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ABSTRACT 

 Phonons in graphitic materials exhibit strong normal scattering (N-scattering) compared to 

umklapp scattering (U-scattering). The strong N-scattering cause collective phonon flow, unlike 

the relatively common cases where U-scattering is dominant. If graphitic materials have finite size 

and contact with hot and cold reservoirs emitting phonons with non-collective distribution, N-

scattering change the non-collective phonon flow to the collective phonon flow near the interface 

between graphitic material and a heat reservoir. We study the thermal resistance by N-scattering 

during the transition between non-collective and collective phonon flows. Our Monte Carlo 

solution of Peierls-Boltzmann transport equation shows that the N-scattering in graphitic materials 

reduce heat flux from the ballistic case by around 15%, 30%, and 40% at 100, 200, and 300 K, 

respectively. This is significantly larger than ~ 5% reduction of Debye crystal with similar Debye 

temperature (~ 2300 K). We associate the large reduction of heat flux by N-scattering with the 

non-linear dispersion and multiple phonon branches with different group velocities of graphitic 

materials. 

 

  



I. Introduction 

 Phonon transport in crystalline materials has been often discussed between ballistic and 

diffusive limits depending on sample size. The ballistic regime occurs when sample size is much 

smaller than the mean free path of internal phonon scattering such that the internal phonon 

scattering can be ignored. The diffusive regime occurs when umklapp scattering (U-scattering), 

which do not conserve phonon crystal momentum, is the most dominant scattering mechanism. 

For the diffusive regime, sample size should be larger than the mean free paths (MFPs) of U-

scattering. There is another regime of phonon transport, called hydrodynamic regime, which rarely 

occur compared to the ballistic and diffusive regimes. The hydrodynamic phonon transport occurs 

when most internal phonon scattering processes are a momentum conserving type (i.e., normal 

scattering and hereafter N-scattering) and thus do not directly cause thermal resistance. The 

hydrodynamic regime was predicted and experimentally observed several decades ago [1-4]. 

The hydrodynamic regime recently received a renewed attention after first-principles-

based calculations predicted its significance in graphitic materials including graphene [5, 6], single 

wall carbon nanotubes (SWCNTs) [7], and graphite [8]. These graphitic materials commonly share 

flexural phonon modes and large Debye temperature, both of which together lead to the significant 

hydrodynamic phonon transport [5]. The first-principles-based calculations show that the MFPs of 

N-scattering are several orders of magnitude smaller than those of U-scattering and thus N-

scattering is the dominant scattering mechanism [9]. 

The N-scattering does not directly cause thermal resistance because of its momentum 

conserving nature. In particular, when N-scattering is the only scattering mechanism and a sample 

is infinitely large, N-scattering does not cause any thermal resistance. After the sufficient number 

of N-scattering events, phonon system has the displaced Bose-Einstein distribution defined as 

    (1) 

where  and  are a phonon wavevector and a displacement (or drift velocity). Once the 

displaced Bose-Einstein distribution is established, N-scattering does not further alter the phonon 

distribution and thus does not cause any thermal resistance. The phonons with the displaced 

distribution function can continue to flow even without any temperature gradient, resulting in the 

infinite thermal conductivity [10]. 
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The N-scattering, however, affects thermal resistance in more realistic cases where the U-

scattering exist or sample size is finite. When both N- and U-scattering exist and a sample is still 

infinitely large, N-scattering, combined with U-scattering, can cause thermal resistance. Phonon 

states with a small wavevector usually have very weak U-scattering, but N-scattering can bring the 

energy in the small wavevector states to large wavevector states where U-scattering is relatively 

strong. Thus, the N-scattering combined with U-scattering cause thermal resistance. However, if 

sample size is finite and smaller than the mean free path of U-scattering, diffuse boundary 

scattering plays a more important role for thermal resistance than U-scattering. Particularly when 

a sample has infinite length but finite width and phonon flows along the length direction, a major 

resistance mechanism is phonon viscous damping similar to the molecular Poiseuille flow case. In 

such a case, stronger N-scattering leads to less phonon viscosity and smaller thermal resistance. 

This leads to the thermal conductivity values that increase superlinearly with width and increase 

faster than the ballistic conductance with temperature [11, 12] which was used to experimentally 

verify the phonon Poiseuille flow [3]. 

Our study focuses on another case where a sample has finite length but infinite width and 

N-scattering is much stronger than U-scattering. This case is relevant to practical applications 

where thin-film of ultrahigh thermal conductivity materials are used for thermal management. If 

the sample thickness lies in the gap between the MFPs of N- and U-scatterings, actual phonon 

transport can be roughly approximated as the N-scattering only case. For the sake of simplicity, 

here we assume that our sample is placed between two black bodies that emit phonons with a 

stationary Bose-Einstein distribution (i.e., the Bose-Einstein distribution with zero drift velocity) 

and do not reflect incoming phonons. The emitted phonons would experience N-scattering and 

their distribution accordingly changes from the stationary Bose-Einstein distribution (i.e., non-

collective phonon flow) to the displaced Bose-Einstein distribution (i.e., collective phonon flow). 

After the displaced Bose-Einstein distribution is established, the N-scattering does not further alter 

the distribution function and thus does not cause thermal resistance like the aforementioned case 

of the infinite thermal conductivity [13]. However, thermal resistance can occur during the 

transition between non-collective and collective flows near the boundaries. 

In this paper, we solve the Peierls-Boltzmann transport equation (PBE) using a Monte 

Carlo (MC) method to calculate the thermal resistance during the non-collective to collective 

transition of phonon flow by N-scattering in graphitic materials including (10,10) SWCNT, (20,20) 



SWCNT, graphene, and graphite. The thermal resistance of graphitic materials is compared to that 

of a Debye crystal with similar Debye temperature (2300 K). 

  



II. Methods and Approaches 

 The transition from non-collective to collective phonon flows can be correctly captured 

only when the PBE is solved in both real and reciprocal spaces. The PBE for a finite size sample 

has been often solved in a reciprocal space only [9, 14, 15]  for calculating thermal conductivity 

values. In this case, the distribution function in a real space is assumed to follow the stationary 

Bose-Einstein distribution with a constant temperature gradient. The finite sample size effect was 

considered with a simple expression of boundary scattering rate, , where  is 

the boundary scattering rate of phonon state i and  is the characteristic size of sample. This 

simple approach works well for the cases where sample is much larger than the relaxation length 

of heat flux (e.g., MFPs of U-scattering) so that the distribution function can be safely assumed to 

be homogeneous in a real space. In our case, however, the spatially homogeneous distribution 

function cannot be assumed because the transition between non-collective and collective phonon 

flows occur near boundaries and the phonon distribution function accordingly changes in a real 

space. 

We solve the following energy-based PBE in both real and reciprocal spaces by employing 

a deviational MC method [16]:  

     (2) 

where  is a deviational distribution function defined as the difference between an actual phonon 

distribution ( ) and the stationary Bose-Einstein distribution ( ) at a global equilibrium 

temperature ( ): 

      (3) 

Hereafter  represents  unless temperature is specified. The sample and boundary 

conditions are schematically shown in Fig. 1. The energy-based PBE is chosen over the regular 

PBE because the energy conservation can be strictly satisfied during scattering processes in the 

energy-based PBE. In our MC simulation, all sample particles (hereafter particles) are set to carry 

either positive or negative unit energy. A positive particle which carries a positive unit energy 

contributes to the positive . A negative particle which carries a negative unit energy 

τ B,i = L 2 v i( )−1 B,it

L

( ) ( )d
d

scatt

i i
i i i

d f
f

dt
w

w
æ ö
ç ÷×Ñ =
ç ÷
è ø

v

d
if

if
0

if

0T

d 0
0( )i i if f f T= -

0
if

0
0( )if T

d
i ifw



contributes to the negative . Therefore, by simply conserving the net number of particles 

during scattering, the total energy conservation is strictly satisfied. The MC simulation consists of 

two steps during a given time step: advection and scattering. The advection step allows particles 

to fly with their group velocities for a given amount of time duration. The scattering step 

stochastically determines the occurrence of scattering. 

 

 

 
 

Fig. 1. A schematic of a sample with boundary conditions. The superscripts + and – represent 

positive and negative group velocities along the x-direction. 

 

 

 We use two different scattering models in our study; one is the Callaway’s scattering model 

with a constant scattering rate and the other is full three-phonon scattering matrix from ab initio 

calculation. The Callaway’s scattering model was chosen to study the effects of phonon dispersion 

on the thermal resistance for various graphitic materials since the thermal resistance in our case 

depends on the phonon dispersion as will be shown later. To our best knowledge, there is no 

previous study using the MC method to solve the PBE with the Callaway’s scattering model and 

here we briefly introduce our MC method for this scattering model. The details of MC method 

employing full scattering matrix can be found somewhere else [12, 17]. 

The energy-based PBE employing the Callaway’s scattering model with N-scattering is 

      (4) 
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where  is the rate of N-scattering, which is assumed a constant for all phonon modes in this 

study. The  is the deviation of the displaced Bose-Einstein distribution from the stationary 

Bose-Einstein distribution at the global equilibrium temperature: 

    (5) 

where  and  are local equilibrium temperature and displacement at position x, 

respectively. For general cases where both N- and U-scattering exist, the algorithm presented here 

for N-scattering only case can be easily combined with that of U-scattering case from the literature 

[18, 19]. Assuming the small deviation from the equilibrium distribution, i.e.,  and 

, the displaced Bose-Einstein distribution can be linearized and the Eq. (4) can be 

expressed as 

    (6) 

where  

     (7) 

     (8) 

The  is an even function with respect to  representing the deviation of local energy 

density from the global equilibrium case. The  is an odd function with respect to  

and associated with a net energy flow. 

As the Callaway’s scattering model requires a local equilibrium temperature and a local 

displacement, we divide the real space domain into many small control volumes. Within each 

control volume, temperature and displacement are assumed to be spatially homogeneous. All 

scattering processes should be simulated such that total energy and momentum are conserved 

within a control volume. Below we present the MC algorithm for the Callaway’s scattering model.   

i) The scattering of each particle is determined by comparing a random number between 0 

and 1 to the probability of scattering, , where  is a given duration of a 

time step. If the random number is smaller than the probability of scattering, a particle is 
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determined to be scattered and removed. The total energy and x-direction momentum that the 

scattered particles carry are counted for enforcing energy and momentum conservation later.  

ii) After the occurrence of scattering for all particles in a control volume is determined, 

new particles are generated according to the local equilibrium distribution function, 

. For the even part of local equilibrium distribution, , 

particles are drawn with the normalized distribution, . The 

number of particles and their sign of energy are determined such that the total energy of 

generated particles is the same as that of scattered particles. For the odd part of local 

equilibrium distribution, ,  we generate pairs of particles consisting of a positive and 

a negative energy particles. The positive particle is drawn from  with the normalized 

distribution, . The negative particle is drawn from 

 with the same normalized distribution. More pairs are generated until the total 

momentum of generated particles equals to that of scattered particles. Each pair’s net energy 

is zero and thus generating pairs do not affect the local energy density. 

 The developed MC code with the Callaway’s scattering model was validated against the 

previously reported semi-analytic solutions of the PBE in a wide range of Knudsen number [20, 

21]. The semi-analytic solution assumes a sample with infinite length but finite width. In Fig. 2, 

we show the comparison between our MC result and the semi-analytic solution of the PBE with 

the Callaway’s scattering model when there is no U-scattering [21]. Our MC solution shows a 

good agreement with the semi-analytic solution, verifying our MC method and code in a wide 

range of Knudsen number. Both MC and semi-analytic solutions show the superlinear dependence 

of thermal conductivity with width, which is a feature of the phonon Poiseuille flow [11, 12]. For 

a sample with finite length and infinite width, our MC results also agree well with the data from a 

previous work based on the semi-analytic solution of PBE [22] as shown in the inset of Fig. 4(e).  

d,disp,even d,disp,odd
i i i if fw w+ d,disp,evenfw

2 0 0 2 0 0( 1) ( 1)i i i i i ii
f f f fw w+ +å

d,disp,oddfw

0xq >

0 0 0 0
, ,( 1) ( 1)i x i i i i x i i ii

q f f q f fw w+ +å
0xq <



 
Fig. 2. Comparison between Monte Carlo (MC) and Semi-Analytic (SA) solutions of the PBE [21]. 

The Debye model is used with a group velocity of 104 m/s and a Debye temperature of 1200 K. 

The N-scattering rate is fixed at 1010 s-1 for the MC and SA data. Temperature is assumed to be 

100 K. 

 

 The developed MC code is used with realistic phonon dispersions of SWCNTs, graphene, 

and graphite. The phonon dispersion of (10,10) and (20,20) SWCNTs are from a previous work 

using an optimized Tersoff potential [23]. For graphene and graphite, the phonon dispersion was 

calculated using the density functional theory calculation. The second order force constants were 

calculated using the Vienna Ab initio Simulation Package (VASP) [24] with the projector-

augmented-wave pseudopotentials [25] and local density approximation for exchange-correlation 

energy functional [26]. For graphite, the van der Waals interaction is included with a non-local 

correlation functional, optB88-vdW. Then the phonon dispersion was calculated the PHONOPY 

package [27]. 
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III. Results and Discussion 

III.1. SWCNTs, graphene, and graphite with a constant N-scattering rate 

 In Fig. 3, we present the distribution of temperature and drift velocity in a (20,20) SWCNT 

at different Knudsen numbers. We assume the Callaway’s scattering model with a constant N-

scattering rate. The Knudsen number is defined as  where  is the largest group velocity 

of acoustic modes. In Fig. 3(a), near the hot reservoir boundary, the drift velocity increases while 

temperature decreases, indicating that the phonons form the collective flow through N-scattering 

processes with the expense of a temperature drop. For larger sample length shown in Fig. 3(b) and 

(c), the drift velocity and temperature are further changed as a distance from the boundary increases, 

but become constants when the distance is around 3 µm, which is comparable to the MFP. This is 

because the phonon distribution at 3 µm becomes the same as the displaced distribution function. 

After the displaced distribution function is established, N-scattering does not further change the 

distribution function. As a result, the phonons can continue to flow even without a temperature 

drop, causing the infinite local thermal conductivity Peierls suggested. A similar behavior was 

reported using the first-order solution of PBE [13] and using the semi-analytic solution of PBE for 

Debye model [22]. The distribution and temperature change once again near the cold reservoir 

boundary because of the interaction with phonons emitted from the cold boundary with a non-

collective distribution. 

 

N Lt v v



 
Fig. 3. The profile of temperature and drift velocity along (20,20) SWCNT with length of (a) 2 

µm, (b) 20 µm, and (c) 200 µm, which represent the Knudsen number of 1.0, 0.1, and 0.01, 

respectively. The left y-axis is the deviational temperature defined as   where  is 300 

K. The deviational temperatures of hot and cold reservoirs are 0.001 and -0.001 K, respectively. 

The right y-axis is the drift velocity. 

 

 The transition between collective and non-collective phonon flows cause thermal 

resistance as we can see the temperature drop near the boundaries in Fig. 3. The thermal resistance 

due to this transition is shown in Fig. 4. The y-axis is the ratio between the heat flux under N-

0( )T x T- 0T



scattering (  ) and the heat flux of purely ballistic case ( ). The ratio, / , measures the 

resistance caused by N-scattering. For all graphitic materials and Knudsen numbers, the heat flux 

 is smaller than , indicating that N-scattering causes thermal resistance even without U-

scattering. The heat flux  decreases with an increasing inverse of Knudsen number (i.e., length 

of a sample) until the inverse Knudsen number becomes around unity.  Then, the heat flux  

does not further decrease with the inverse Knudsen number. As discussed above, the thermal 

resistance occurs near the boundary within a distance comparable to MFP and the N-scattering 

occuring far from the boundaries do not contribute to thermal resistance. As a result, the thermal 

resistance in the ideal hydrodynamic regime where N-scattering is the only scattering mechanism 

exhibits a very different behavior from ballistic and diffusive regimes. The thermal resistance in 

ballistic regime is a constant regardless of length and that in diffusive regime linearly increases 

with sample length. The thermal resistance in hydrodynamic regime increase with length when the 

length is smaller than MFP of N-scattering and then does not further increase with length when 

the length is larger than MFP of N-scattering. 

We show the resistance by N-scattering for Debye model and graphitic materials in Fig. 4. 

While the  is around 95% of  for Debye model, which agree well with the semi-analytic 

solution reported in Ref. [22], the  is around 85%, 70%, and 60% of the ballistic heat flux  

at 100, 200, and 300 K, respectively, for graphitic materials. Therefore, even when N-scattering is 

the only internal scattering mechanism, it can cause significant thermal resistance near the 

boundary between a graphitic sample and a reservoir. It is also noteworthy that the ratio /  is 

a constant regardless of temperature for the Debye crystal but decreases with temperature for 

graphitic materials. 
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Fig. 4. Heat flux under N-scattering ( ) compared to the heat flux of purely ballistic case ( ) 

for (a-d) graphitic materials and (e) Debye model showing the reduction of heat flux due to N-

scattering. For (e), the Debye temperature is assumed as 2300 K similar to the graphitic materials. 

The inset of (e) shows a good agreement between our MC result and data from the literature based 

on the semi-analytic solution of PBE [22], verifying our MC method . 

 

 To explain the large thermal resistance by N-scattering in graphitic materials, we consider 

the entropy generation upon N-scattering. For the sake of simplicity, we ignore the spatial variation 

of . Instead, we simply assume a process where all phonon particles emitted from hot and cold 
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reservoirs experience N-scattering in the middle of sample. The rate of entropy generation due to 

scattering is [28] 

     (9) 

where  represents the deviation of distribution function from the stationary Bose-Einstein 

distribution, which is defined as 

      (10) 

Assuming the Callaway’s scattering model with a constant N-scattering rate, Eq. (9) can be written 

as 

     (11) 

The phonon distribution before scattering follows the stationary Bose-Einstein distribution of hot 

and cold reservoirs where the phonon particles are emitted from: 

  for      (12) 

  for      (13) 

Then, Eq. (11) can be written as 

        (14) 

where  is  and  is the drift velocity per temperature difference defined as 

      (15) 

The  can be derived from the momentum conservation as: 

      (16) 

The Eq. (14) confirms that the entropy generation (or thermal resistance) by N-scattering 

is determined by phonon dispersion if N-scattering is strong enough to establish the displaced 
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Bose-Einstein distribution. In Eq. (14), the term  is from the phonon distribution of emitted 

particles in Eqs. (12) and (13). This indicates that the temperature difference, , drives the 

phonon flow with the displacement of , which may vary depending on phonon modes. The N-

scattering change the displacement  to  which is a constant for all phonon modes. Then, the 

magnitude of entropy generation is proportional to the difference between  and . If  is a 

constant (e.g., a Debye phonon dispersion in 1D space),  is the same as  and the entropy 

generation should be zero which is the lower limit of entropy generation by the Boltzmann’s H-

theorem. We confirmed that /  is unity for this case using the MC simulation. However, if 

 largely varies with phonon states, the entropy generation can become large. For the Debye 

phonon dispersion in 2D and 3D materials,  varies with the phonon propagation direction, 

resulting in non-zero resistance upon N-scattering as shown in Fig. 4e.  The ratio /  for Debye 

model does not change with temperature as the variance of  is associated with the phonon 

propagation direction only. For graphitic materials,  varies more significantly compared to the 

Debye model due to the highly non-linear phonon dispersion and many phonon branches, causing 

the large thermal resistance upon N-scattering in Fig. 4a-d. Also, as temperature increases, the 

variance of  becomes larger as phonon states at a high frequency have much different group 

velocities from phonon states at a lower frequency, which result in larger resistance by N-scattering 

at higher temperature. 

 

III.2. Graphene using a full three-phonon scattering matrix 

 We have discussed the thermal resistance due to the transition between non-collective and 

collective phonon flows using the PBE with the Callaway’s scattering model assuming a constant 

N-scattering rate and no U-scattering. However, real graphitic materials have a wide range of 

MFPs of both N- and U-scattering processes. We use the MC solution of PBE with ab initio three-

phonon scattering matrix to discuss how much portion the hydrodynamic thermal resistance near 

the boundaries contribute to the total resistance. 
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 In Fig. 5, we compare the ratio of  and  in suspended graphene. We particularly 

compare the ratios  and . The former is the ratio when both N- and U-

scatterings are included and the latter is the ratio when U-scattering is removed and N-scattering 

is the only internal scattering mechanism. The difference between  and 

gives a rough estimate of how much N-scattering contritube to the total resistance. At 100 K in 

Fig. 5a, when length is below 10 µm,  and  are almost identical, reaching 0.8 

at the length of 10 µm. Therefore, for the length below 10 µm at 100 K, N-scttering near the 

boundaries can reduce the heat flux (or thermal conductivity) from the ballistic case by 20 %. 

When length is above 10 µm,  sharply decrease with length due to U-scattering while 

 remains the same. It is noteworthy that the converged value of , which is 

around 0.8, agree well with /  from a simple scattering model in Fig. 4c. This confirms that 

the hydrodynamic resistance near the boundaries is determined by the shape of phonon dispersion 

not actual N-scattering rate, if the sample length is larger than the MFP of N-scattering. 

At 300 K in Fig. 5b, although U-scattering rate is increased from 100 K case, the thermal 

resistance by N-scattering still contributes a significant portion to total resistance for length smaller 

than 1 µm. The  decrease with sample length and reach around 0.5 when the length is 1 

µm, meaning that the heat flux (or conductivity) is reduced by 50 % from the ballistic case by N-

scattering. The  converging to 0.5 at 300 K agrees well with the result from the simple 

scattering model shown in Fig. 4c. However, when sample length is longer than 1 µm, U-scattering 

significantly reduce the heat flux and the thermal resistance by N-scattering is relatively not 

important. 

It is noteworthy that a recent study on four-phonon scattering suggests that the four-phonon 

scattering plays an important role in suspended graphene with N-scattering being much stronger 

than U-scattering like three-phonon scattering [29]. Thus, we expect that the hydrodynamic regime 

is still significant even with four-phonon scattering. The inclusion of four-phonon scattering would 

not change the converged value of , because this ratio is determined by the phonon 

dispersion not by scattering rates as long as the sample is longer than the MFP of N-scattering. 
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However, the length at which  is converged will be reduced, as the inclusion of four-

phonon scattering will reduce the MFP of N-scattering. 

 

 
Fig. 5. Heat flux under N-scattering ( ) compared to the heat flux of purely ballistic case ( ) 

in graphene from the PBE with a full three-phonon scattering matrix. The solid line represents N-

scattering only case where U-scattering is removed and the dashed line represents for both N- and 

U-scattering processes. 
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IV. Conclusion 

 We have showed that large thermal resistance can be caused by N-scattering even without 

U-scattering in graphitic materials with finite length. The thermal resistance by N-scattering in 

finite length sample occurs when non-collective flow of phonons emitted from a heat reservoir is 

changed to collective flow by N-scattering. Assuming that the sample length is larger than MFP 

of N-scattering, the resistance due to N-scattering is determined by the shape of phonon dispersion, 

i.e., the variance of . This is because the finite temperature difference of heat reservoirs 

drive phonon flow with a displacement of  while N-scattering relax this displacement to 

 which is a constant for all phonon modes. Therefore, the entropy generation upon N-scattering 

is proportional to the difference of  and . The N-scattering do not cause any resistance 

for 1D Debye model where  is a constant. However, for graphitic materials,  

significantly vary with phonon states due to many branches and highly non-linear phonon 

dispersion, resulting in the large resistance when non-collective phonon flow becomes the 

collective phonon flow upon N-scattering. We show that the heat flux or conductivity is reduced 

by around 15%, 30%, and 40% from ballistic case at 100, 200, and 300 K, respectively, in graphitic 

materials. High thermal conductivity materials often show strong N-scattering compared to U-

scattering. Our observation shows that the shape of phonon dispersion can be one important 

parameter for developing high thermal conductivity materials particularly when the material is 

used as a thin-film where heat flows along the cross-plane direction. 
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