. The radius at which the shock forms
predicted by linear theory is accurate to about ∼50 per cent.

5.3 Is the photosphere shocked prior to the sound pulses
arrival?

As described in Sections 2 and 4, it is in principle possible that the
surface of a star feels two shocks associated with the response to
the neutrino radiation, the first as the cool surface layers accelerate
according to equation (1), and the second when the sound pulse
from the interior reaches the surface. This double shock occurs for
polytropes because the sound speed goes to zero at the surface;
indeed, this is the defining quality of the surface of a polytrope. To
assess whether this occurs for real stellar progenitors – where the
surface coincides with the photosphere and a non-zero sound speed
– we estimate the surface Mach number using equation (1) with t
set by the global sound-crossing time of the star

Msurf � GδM

R2cs(R)

∫ R

rc

dr

cs
. (41)

Equation (41) is an upper limit (by a factor of few) because the sound
pulse steepens into a shock that travels supersonically through the
outer part of the stellar envelope, thus reaching the surface on a
time-scale somewhat shorter than τ sc.

Table 1 gives our estimates of Msurf for the MESA progenitors, for
δM = 0.3 M� and cs(R) evaluated at the photosphere. We see that
Msurf ∼ 0.3 for the RSG and BSG butMsurf ∼ 1 for the WR model,
implying that the initial dynamical acceleration of the surface is sig-
nificant even prior to the sound pulse arrival. We find similar values
for other WR models and that in general, the compact progenitors
are the most likely to have high photospheric velocities in the dy-
namical acceleration phase. The exception to this is very compact
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massive progenitors with large compactness, which form BHs so
quickly that the mass radiated in neutrinos is significantly smaller
than δM ∼ 0.3 M�.

Fig. 9 shows that in F18’s simulations of a 40 M� WR progen-
itor, the maximum Mach number of the photosphere prior to the
shock reaching it is ∼0.5, reasonably consistent with our analytic
conclusions here. We note that the photosphere is not fully resolved
in F18’s simulation because of the small surface scale height for
WR stars so it is likely that the true surface Mach number is some-
what higher. Assessing whether the photosphere shocks, modifying
the observed emission, will require additional simulations with res-
olution focused on the photosphere and likely the inclusion of the
WR star’s wind, since in WR stars, the photosphere is often out in
the stellar wind. For comparison, for F18’s 15 M� RSG progenitor,
for which the photosphere is better resolved, the simulation yields
a surface Mach number of ∼0.2 prior to the shock reaching the
photosphere, very close to our analytic prediction. In future work, it
would be interesting to calculate how the initial dynamical acceler-
ation of the photosphere imprints itself on the emission even prior
to the shocks arrival at the surface.

6 SU M M A RY A N D C O N C L U S I O N S

During the formation of the proto-neutron star in the core collapse
of a massive star, the emission of neutrinos results in a decrease in
the mass of the core by ∼0.3 M�. If the accretion shock on to the
proto-neutron star fails to revive, leading ultimately to the collapse
of the star to BH, the decrease in gravitational acceleration caused
by neutrino mass loss still produces both a bulk outward motion
of the entire outer stellar envelope as well as a pressure wave that
propagates through the star and steepens into a shock near the stellar
surface. This effect, first analysed by Nadyozhin (1980), is a critical
part of the disappearance of a star in an otherwise-failed supernova.

In this paper, we developed a general formalism for understand-
ing the physical origin of this sound pulse, its energetics, and its
propagation through the star. We argued (Section 2) heuristically
that the energy contained in the outgoing wave should be Epulse �
1048 erg, relatively independent of progenitor. This estimate agrees
well with the results of simulations (Lovegrove & Woosley 2013;
Fernández et al. 2018, F18 in this paper). We then exploited the fact
that the fractional change in mass of the star produced by neutrino
mass loss is small, � 0.1 M�. This means that the initial excitation
and propagation of the sound pulse can be accurately calculated
using linear perturbation theory. We do so by writing the velocity
and density profiles of the evolving stellar envelope in terms of the
eigenmodes of the unperturbed star (Section 3). The linear analysis
eventually breaks down as the sound pulse grows in amplitude prop-
agating into the lower density stellar envelope. We can, however,
accurately predict where the resulting shock forms using our linear
theory results.

In Section 4, we applied the results of our perturbation analysis to
polytropic stellar models. Many of the resulting features are in good
qualitative agreement with simulations: a sound pulse is launched
from the inner boundary, growing in amplitude and eventually be-
coming supersonic near the stellar surface. The conservation of the
power of the wave Lwave � 4πρr2v2cs gives an excellent prediction
of the growth of the Mach number throughout the envelope (right-
hand panel of Fig. 4). We then used this agreement to investigate
where the sound pulse will form a shock in more realistic stellar
progenitors (Section 5), in particular the WR, RSG, and BSG MESA

progenitors analysed numerically in F18. Our analytic predictions
of the radius where the sound pulse is excited, the initial energy in

the sound pulse, and the radius where the shock first forms agree
well with the numerical simulations of F18 (see e.g. Figs 8 and 9).

Our analytic results also demonstrate that, in principle, a shock
can form in the stellar photosphere prior to the sound pulses arrival.
This is a consequence of the initial, dynamic expansion of the
star prior to the passage of the sound wave, and the low sound
speed near the stellar photosphere. This shock does inevitably form
in polytropic models for which the sound speed vanishes at the
surface (Figs 4 and 5). For realistic stellar progenitors we find that
the photospheric Mach number is limited to ∼0.2 (RSG and BSG)
and ∼1 (WR, see e.g. equation 41 and Fig. 9). This expansion
of the stellar photosphere is likely to slightly decrease the stellar
effective temperature prior to the weak shock breakout and the star’s
subsequent disappearance. In some WR stars, the photosphere may
actually undergo ‘internal shocks’ via this process but more detailed
calculations are required to assess this, including the fact that in WR
stars, the photosphere is often out in the wind (see Section 5).

Our linear treatment is useful for predicting where in the star the
shock forms and the amount of energy it contains as it does so.
Therefore, one can use our results as a starting point for the further
investigation of the shock propagation through the remainder of the
stellar envelope. The shock energy is much less than in typical core-
collapse supernovae and the Mach number is only of order unity.
As a result, existing theoretical calculations of shock propagation,
which focus on strong shocks and ignore the gravitational energy
(e.g. Matzner & McKee 1999), may not be applicable to these
very low-energy shocks. Indeed, the simulations of Fernández et al.
(2018), which follow the eventual emergence of the shock from
the photosphere of their progenitors, find that the shock can in
some cases lose a significant amount of energy before emerging
from the surface. It is unclear whether this is primarily energy lost
due to the entropy trail left behind by the shock or the effects of
gravity on the shock propagation. It would be valuable to understand
these results in more detail analytically.

The arrival of the sound pulse at the stellar surface is accompanied
by at least three robust observational signatures: (1) the ∼0.2–1
Mach number of the surface of the star leading up to the sound
pulses arrival is likely accompanied by a modest decrease in the
stellar effective temperature, though if the photosphere undergoes
internal shocks in some WR models the change in emission is likely
to be qualitatively different. (2) Weak shock breakout emission.
(3) Recombination powered emission associated with the unbound
ejecta. Lovegrove & Woosley (2013), Piro (2013), and Lovegrove
et al. (2017) quantify the second and third of these signatures for
RSG progenitors, while Fernández et al. (2018) also quantify them
for BSG and WR progenitors. In addition to these robust signatures,
the low-energy shocks associated with failed supernovae are likely
to lead to extended fallback accretion on to the BH. This could power
a variety of transients, particularly if there is sufficient angular
momentum that an accretion disc forms (e.g. Quataert & Kasen
2012; Woosley & Heger 2012; Dexter & Kasen 2013).

The theoretical formalism developed in Section 3 is likely ap-
plicable to other problems of astrophysical interest. For example,
the gravitational wave emission immediately following the inspiral
of two supermassive BHs will result in a mass loss of a few per
cent of the sum of the initial masses. If there is a circumbinary disc
present, the mass loss will induce a dynamical response of the disc,
producing radial motions and shocks throughout the flow. Indeed,
this is observed in the simulations of Rossi et al. (2010, , though
they find that the gravitational-wave induced kick of the remnant
BH can have a larger effect). Most work on this problem has focused
on thin discs, but geometrically thick discs are likely present in the
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majority of galactic nuclei. The spherical analysis of this paper –
or a modest extension that includes rotation – may be particularly
appropriate in these cases.
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A P P E N D I X A : N U M E R I C A L R E S U LT S F O R
P O LY T RO P E S

To quantify the accuracy of the linear perturbation calculations used
throughout the main text, we used a 1D, Lagrangian hydrodynamics
code (see Roth & Kasen 2015 for a description of the code) to
investigate numerically the response of a 1 M�, 1 R�, and γ = 1.5
polytrope in which we instantaneously remove the mass interior to
the dimensionless polytropic radius ξ = 1 (which corresponds to
δm � 0.3).

The top panel of Fig. A1 shows the Mach number of the flow
induced by the mass loss, while the bottom panel shows the dif-
ference δρ between the initial, polytropic density profile and the
time-dependent one, which is ρ1 in the notation introduced in
Section 3. The different curves correspond to the times in the legend,
with the solid curves being the analytic prediction following from
equation (21) and the dashed curves the results from the numerical
simulation.

From this figure, we see that the analytic approach established in
Section 3 gives an excellent approximation to the full, non-linear
response of the envelope. Indeed, significant differences only arise
once the Mach number of the flow approaches unity. The numerical
solution shows that the pulse steepens and shocks (i.e. reaches a
Mach number of 1) sooner and at a slightly larger radius in the
envelope.
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Figure A1. The response of a 1M�, 1R�, and γ = 1.5 polytrope when the
mass interior to a dimensionless radius ξ = 1 is removed instantaneously.
The top panel shows the Mach number, the bottom panel shows the difference
in the time-dependent density and the initial, polytropic density profile, and
the different curves correspond to the times in the legend. The solid curves
show the analytic prediction, while the dashed curves give the results from
a 1D, Lagrangian hydrodynamics code. The agreement is excellent so long
as the linear assumption that M � 1 is satisfied.

A P P E N D I X B : I N C L U D I N G R A D I A L I N FA L L

As we mentioned in Section 3, to self-consistently match on to the
inflow in the interior of the star, one can include an initial, but small,
radial mass flux in the star, which we will write as F0(ξ ) ≡ F(ξ , 0). If
one accounts for this added term, then our fundamental equation for
the Laplace-transformed mass flux, which replaces equation (13),
is

s2
∗�F̃ − L[�F̃ ] = 1√

4πGρc

(
1

s∗
L[�F0] + GM̃νρ0s∗

)
, (B1)

where L is the same operator appearing in equation (14), �F =
F(ξ , t) − F0(ξ ), and �F0 = F0(ξ ) − F0(ξ c). The boundary con-
ditions on �F are then the same as those on F with zero initial
velocity, namely �F(ξ c, t) = �F(ξ ∗, t) = 0.

Expanding about the eigenmodes Aβ of the operator L , the
solution for �F is

�F =
∑

β

(
δM

√
4πGρc

4π

ω∗
ω2∗ + β2

Rβ (τ ) + 1

β2
Kβ (τ )

)
Aβ (ξ ),

(B2)

where Rβ (τ ) is still given by equation (22) and

Figure B1. The dimensionless velocity profile for a γ = 1.5 polytrope with
ξ c = 0.5 and instantaneous mass loss. The solid curves correspond to no in-
flow, dashed set to Nm0(ξ c)/δM = 1, and dot–dashed have Nm0(ξ c)/δM = 5.

Kβ = {1 − cos (βτ )}
∫ ξ1

ξ0

L [�F0(ξ )]
Aβdξ

ρξ 2
. (B3)

As expected, this solution reduces to the one analysed in Section 3
when the initial flux is zero. The term proportional to Kβ in equation
(B2) arises physically from the pressure gradient induced by the
mass flux.

The initial flux is established from the conveyance of the
loss of pressure support to the outer layers of the star, which
occurs on the sound-crossing time. Thus, around the radius
rc � cc/

√
4πGρc � α, a good approximation is that the material

has accelerated in the local gravitational field for some fraction of
the free-fall time, or

v0(r) = −N × Gm0(r)

r2

1√
4πGρc

, (B4)

where N ∼ 1 and m0(r) is the initial mass profile of the star. To
then assert that regions for r � α have not yet reacted to the loss
of pressure support, we can multiply the above expression by e−ξ ,
which gives the following, reasonable form for the initial mass flux
in the star:

F0(ξ ) = −N
m0(ξ )

√
4πGρc

4π
ρ(ξ )e−ξ . (B5)

Inserting this form for F0 in equations (B3) and (B2), we see that
the relative importance of the initial mass flux compared to the
mass loss is proportional to Nm0/δM.

Fig. B1 shows the solution for the dimensionless velocity profile
imparted to a γ = 1.5 polytrope, with ξ c = 0.5 and the mass im-
pulsively reduced (ω∗ = ∞). The solid curves have v(ξ c) = 0
(identical to the solutions in Section 4), dashed correspond to
Nm0(ξ c)/δM = 1, and dot–dashed Nm0(ξ c)/δM = 5. It is apparent
from this figure that the infall boundary condition, at least for these
subsonic velocities, makes some difference to the overall shape
of the velocity curve. However, the profiles near the peak, which
is where the vast majority of the energy is concentrated, become
nearly indistinguishable at late times.
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