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Astrophysical and cosmological observations indicate that a
large amount of non-luminous dark matter (DM) exists in our uni-
verse, constituting ~ 27% of the closure density. However, the exact
nature of DM remains a mystery. One intriguing DM candidate,
a weakly-interacting massive particle (WIMP), arises naturally in
many extensions of the standard model [1,2]. Many WIMP searches
have been performed, including direct detection of their scattering
off target nuclei, indirect detection of their decay or annihilation,
and their production in collider experiments. In the analysis of di-
rect detection experiments, frequently it is assumed that the scat-
tering arises from the light-quark-level (u, s, d) effective interaction
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which can be reduced to a nucleon-level operator useful in an-
alyzing the nuclear response to WIMP scattering [3]. Limits on
the vector spin-independent (SI) and axial spm d Sendent (SD)
WIMP-proton and WIMP-neutron cross sections a n can then be
derived. The recent stringent direct detection null results obtained
successively by LUX [4,5], PandaX [6, 7; and XENON [8-10] have
significantly tighten the bounds on ap o [11].

The interaction of Eq. (1) was motivated by supersymmetric DM
candidates, like the neutralino, that can naturally account for the
DM relic density. The motivation to focus exclusively on such can-
didates has weakened due in particular to collider constraints [12].
An alternative approach, effective field theory (EFT) [13-15], has
gained favor because it allows one to do an analysis [16-19] free
of theory assumptions. One selects an EFT scale - e.g., the light-
quark or a nucleon scale - and constructs a complete basis of
effective operators to a given order, taking into account all gen-
eral symmetries limiting that basis. The underlying UV theory of
DM will reduce at that scale to some definite combination of the
basis operators, regardless of its nature. Experimentalists can ex-
plore the sensitivities of their detectors to the basis operators, to
make sure they are probing all possibilities. The EFT approach has
shown 1) relative experimental sensitivities depend on the oper-
ator choice, and 2) direct detection is potentially more powerful
than might appear from SI/SD analyses, as six (not two) indepen-
dent constraints on DM can be obtained, in principle [15].

The PandaX-II detector, located in the China Jinping Under-
ground Laboratory (CJPL), is a dual-phase xenon time-projection
chamber with 580 kg of liquid xenon in the sensitive target vol-
ume. When the incoming WIMP scatters off a xenon nucleus, both
the prompt scintillation photons (S1) in the liquid and the delayed
proportional scintillation photons (S2) in the gas are collected
by 55 top and 55 bottom Hamamatsu R11410-20 3-inch photo-
multiplier tubes. The experiment has an accumulated exposure of
54-ton-days [6]. The previously reported analysis for the standard
(isoscalar) SI interaction yielded a 90% exclusion limit on o' of
8.6 x 107# cm? for a WIMP mass of 40 GeV/c. (These bounds
were recently superseded by XENON1T results [10].) In this paper
we present PandaX-II constraints a variety of candidate interactions
that depend on nucleon or WIMP spin.

Spin-dependent interactions other than SD can arise from
WIMP magnetic and electric dipole moments, vector-axial in-
terference terms, tensor interactions, etc. While the associated
nucleon-level effective operators are conventionally expressed in
covariant form, they can be rewritten in terms of the Galilean-
invariant EFT basis used here, convenient for nonrelativistic shell
model (SM) treatments of the nuclear physics. This basis consists
of fourteen operators generated at next-to-next-to-leading-order
from the nucleon-WIMP perpendicular relative velocity operator
\:/J-, the momentum transfer g, and the WIMP and nucleon spins,
Sy and Sy [15].

We specialize to the scattering of a spin-1/2 WIMPs off a nat-
ural xenon target, exploring four dimension-four and three higher
dimension effective interactions, selected from Table 1 of Ref. [15].
The operator dimension is defined as 4 + number of powers of my
in the denominator, where my; is a scale that governs the strength
of the WIMP and nucleon moments being coupled. The dimension-
four operators are the V-A interactions
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with mN the nucleon mass and O1 = 1,1y, (94 = Sx SN, 07 =
Sy vt , O = Sx VL, and Og _1(SX X SN) —L the nonrelativistic
operators of [14,15]. While Cmt generates the standard SI inter-
action, the other interactions involve an axial coupling and thus
depend on spin.

One can equally well start with a basis of light-quark effec-
tive operators, reducing these via chiral EFT to their nonrelativistic
nucleon equivalents [20,21]. The spin-dependent nucleon-level op-
erators arising from the axial part of Eq. (1) (the standard SD
interaction) and from the light-quark tensor interaction will be
considered here.

The dimension-five operators coupling the WIMP magnetic or
electric dipole moments with the nucleon’s vector current, and the
dimension-six operator coupling WIMP and nucleon magnetic mo-
ments, are examples of other potential sources of spin-dependent
scattering,
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that peak at larger momentum transfers, influencing experimen-
tal strategies for optimally constraining such interactions. We set
mpy = my, normalizing both WIMP and nucleon moments to the
nucleon scale.

Each operator Emt can have independent couplings to protons
and neutrons, or equivalently to isospin [15],

d?+d1 _d"1+r3 d’ 1-13 4
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where 73 is the Pauli isospin operator. The couplings d; are dimen-
sionless, defined relative to the weak scale

my = (v) = (2GF)~? = 246.2 GeV

with (v) the Higgs vacuum expectation value. We will consider
isoscalar (d! = 0) and isovector (d) = 0) interactions, for which
df =d} and —dlp =d}, respectively; as well as couplings only
to protons (d} = d?) or neutrons (d! = —d?). For our higher-
dimension operators, the d;’s also encode information about the
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absolute size of the WIMP electric and dipole moments, given that
we have normalized to nucleonic values (my = my).

As the spin response of Xe is largely governed by the unpaired
neutrons in 2%-131Xe, one expects the 1— 13 projection of nucleon-
spin operators to dominate.

The differential cross section for elastic scattering is

do (v, Er) _, do(v,G?)
dEr ' dg?
2mr 1 1 5
= 5
47 v2 2]X+12]+IZ|M| (5)

spins

where the square of the Galilean invariant amplitude M is a prod-
uct of WIMP and nuclear matrix elements and is a function of ini-
tial WIMP velocity v (dimensionless, in units of c¢) and the three-
momentum transfer ¢ [15]. Here Jx is the WIMP spin and ] the
nuclear ground state angular momentum. In the long wavelength
limit the nuclear response functions corresponding to matrix el-
ements of simple operators familiar from weak interactions, such
as 1(i), o (i), Z(i), and & (i) ~£7(i). The differential event rate with
respect to nuclear recoil energy is

dR  py [do(v,Eg)

— =2 v)d® 6
T dEx vf(wdsv, (6)

where the f(V) is the normalized velocity distribution of the
WIMP particles. We calculate WIMP signal rates by evaluating
Eq. (6) for a local WIMP mass density of p, = 0.3 GeV/c?/cm?,
assuming a Maxwellian WIMP velocity distribution peaked at v =
220 km/s and truncated at the galactic escape velocity Vesc =
544 km/s.

The nuclear response functions for DM elastic scattering must
be calculated before experimental limits can be converted to
bounds on the operator coefficients of Eq. (4). For each contribut-
ing Xe isotope and needed operator, we performed full-basis shell-
model calculations using the GCN5082 [22] interaction (so named
because the SM valence space resides between the shell closures at
nucleon numbers 50 and 82). The calculations were done without
truncation, using the SM code BIGSTICK to treat bases that ranged
to 9 billion Slater determinants [23]. Full GCN5082 Xe isotopes re-
sponse functions are used in the Mathematica script of [24], an
update of [15]. This script and the associated library of one-body
nuclear density matrices are available on request from the authors
of [24]. The scripts of [24] and [15] were carefully cross-checked
against one another, to verify their consistency.

Fig. 1 shows computed recoil energy spectra. The upper panels
include the coherent isoscalar (N+Z) and isovector (N-Z) SI re-
sponses (operator Lisnt), which we show for normalization. Though
we used SM results, simple phenomenological forms [25] also
work well, below the diffraction minimum, as the form factor is
governed by its known g = 0 value and the nuclear radius.

The remaining curves corresponding to interactions with nu-
cleon spin (llzm), WIMP spin (£11n3t), or both (Lilr'ft), at two WIMP
masses. All curves correspond to weak-scale interactions: with
df’ =dl =1 (d,‘}j = —d} = 1) for isoscalar (isovector) coupling. The
lower panels show the corresponding results for the magnetic and
electric dipole moment interactions, £ , £19, and £]7.

The WIMP couplings d; are constrained by PandaX-II rate limits.
We use data from two low-background physics runs with a total
exposure of 54-ton-days, Run 9 with 79.6 live days in 2016 and
Run 10 with 77.1 live days in 2017. Calibration data from an AmBe
source outside the cryogenic vessel and tritium decays from CH3T
injected into the Xe provided tests of the detector response to the
nuclear (NR) and electron (ER) recoil events, respectively [6]. A
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Fig. 1. Recoil energy spectra for the scattering of spin—% WIMPs on xenon nuclei,
for WIMP masses of 40 GeV/c? and 400 GeV/c?, and unit isoscalar (d° =1, d! =0)
and isovector (d? =0, d,-1 = 1) coupling. Top panel: dimension-four V-A interactions.
Bottom panel: higher dimension magnetic and electric dipole interactions.

NEST-based Monte Carlo (MC) simulation (Ref. [26] for ER, Ref. [27]
for NR) of the data in the (S1, S2) distribution is optimized by
adjusting the initial excitation-to-ionization ratio and the recom-
bination fluctuation. A reliable tuned NEST model for PandaX-II is
obtained for S1 up to 50 photoelectrons (PEs). The S1 and S2 sig-
nal distributions for a given EFT interaction are simulated using the
tuned NEST model and PandaX-II detector response parameters [6].

Our event selection criteria follow Ref. [6]: ST from 3 to 45 PEs,
S2 from 100 (raw, not corrected for electron lifetime) to 10000 PEs,
events lying within the 99.99% NR acceptance, and the total fidu-
cial target of 329 4 16 kg. The backgrounds in Run 9 and Run 10,
estimated in Ref. [6], are dominated by '2’Xe, tritium, other flat
ER background (8°Kr, radon and detector gamma background), ac-
cidental, and neutron contributions.

This search window can include nuclear recoil event energies
up to 100 keVy; (NR energy) due to the smearing of S1 and S2,
although the efficiency drops below 50% above 35 keVy on av-
erage. For dimension-four operators, the majority of signal events
have nuclear recoil energy below 35 keVy;. The overall signal se-
lection efficiency is between 40% and 50%, very similar to that for
the SI analysis in Ref. [6]. For dimension-five or dimension-six op-
erators, the analysis is more complicated due to the sharper form
factor momentum dependence. For instance, the signal efficiency
for the isovector E?m operator decreases from 65% to 6.5% as the
WIMP mass increases from 40 to 400 GeV. Thus efficiencies can be
improved by adjusting search windows according to operator type
and WIMP mass, as LUX has described [28]. Such strategies will
be explored in future PandaX analyses: detector calibration stud-
ies for S1 above 50 PE will be needed to implement such window
adjustments.

We constrain the WIMP-nucleon EFT couplings d; as a function
of the WIMP mass, following the likelihood analysis of Ref. [6]. A
standard profile likelihood test statistic was determined as a func-
tion of WIMP mass and cross section, and compared with that
from a large number of toy MC calculations to derive the upper
limits of the signal yields at 90% confidence level (C.L.) [29,30].
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Fig. 2. Exclusion limits on the coefficients of dimension-four (top panel) and higher
dimension (bottom panel) operators.

The upper panel of Fig. 2 gives PandaX-Il bounds on the co-
herent SI interaction £ as well as the spin-spin interaction £13,
related to the traditional SD interaction discussed below. They are
well below the nominal weak scale d ~ 1 over all or almost all
WIMP mass range illustrated. The isoscalar coupling limit |dg| <
5.6-107° at maximum sensitivity (~ 40 GeV WIMP) corresponds

to the PandaX-Il cross section bound o', < 8.6-10~*" cm?. But

limits on the axial (WIMP) - vector (nucleus) coupling d?’; are
also at the weak scale, illustrating the power of current-generation
experiments to probe momentum- or velocity-dependent interac-
tions. The lower panel gives the corresponding bounds for inter-
action involving WIMP magnetic and electric dipole moments. The
bounds are near and in one case (the WIMP electric dipole mo-
ment coupling to the nucleon vector current £i1n7t) below the nom-
inal weak scale. Bounds given in the lower panel also include an
implicit dimensionless factor representing any needed rescaling of
the WIMP moments to their physical values, relative to the nucleon
scale we adopted via my; ~ my.

An often-used measure of experimental sensitivity to spin-
dependent WIMP scattering is provided by the SD axial nucleon-
level operator obtained from Eq. (1),

_ 8@, mngr(@®)
~ ga(0) 2g4(0)

with the specific combination of nucleon-level axial and induced
pseudoscalar operators dependent on isospin through the Cé‘“‘.
The pseudoscalar coupling is enhanced in the isovector channel by
pion-pole dominance. Comparisons are typically made by selecting

Osp Os (7)
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Fig. 3. Recoil energy spectra for the scattering of spin—% WIMPs on xenon nuclei,
for WIMP masses of 40 GeV/c? and 400 GeV/c?, for SD and tensor interactions.
The top (bottom) panel corresponds to neutron-only (proton-only) coupling.

proton-only (p) or neutron-only (n) couplings. The nuclear cross

section 0,04 is related to the nucleon cross section o5 by
47 WA 2
SDA, 2 A (.2\-SD
o = — S o 8
pn (@ 32J+1) (up,n> pn @)% (®)

where (14 ((p,n) is the reduced mass for scattering off the nucleus
(nucleon), and S{,"n(qz) is the nuclear spin structure function that
we take from [3], including exchange current corrections. Fig. 3
shows recoil spectra for the SD and tensor cross sections.

The 90% C.L. cross section limits are shown in Fig. 4. The
optimal bounds, obtained at Mwmp ~ 40 GeV/c?, limit oSP

(neutron-only) and o, (proton-only) to 1.6 x 10~*! cm? and

4.4 x 10740 cm?, respectively. The results modestly improve ex-
isting LUX bounds [4] for Mwmp > 40 GeV/c?.

Models of asymmetric dark matter favor Dirac fermion WIMPs,
where candidate dimension-4 effective operators include the SD
and tensor Yo,y X qo*Vq operators. Constraints from direct de-
tection are particularly competitive for the latter [38]. The tensor
interaction generates, after a leading-order chiral reduction [21],
the nucleon-level operator 84. The dashed curve in the top panel
of Fig. 4 shows the neutron-only PandaX-II limits. Bounds on onT
and o] of 9.0 x 107** cm? and 2.2 x 10738 cm?, respectively, are
found at Mwvp ~ 40 GeV.

In conclusion, we have presented new limits on a candi-
date spin-dependent WIMP interactions, using PandaX-Il Run 9
and Run 10 data with an exposure of 54-ton-days. In addition
to the standard SD interaction, we considered vector-axial vec-
tor interferences, interactions generated by WIMP magnetic and
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Fig. 4. PandaX-II exclusion limits on the WIMP-nucleon cross section for the stan-
dard SD interaction assuming neutron-only (top panel) and proton-only (bottom
panel) coupling. The 1o sensitivity bands are shown in green. Also shown are
recent results from LUX [5], XENON100 [9], ATLAS [31], CMS [32], PICO-2L [33],
PICO-60 [34,35], IceCube [36] and Super-K [37]. The dashed line (top panel) gives
PandaX-II limits on tensor WIMP-neutron couplings.

electric dipole moments, and tensor interactions. We showed
that PandaX-II has achieved sufficient sensitivity to probe cer-
tain velocity- and momentum-dependent interactions at the weak
scale. We obtained the most stringent upper limits to date on
o P for Mwvp above 40 GeV/c?, with a lowest excluded value
of 1.6 x 107#Icm? at 40 GeV/c?, 90% c.l. The corresponding pro-
ton and tensor interaction constraints are o,° < 4.4 x 10740 cm?,

o4 <9.0x 107* cm?, and 0, <2.2 x 10738 cm?,
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