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ABSTRACT
Clinical trials are crucial for the advancement of treatment and
knowledge within the medical community. Since 2007, US federal
government took the initiative and requires organizations sponsoring
clinical trials with at least one site in the United States to submit
information on these clinical trials to the ClinicalTrials.gov database,
resulting in a rich source of information for clinical trial research.
Nevertheless, only a handful of analytic studies have been carried
out to understand this valuable data source. In this study, we propose
to use network analysis to understand infectious disease clinical
trial research. Our goal is to answer two important questions: (1)
what are the concentrations and characteristics of infectious disease
clinical trail research? and (2) how to accurately predict what type
of clinical trials a sponsor (or an investigator) is interested in? The
answers to the first question provide effective ways to summarize
clinical trial research related to particular disease(s), and the answers
to the second question help match clinical trial sponsors and inves-
tigators for information recommendation. By using 4,228 clinical
trails as the test bed, our study involves 4,864 sponsors and 1,879
research areas characterized by Medical Subject Heading (MeSH)
keywords. We extract a set of network measures to show patterns of
infectious disease clinical trials, and design a new community based
link prediction approach to predict sponsors’ interests, with signifi-
cant improvement compared to baselines. This trans-formative study
concludes that using network analysis can tremendously help the
understanding of clinical trial research for effective summarization,
characterization, and prediction.
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1 INTRODUCTION
Clinical trials carry out tests on human participants w.r.t. different
interventions, including new medications or treatment, in order to
understand and answer meaningful clinical questions [1]. These
studies, usually made through joint efforts between pharmaceutical
companies and research institutions, are critical for discovering new
treatments that are potentially more effective than current solutions
to diagnose, treat, and reduce the risk of disease.

Publicly available information of clinical trial studies is valuable
for researchers, because it helps them understand what is effective
in treatment and what is not. Such studies are also helpful for re-
searchers and doctors to decide if the side effects of a new treatment
are acceptable when weighed against the benefits offered by the new
treatment [2]. Efforts to regulate documentation on clinical trials
help circulate pertinent results among the research community to
stimulate further advances in a quicker period of time.

Despite of the vital importance, for years, obtaining clinical trial
documentations is a daunting task. Prior to 2007, only the publication
results from FDA-approved drugs were mandated in the U.S. In fact,
research from that time period had shown that unsuccessful clinical
trials were far less likely to be published [3]. This negatively impacts
the research community because new research groups would not
know that a particular clinical trial had already been executed and
that the results were unsuccessful, thus costing time and money.
As such, a mandated singular repository for such trials is extremely
beneficial, because it is a useful resource for researchers to learn from
a singular pool of documented successes and unsuccessful ventures
for clinical trials [4], and it also helps researchers understand the
current state of the pharmaceutical sector [5].

1.1 ClinicalTrials.gov Initiative
In 2007, the U.S. Federal Government took the initiative and issued
regulations surrounding clinical trials being conducted in the U.S.
and other clinical trials under the command of U.S. Food and Drug
Administration (FDA). These newly mandated regulations required
the submission of new clinical trial information to an already existing
database: ClinicalTrials.gov. Since 2007, the mandated regulation
initiative requires organizations sponsoring clinical trials with at least
one site in the United States to submit information on these clinical
trials to the ClinicalTrials.gov database. The number of registered
studies since the mandate in 2007 has increased by 256,123 (from
a 12 year time gap, that is approximately 21,000 registered per
year on average). Prior to the mandate, from 2000 to 2007, the
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difference of registered clinical trials was 46,174. Even though this
is a seven year time gap, only approximately 6,500 were registered
per year on average. The difference between the two time periods
is evident. ClinicalTrials.gov currently lists 304,654 studies since
May 2019 with locations in all 50 states and in 208 countries [4].
Even though ClinicalTrials.gov is an abundant source of clinical
trial study with longest history and largest complete data [5], it is,
unfortunately, an underutilized information source for health industry
and life science research [3], considering the rapid growth of the
field and a rather limited number of studies being made based on
CLinicalTraisl.gov reports. The amount of registered clinical trials in
the U.S. is exponentially increasing, and according to a recent report
by Grand View Research, global clinical trial market is expected to
reach 65.2 billion dollars by 2025 [6]. The global clinical trial market
is expected to grow at a compound annual growth rate of over 5.5%
from 2017 to 2025. North America was found to dominate the overall
market in terms of revenue sharing in 2015 attributed from increased
research and development in the region as well as the presence of
big outsourcing firms. More interestingly, the growing prevalence
of disease and incidence of new disease is expected to give further
boost to the clinical trial market. Such a growing trend naturally
raises questions on how to better analyze and utilize existing clinical
reports to benefit industry, academia, and individuals [7].

1.2 Network Analysis of Clinical Trial Study
Although clinical trial reports provide rich information for analy-
sis, health and biomedical research are known to contain complex
objects and relationships. Since 2007, researchers have already be-
gun to conduct investigations in to understanding trends in clinical
research by utilizing ClinicalTrials.gov database. Through under-
standing clinical trial distribution by medical condition, it is possible
to anticipate future important medical developments and find where
the innovation maybe first adopted [3]. Despite of rather limited
research efforts, the rapid growth of clinical trial studies results in
many new medical conditions, new medical issues, and diseases
appearing over time. Determining the relationship and expected pro-
jection of the trend of clinical trials is difficult when there are a
large variables from different sub-domains. In this paper, we will
use network analysis to investigate distributions, correlation, and
predicted connections of infectious disease related clinical reports in
relationship to sponsors/investigators.

Network analytics are commonly used to understand structure,
development, and relationships of complex systems. Such analysis
provides valuable information about the systems, such as link predic-
tion, correlation, or degree distribution [8]. For example, a network
based analysis has been used to study long-term collaboration in
pharmaceutical industry [5].

Different from existing research, in this paper, we propose to use
bipartite network [8] to represent clinical trial research entities and
analyze their relationships. We will create networks to represent in-
fectious disease clinical trials, and understand characteristics of such
networks, including most commonly studied areas and community
structures of infectious disease clinical trials. After that, we will
propose a community based link prediction (CLP) to predict links
for information recommendation.

2 RELATED WORK
There has been work already done on network robustness an devel-
oping local and global clustering coefficients in respect to two-mode
networks. Two-mode networks are also known as affiliation or bi-
partite networks. Robustness is defined as the ability of a network to
continue performing well when it is subject to failures or attacks [9].
Traditionally, to analyze a two-mode network, they are converted
in to a one- mode network, however, in doing so, a lot of structural
information could be lost that is pertinent. A paper by Opshal [10],
proposed a redefined global clustering coefficient defined by a four
path. It was noted that the proposed global clustering coefficient did
have a limitations in that the primary node mus be the first and last
node of the 4-path. For our purposes this was not an issue.

Other work has been done in determining network structure and
distance in bipartite graphs, such as the small world study. In the
paper by Robins, they compared empirical bipartite graphs to stimu-
lated random graph distributions. The bipartite graph is examined
directly as the previous study did, as opposed to converting the graph
into two 1-mode graphs. This paper introduced the reinforcement
coefficient to evaluate model robustness that measures for localized
bipartite cycles. They found that two networks may share many
similarities and some differences.

Both of the aforementioned papers did cover innovative network
analysis measures that were executed on different data sets for ex-
amination (they did not use CinicalTrial.gov). In the following sub-
sections, we review studies that have direct correlation to the data
set used in this study or similar data sets in structure (one data set
is sponsored by the World Health Organization (WHO) for interna-
tional clinical trials that is not enforced).

2.1 Data Analytics of Clinical Trial Reports
A handful of studies have been previously made to understand CLin-
icalTrails.gov database using data analytics [3, 7, 11]. One study
evaluates the wholeness and effectiveness of ClinicalTrials.gov data-
base, and overviews the importance of the source for describing
information about the landscape for clinical trials. This study found
that the mandated variables, labeled by the authors for examination
sake, are potentially valuable as a research source. In fact, the incom-
pleteness of the data was found to be less that 3%. Few databases
meet this level of completion. The participants are required to ensure
the data are correct in this database, which aids in the completeness
of that data, therefore proving its high quality and importance as a
research tool. Although this tool did not directly use any network
analytic to examine any behavioral patterns, they authors did use an
XML parser that compiled an SQL database with all current infor-
mation at the time, therefore analyzing the content and quality of
the data [3]. This study reaffirms the confidence in our choice for
database selection and its importance in the field for research and
general field evaluation.

Another study conducted in 2015 [11] also analyzes data in reg-
istered clinical trials, but uses an international database that is not
mandated. The database used is the International Clinical Trials
Registry Platform that is supported and created by the World Health
Organization (WHO) to monitor various countries in their pharma-
ceutical endeavours as well as the various global corporations and
sponsors. The goal of the study was to analysis the different trends
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in registered clinical trials over a span of nine years based on clini-
cal developments and their respective causes. The study found that
by analyzing the differences in those trends between countries and
regions, the increase in trial registration had different trajectories
in different parts of the world. This study, however, is partially in-
complete because their is no global coalescence nor local measures
to enforce the clinical trials to be reported to this database. This
study shows the dominance of the ClinicalTrials.gov database in
the quality of the data and completeness, thus yielding results that
would fairly project industry trends.

2.2 Network Analysis of Clinical Trial Reports
Network analysis has been previously used for disease-drug bipartite
network, which is close to what we will be studying [8]. In their
study, a link prediction method in the disease-drug bipartite network
is proposed. The method is called the internal links method with the
base being similarity based link prediction. The data was obtained
from www.drugs.com. The results showed that the proposed internal
link method had a good percentage of success than the other simi-
larity based link prediction methods [8]. In our research, we chose
to link prediction using collaborative based filtering based on the
community based structure.

A recent study conducted in 2018 [5] uses ClinicalTrials.gov data-
base to analyze long-term collaboration. The purpose was to test the
clinical trials information for observing the status of the collabora-
tion network and open innovation in the pharmaceutical industry.
The authors focused on a time period from 1980 to 2017 in incre-
ments of 10 years. The breakdown of the creative network was based
on types on agencies participating in the clinical trials in the collab-
oration network. The study showed several different understandings
of the relationships among the listed pharmaceutical companies,
research institutes, and universities, and their mechanisms. While
the number of clinical trials among agencies has stagnated since the
2000s, the number of collaborations continue to grow. The leading
entities in current clinical trials are different from the intermediators
establishing many partnerships on the clinical trial collaboration net-
work [5]. Even though this study did look at pharmaceutical agencies
an collaborating entities, it has not examined the behavior between
these entities and specific diseases being treated through clinical
trials. In fact, it is noted at the beginning of the paper that nor many
cases have analyzed the clinical trials database, even though it is the
information source with the widest coverage for the pharmaceutical
industry [5]. This study was published very recently, thus showing
the lack of research in this particular field and that there is much
room for further study.

3 DATA
In this study, we download 4,228 infectious disease clinical trial
reports from ClinicalTrials.gov database as our test bed. The down-
loaded reports include past, current, and future clinical trials during
1991-2023. An example of the report (encoded in XML format) is
shown in Figure 1.

Because the main goal of our research is to understand charac-
teristics of infectious disease clinical trials (e.g. what are the main
diseases studied in the clinical trials, who are interested in infec-
tious disease, and what are other areas they are interested in), we

extract investigators/sponsors and clinical trial areas from two XML
tags: (1) investigator information: ⟨overall_official⟩, and (2) area
of clinical trials: Medical subject headings (MeSH) ⟨mesh_term⟩).
An investigator is the individual (e.g. a physician or a researcher)
who submits and is in charge of the underlying clinical trial. Re-
search areas are Medical Subject Headings (MeSH) Terms which
roughly define the focused research topics the underlying clinical
trial. MeSH was created by the US National Library of Medicine
as a method to describe a wide variety of biomedical topics to prop-
erly index articles in MEDLINE [12]. In this study, the research
area was determined by intervention and condition MeSH words
from the file. A clinical trial report often contains one or multiple
sponsors/investigators, and multiple research areas.

Formally, we use s to denote a sponsor/investigator and use k to
denote a keyword of research area. Likewise, we use S to denote the
set of all sponsors, and K represents the set of all keywords (research
areas).

In this research, we collected 4,288 infection disease related
clinical trial reports, from which we extracted 4,864 investigators
(i.e. |S|=4,864) and 1,879 research areas (i.e. |K|=1,879).

Figure 1: An example of a clinical trial report encoded in XML
format. The file contains important information of the clinical
trial, such as project title, summary, investigators/sponsors car-
rying out the clinical trial, keywords etc. In this paper, we ex-
tract investigator information from the ⟨overall_official⟩, and
extract Medical subject headings (MeSH) ⟨mesh_term⟩ as the
area of the clinical trial research.

4 METHODS
In this section, we first introduce the bipartite network used to model
clinical trial sponsor-area relation. Then we propose to use commu-
nity detection to find group of investigators sharing similar research
topics. After that, we propose a community based link prediction
(CLP) to recommend research areas for investigators.

4.1 Bipartite Graph for Clinical Trial
Sponsor-Area Relationship Modeling

Because clinical trials involve complex sponsors and research area
relationships, e.g. a sponsor may be interested in multiple closely
related (or interdisciplinary) research areas and results from one
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Figure 2: An conceptual view of using bipartite graph for clinical trial sponsor-area relationship modeling. (a) shows a bipartite
network where upper pink squares denote sponsors and lower blue circles indicate research areas. A blue solid line denotes an edge,
indicating that a sponsor has conducted a clinical trial on the connected area. The brown dot-dash line separates the networks into
communities suggesting that sponsors and their research areas fall into two groups. The red-dash line (with a question mark) is the
predicted link, predicting that s2 is interested in k1 (although the connection currently does not exist); (b) shows the two-mode network
of the bipartite network in (a); (c) shows one-mode network which omits sponsor nodes in the bipartite graph. Two area nodes are
connected if they both connect to one sponsor node in the bipartite network in (a); and (d) shows examples of close 4-path (lower) and
open 4-path. A close 4-path in (d) is a circle in the one-mode network in (c).

research area may be beneficial to another areas, properly modele

sponsor-area relationship has immediate benefits to both researchers,

industry, and participants. Meanwhile, the nature of pair-wise spon-

sor and research area bound provides a bipartite relationship for

analysis. So we use bipartite network as the underlying data struc-

ture to support our analysis.

Formally, a bipartite network G = G(V,E,W) is a graph where

the node set, V, can be partitioned into two disjointed sets (V=V1∪

V2). No node belongs to both sets of G, (V1∩ V2). Edges, E connect

from one node set to the second node set (E ⊂ V1× V2). Sponsors

represent one set of nodes and research areas represent the second set

of nodes. An example bipartite network is shown in Figure 2(a). The

degree of a node, deg(v), is the number of edges incident to node v.

In an undirected bipartite graph, the deg(s) is the number of k nodes

that s is connected to and vice versa. In Figure 2(a), deg(s1)=3.

If a clinical trial had multiple sponsors, edges are created from

all investigators to research areas. The weight ω(e) of each edge

represents the number of times an investigator being connected to

a research area. In the case that an investigator name does not exist

in the clinical trial report, the trial’s sponsor was used instead. For

simplicity, we will refer to investigators and sponsors as sponsors.

To decrease the sparsity of the network, MeSH words that contain

a comma were separated into two research areas, e.g, "Influenza,

Human" was separated into "Influenza" and "Human."

To explore the bipartite network and determine the most popular

research areas, research area nodes degree and PageRank scores

are calculated. PageRank (rrr ) was calculated using the eigenvector

formulation.

rrr =MMMrrr (1)

WhereMMM is a transition matrix of the network, denoting 1

|Nout (j) |

if there is an edge between node j to node i, and 0 otherwise. PageR-

ank, rrr , corresponds to the principle eigenvector of MMM .

4.2 Clinical Trial Network Community Detection
Community detection aims to find connected groups of nodes within

a network. In Figure 2 (a) the dot dash line represents the split of

the bipartite network into two communities such that C1 contains

node set {s1, s2, s3, k1, k2, k3}. And C2 contains node set {s4,

s5, k4, k5, k6}. Network community detection was done using the

LPAwb+ algorithm created by Beckett. [13] Communities are found

by distinct modules that consists of a combination of two node types

in a weighted bipartite network. The algorithm computes modules

based on two stages. The first stage sets a label, дx , for each node

based on maximizing the modularity score for a weighted bipartite

network, QW , defined in Eq. (2) [13] [14].

QW = 1M
r∑

u=1

c∑
v=1

(W̃uv − Ẽuv )δ (д,hv ) (2)

= 1M
r∑

u=1

c∑
v=1

(
W̃uv −

yxzv
M

)
δ (д,hv )

Where д and h are node types, sponsors and research areas, дu
is a sponsor node and hv is a research area node. The Kronecker

delta function δ (дu ,hv ) equals one when nodes u and v are in the

same module, or community, or zero otherwise. Ẽ is a matrix of no

interactions between two nodes, W̃ is the weighted incidence matrix,

y is the incidence matrix row totals and z is the column totals. The

node’s label, дx , is found maximizing equation (3). In the first stage

sponsor nodes are updated using information from research area

nodes and research area nodes are updated using information from

sponsor nodes. Labels are updated until modularity score, QW , can

no longer increase [13]

дx =
( c∑
v=1

(W̃xv −
yxzv
M

)
)
δ (д,hv ) (3)

=
( c∑
v=1

(W̃xvδ (д,hv ) −
c∑

v=1

(W̃xv − (yxzvm)δ (д,hv )
)
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In the second stage, groups of communities are merged together.
Each module consists of nodes that share the same label. Commu-
nities are merged if merging increases network modularity. This is
repeated until it isn’t possible to increase network modularity by
merging any more communities [13]. Each community, Cc , contains
a distinct subset of s and k such that V = C1 ∩ C2.

Since Infectious Disease Clinical Trials cover many diverse re-
search areas, it is important to determine the robustness of com-
munities. Robustness can be defined as the ability of a network to
withstand failures [9]. The transitivity of social networks has widely
been studied [15] [10]. Transitivity can define connectivity in a net-
work by defining the number of connections between connected
nodes. It is measured by the fraction of connected triangles to the
number of connected triplets [15]. A triangle is where V 1 and V 2
are connected and are both connected to V 3. A connected triplet is
where V 1 is connected to V 2, and V 2 is connected to V 3 and there
is no connection between V 1 and V 3. To measure transitivity, the
clustering coefficient, Cc, is often used [15] [10]

Cc =
3 × (# of triangles)

# of connected triplets
(4)

This is frequently used in one-mode networks, an example of one-
mode network is shown in Figure 2(c). A high clustering coefficient
indicates high robustness. If a graph is completely connected, e.g,
all nodes connect to each other, Cc = 1. If the graph has no triangles,
Cc = 0.

However, the global clustering coefficient can’t be applied to
two-mode networks, such as a bipartite network (Figure 2(a)). By
definition in a two-mode network, nodes in set S only connect to
nodes in set K, thus a triangle will never form. [10] So to determine
robustness, we used two coefficients created for bipartite two-mode
networks. The first is a global coefficient, GCc, which measures the
number of closed 4-paths compared to the number of 4-paths. A path
is a sequence of connected distinct nodes. An open 4-path is one
where the first and last node do not connect. In Figure 2(d) (upper
panel) nodes {k1, s1, k3, s2, k4}are on an open 4-path. A closed
4-path (also called a 4-cycle) is a path where the first and last node
connect. In a bipartite graph, they are connected by a 5th node. In
Figure 2(d) (lower panel) nodes {k1, s1, k3, s2, k2}are on a closed
4-path, closed by s3. A 4-cycle is the smallest cycle possible in a
two-mode network. GCc=1 if all 4-paths in a bipartite network are
closed, and 0 if all 4-paths are open [10]

GCc =
# of closed 4-paths

# of 4-paths
(5)

The second measure was the reinforcement coefficient, RCc,
which measures the number of closed 3-paths compared to total
3-paths in the network. It’s considered reinforcement between two
sponsors rather than a measure of clustering between a group of spon-
sors. A high reinforcement coefficient indicates localized closeness
in a bipartite network [16]

RCc =
# of closed 3-paths

# of 3-paths
(6)

A community whose research areas only connect to one sponsor,
or multiple sponsors only connect to one research area would not
have a value for either GCc or RCc coefficient (an example is shown

in Figure 7). In this case, we consider this type of community as an
invalid community.

4.3 CLP: Community Based Link Prediction for
Clinical Trial Research Recommendation

In order to accurately recommend/predict research areas interesting
to a sponsor, we propose to use link prediction to find connections
between sponsor nodes s and research area node k that currently do
not exist. In Figure 2(a) the red dashed-line with a question mark is
a predicted link that suggests that node s2 is interested in node k1.

Link Prediction has been extensively studied in research and many
methods [17], such as similarity-based, supervised learning based,
or collaborative filtering based approach, have been used for link
prediction. In the following, we first discuss existing collaborative
filtering based link prediction, and then propose our community
based link prediction.

4.4 GLP: Global Link Prediction using
Collaborative Filtering

User-based collaborative filtering [18] is generally performed to
predict the votes of a usera on a particular itemj by comparing usera
to other users in the dataset (useri) who have a vote on itemj (vi, j ).
The vote for itemj by usera (Pa, j ) is determined by Eq. (7). In this
study we are predicting weight of linkage between a sponsor and
a research area. The highest predicted weight would indicate that
research area is interesting to the sponsor (e.g. the topic he/she may
be interested in pursuing in the future). For clinical trial bipartite
network, we treat users as sponsor nodes (s) and items as research
area nodes (k), and the vote indicates the weight value between
sponsor node and research area node. The highest value Ps, k for k
would indicate the top one predicted research area and so on.

Ps,k = v̄s + κ
n∑
i=1

ω(s, i)(vi,k − v̄i ) (7)

Where n is the number of sponsors, ω(s, i) denotes the similarity
between two sponsors s and i, vi,k denotes the weight value (vote)
between sponsor i and research area k, and κ is a normalization
parameter. v̄i is the average weights of sponsor i, which is defined
in Eq. (8) (Ni denotes the set of research area nodes connecting to
sponsor i) [18].

v̄i =
1
|Ni |

∑
j ∈Ni

vi, j (8)

In summary, Ps, k denotes sponsor s’s weight on research area
k, and Ps, k is the average weights of sponsor s plus the weighted
summation of all other sponsors’ weight on research area k. The
more similar two sponsor nodes are, the more similar their weights
for research area k will be.

In this study, we used cosine similarity to measure similarity
between two sponsors. Assume AAA and BBB are vector representation
for the sponsor of interest (AAA) and sponsor to compare (BBB) from
the weighted incidence matrix, W̃ , their similarity is calculated as
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follows, wherem is the dimension of the vector.

ω(AAA,BBB) =
AAA · BBB

| |AAA| | · | |BBB | |
=

m∑
i=1

AiBi√
m∑
i=1
(Ai )2

√
m∑
i=1
(Bi )2

(9)

4.5 CLP: Community Based Link Prediction
In previous section, our research has observed that sponsor-area
relationship has strong community tie, where sponsors/investigators
are very likely to be interested in research areas within the same
community. This is mainly because that biomedical research has
strong domain requirement, where an investigator trained in one area
is often only specialized in limited relevant areas. Meanwhile, as in-
terdisciplinary and cross domain research continuously grows, more
and more clinical trials involve team of experts from experts multiple
domains, which essentially complicate the community structure in
clinical trials.

Motivated by the above observations, we propose to use commu-
nity based link prediction to recommend links. The detailed process
of the CLP is shown in Algorithm 1, which includes two major com-
ponents: (1) create bipartite network from clinical trial reports; (2)
detect community from bipartite networks, and (3) apply user-based
link prediction to each community to find links.

5 RESULTS
5.1 Infectious Disease Clinical Trial Network

Characteristics
In Figure 3, we report the degree distributions of research area
nodes (K) of the infectious disease clinical trial network (in log-log
scale). For comparisons, Figure 4 shows the degree distribution of all
sponsor nodes (S). Both figures show scale-free degree distributions
with long-tail phenomenon, meaning that many sponsors focus on
rather few topics (Figure 4) and some common topics receive many
attentions by researchers (Figure 3).

From Figure 4, we observed that the maximum deg(s) is 140, and
there are 25 sponsor nodes with degree = 140. Interestingly, all 25
sponsor nodes are connected to the same 140 research area nodes.
This may indicate that the 25 sponsors worked together on multiple
clinical trials.

In order to find areas most commonly investigated in infectious
disease clinical trial, Table 1 reports the top 10 research area nodes
(k) in the network by node degree, showing that the maximum
deg(k) is 864. For comparisons, Table 2 reports the top research
areas according to the PageRank scores.

The results from Tables 1 and 2 show that the top 10 research
area nodes (k) by degrees and by PageRank scores are very similar,
but slightly different. For example, Hepatitis A has the 10th largest
degree, of 235, but is not included in the top 10 PageRank score
k nodes. PageRank is determined by the importance of the links
that point to any particular node. If a k node has a large number of
degree, it’s possible that the s nodes pointing to it, don’t connect to
other important research areas or don’t have many other connections.
Thus a node with large degree may not have a large PageRank score.

Algorithm 1 CLP: Community Based Link Prediction for Clinical
Trial Research Recommendation

1: input: (1) Infectious Disease Clinical Trial Report Dataset: D;
(2) Number of recommendations: k

2: output: Top-k recommended sponsor-area pairs: SAk
3: E← ∅ Initialize edge list
4: for each clinical trial report d ∈ D do
5: S ← Extract sponsors from d . {sponsor nodes}
6: A ← Extract areas from d . {area nodes}
7: E← E ∪ {S × A}. {sponsor-area edges}
8: end for
9: G← E {Create Network from edge lists}.

10: repeat
11: QW ←Maximizing modularity score of G using Eq. (2)
12: until Convergence
13: for each vertex x ∈ V do
14: дx ← Find its modularity-based label using Eq. (3)
15: G ← G ∪ дx
16: end for
17: C← Find communities using modularity labels G
18: for each community c ∈ C do
19: GCc ← Find its global coefficient using Eq. (5)
20: RCc ← Find its reinforcement coefficient using Eq. (6)
21: V ← V ∪ c, if c is a valid community according to its GCc

and RCc scores
22: end for
23: for each valid community c ∈ V do
24: Ec ← Find edges directly connected to any vertex in c
25: for each sponsor s ∈ c and a research area k do
26: if es,k < Ec {link es,k does not exist} then
27: Ps,k ← Find s’s scores w.r.t. k within the network Ec

using Eq. (7)
28: end if
29: end for
30: end for
31: Rank all sponsor nodes inV in descending order based on their

Ps,k sores.
32: SAk ← top-k nodes on the ranked list
33: return SAk .

Table 1: The top 10 research area based on node degrees

Research Area Degree

Infection 864
HIV Infections 656

Communicable Diseases 637
Tuberculosis 412
Pneumonia 399
Hepatitis 309

Sepsis 295
Malaria 259

Anti-Bacterial Agents 256
Hepatitis A 235
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Figure 3: Degree distributions of research area nodes (K) in log-
log scale.

Figure 4: Degree distributions of sponsor nodes (S) in log-log
scale.

Table 2: The top 10 research areas based on PageRank scores

Research Area PageRank Score

Infection 0.016107339
HIV Infections 0.015347930
Tuberculosis 0.012601791

Communicable Diseases 0.011201864
Pneumonia 0.010338744

Malaria 0.006997163
Sepsis 0.006997163

Hepatitis 0.005717856
Human 0.004635713

Influenza 0.004583310

5.2 Infectious Disease Clinical Trial Community
Detection Results

Table 3 lists the summary of detected infectious disease clinical trial
communities. Overall, we found 478 communities C, and 139 of
them have valid GCc and RCc scores (these communities are listed
as “Valid” in Table 3). In total, all valid communities have 3,662
sponsor nodes (s) (75.29% of all sponsor nodes) and 1,304 research
area nodes (k) nodes (69.40% of all research area nodes), indicating
that valid communities cover large portions of networks. For all valid
communities, their global clustering coefficients, GCc range from
0.4 to 1 with average of 0.9814, and their reinforcement coefficients,
RCc range from 0.054 to 1 with average of 0.728.

Table 3: Summary of clinical trial community detection results.
Each of the six columns represents: (1) valid vs. invalid commu-
nities, (2) number of detected communities (|C|), (3) number of
sponsor nodes (|s |), (4) number of research area nodes (|k |), (5)
the average Global Coefficient (GCc), and (6) the reinforcement
coefficient (RCc), respectively.

|C| |s | |k | GCc RCc

Valid 139 3662 1304 .981 .054
Non-valid 339 1202 575 NA NA

In order to understand the structure of the detected infectious
disease clinical trial communities, Figure 5 shows the structure of
the community C3, which includes nine sponsor nodes (s) and six
research area nodes (k). The k nodes for C3 are also listed in Table 4.
For C3, RC3 = 0.9310345 and GC3 = 1. As you can see in Figure 5,
the subgraph is almost a complete graph, thus GC3 = 1. There are
two k nodes that only connect to one s node. The sponsor nodes
in GC3 all are connected with each other on four research areas,
which could be from the same clinical trial or multiple clinical trials.
The remaining two research areas are present from other studies. As
such these sponsors have a large reinforcement coefficient, RC3 =
0.9310345.

When analyzing the community C3, we can find that there is
highly localized clustering within the community. The highly con-
nected research areas of C3 are, in fact, different types of Penicillins,
which are common antibiotics. The two areas with degree = 1 are
"Procaine" and "Trepenomal Infections". Looking at the graph, it
may not seem as if "Procaine" and "Trepenomal Infections" belong in
C3, however they are both conceptually linked to Penicillin. Trepone-
mal diseases are bacterial infections which can cause syphilis, bejel
and yaws. Trepenomal diseases are caused by various Treponema
bacterial species. Penicillin has been the primary treatement for
treponemal disesases for the last 50 years [19]. Procaine is a lo-
cal anesthetic [20], which has often been mixed with penicillin to
create a combination antibiotic and local anesthetic. Procaine peni-
cillin has been used to treat infections due to Listeriamonocytoдenes,
Treponema and Acintomyces bacterial species among other infec-
tions [21]. "Penicillin G Procaine" is another research area in C3,
further validating "Procaine" in this community.

Table 4: Research areas of community C3

Research Areas Research Areas

Penicillin G Penicillin G Benzathin
Penicillin G Procaine Penicillins

Procaine Treponemal Infections

The structure of the community C100 is shown in Figure 6, which
consists of 35 sponsors (s) and nine research area key words (k).
The detailed research areas for C100 is also listed in Table 5. For the
community C100, RC100 = 0.7139049 and GC100 = 0.9699529. In
general, as the number of nodes increases, the reinforcement coeffi-
cient decreases. This could be due to the fact that with more nodes,
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Figure 5: The structure of the community C3 which consists
of 15 nodes (nine sponsor nodes and six research area nodes).
The pink squares indicate sponsors and the blue circles indicate
research areas (Table 4 lists detailed research areas).

the lower the amount of local clustering within the community. A
detailed analysis of the community C100 shows that this community
consists of antibiotics and conditions. Amoxicillin and Oxacillin are
both broad-spectrum Penicillin-class antibiotics. [22] [23] Clavu-
lanic acid is an additive to amoxicillin with can increase amoxicillin’s
antibiotic properties [23]. Gentamicin is a broad spectrum aminogly-
coside antibiotic, Aminoglycosides are a class of antibiotics that act
by creating holes in a bacterial cell’s membrane [24]. In C100, only
two k nodes, “Oxacillin” and “Intestinal Obstruction”, have degree =
1. However it’s clear that Oxacillin is related to Amoxacillin. Mean-
while, “Intestinal Obstruction” is conceptually related to “Abdominal
Pain”. Therefore, this community is consisted of three conditions:
“Intestinal Obstruction”, “Abdominal Pain”, and “Acute Disease”,
and five interventions that are all possible antibiotic treatments for
the three conditions.

Figure 6: The structure of the community C100 which consists
of 36 sponsor nodes and nine research areas. The pink squares
represent sponsors and the blue circles denote research areas.
(Table 5 lists detailed research areas).

An example of an invalid community, C12, is shown in Figure 7.
This community consists of only one sponsor node (s) and three
research area nodes (k). In Table 6, we list k nodes of C12. Because
there is only one sponsor node, C12 has RC3 = NA and GC3 =
NA, and degree of k nodes within C12 all equal to one. As a result,
it is treated as an invalid community. Our analysis shows that an

Table 5: Research areas of community C100

Research Areas Research Areas

Abdominal Pain Acute Disease
Amoxicillin Clavulanic Acid

Clavulanic Acids Oxacillin
Intestinal Obstruction Gentamicins

Amoxicillin-Potassium Clavulanate Combination

invalid community consists of only one or two sponsors from a
single clinical trial.

Figure 7: The structure of an invalid community C12 which has
one sponsor node and three research area nodes. The research
areas are listed in Table 6.

Table 6: List of research areas of community C12

Research Areas Research Areas

Focal Segmental Glomerulosclerosis
AIDS-Associated Nephropathy

5.3 Infectious Disease Clinical Trial
Recommendation Results

In order to validate the performance of the proposed community-
based link prediction for clinical trial recommendation, we carry out
following designs to remove a small portion of connections from
the networks as benchmarks, and then compare different methods’
performance to accurately predict these “removed” links.

To create benchmark links for prediction, we generate follow-
ing three benchmark node sets, representing sponsor nodes with
increasing number of connections.
• S[2,6]: randomly select 100 sponsor nodes from S where each

selected sponsor has minimum 2 edges and maximum 6 edges.
This set represents sponsors with normal degree of connec-
tions (majority sponsors belong to this category, as shown in
Figure 4).
• S(6,10]: randomly select 100 sponsor nodes from S where

each selected sponsor has minimum 7 edges and maximum
10 edges. This set represents sponsor with a high degree of
connections.
• S(10,∞): randomly select 100 sponsor nodes from S where

each selected sponsor has minimum 11 edges. This set repre-
sents sponsors with a very high degree of connections.
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Figure 8: Link prediction accuracy comparison between global
link prediction (GLP) and the proposed community link predic-
tion (CLP) on benchmark node set S[2,6]. The x−axis denotes
the top-k prediction, and the y−axis denotes the link prediction
accuracy.

After creating the above three benchmark node sets, for each node
in any of the selected sets, half of its edges are removed and the
removed edges are used as benchmark edge set of the selected node
set. If a link predict method predict a research area that was removed,
then the prediction is accurate (i.e. the predicted result is the one that
was removed). By doing so, we know the ground truth of the links
and can therefore compare algorithm performance.

Figure 8 reports the results with respect to node set S[2,6]. Because
for each selected node, half of links were removed from a subset of
100 s nodes with 2-6 degrees (148 sponsor-area edges are removed
in total), we compare each method’s top-1, top-2, and top-3 accuracy
to validate their performance. For top-1 accuracy, it means that for a
sponsor, each algorithm only reports the top-1 recommendation, and
calculates the accuracy across all 100 sponsors.

The results from Figure 8 show that for top-1 and top-2 accuracy,
GLP and CLP were very similar. GLP obtains 34.5% accuracy for
top-1 and 35.5% accuracy for top-2. CLP obtains 36.5% accuracy
for top-1 and 39.5% accuracy for top-2. The difference was great-
est for top-3, where GLP’s accuracy is 36.5%, whereas and CLP’s
accuracy is 66.5%. This experiment shows that community based
link prediction (CLP) is consistently better than global based ap-
proach (GLP). For majority sponsor nodes in the network, CLP can
accurately predict/recommend its link with at least 36.5% accuracy.

Figure 9 shows the prediction results from benchmark node set
S(6,10] which represents nodes with relatively high degree of con-
nections. In this round, half the links are removed from a subset of
100 s nodes with 6-10 degrees (345 sponsor-area edges are removed
in total), therefore, we use top-1,· · · , top-5 accuracy. For top-1 to
top-5, GLP obtained 27%, 28%, 26.7%, 25.9% and 25.8% accu-
racy, respectively. CLP had higher accuracy, for top-1 to top-5, CLP
obtained 39%, 41.5%, 42.3%, 41.7% and 41.4% accuracy.

Figure 10 reports the prediction results from benchmark node set
S(10,∞) which represents nodes with very high degree of connections.
In this experiment, sponsor nodes with degree >10 are selected
and half of their links are randomly removed. Recall that there are
sponsor nodes with up to 140 degree, so some selected sponsor nodes
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Figure 9: Link prediction accuracy comparison between global
link prediction (GLP) and the proposed community link predic-
tion (CLP) on benchmark node set S(6,10]. The x−axis denotes
the top-k prediction, and the y−axis denotes the link prediction
accuracy.
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Figure 10: Link prediction accuracy comparison between
global link prediction (GLP) and the proposed community link
prediction (CLP) on benchmark node set S(10,∞). The x−axis
denotes the top-k prediction, and the y−axis denotes the link
prediction accuracy.

have up to 70 edges being removed. Therefore, we report accuracy
from top-1 to top-70 prediction accuracy in Figure 10. Overall, the
results show that GLP has an average accuracy of 31.8% and CLP’s
average accuracy is 40.6%, which is much higher than GLP.

6 DISCUSSIONS
In summary, our research discovers communities of sponsors and
research areas and validates that our CLP method is more accurate
than global link predictions.

In our experiments, the main bulk of frequency degree distribution
found was between degree 10 and degree 30. The research area
with the highest degree found was Infection with a degree of 864
followed by HIV Infection and then communicable diseases, as seen
in 1. This coincides with current industry trends. A study done by
Goswami et al. in 2013 found HIV/AIDS trials to be the largest
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subset of Infectious Disease Clinical trials in the ClinicalTrials.gov
database [25]. They found Influenza Vaccine trials to constitute the
second largest subset of Infectious Disesase Clinical Trials [25]. In
this study, Influenza was not one of the top k nodes by degree, but
it was one of the top k nodes by PageRank Score. The degree of a
node is denoted as the number of edges that connect to the node.
In this study, the edges are based on the connection of a sponsor to
a research area in Infectious Disease. This directly related back to
the current trends determined by the sponsors on a specific research
field. It is interesting to note that these top 10 popular fields are not
concentrated within the bulk of the degree distribution frequency,
which would mean that there are topics that are less researched by
sponsors and yet they appear frequently in terms of the degree.

Communities of sponsors and research areas can help effectively
summarize a wide range of research areas and have the potential to
bring together sponsors who are connected by only shared research
areas. Our research finds communities to summarize research areas
and support link predictions. To determine the robustness, we use
a modified global coefficient for bipartite networks and a reinforce-
ment coefficient. Robustness would be the ability of a network to
continue performing well when it is subject to failures or attacks.
As seen in Table 3, the average modified global coefficient is quite
high while the reinforcement coefficient is quite low for valid com-
munities. The global coefficient is a more indicative measure of
robustness, whereas the reinforcement coefficient is a more localized
measure that would indicate the reinforcement of a potential rela-
tionship between sponsors within the community. As shown in the
example communities, valid communities consists of conceptually
linked research areas, whereas invalid communities have research
areas that are being studied by only one or two sponsors.

In this study, we randomly remove links from the network to
validate our link prediction methods. We found that CLP is more
accurate than GLP. It is interesting to find that in some cases, a high
RCc score would lead to more accurate prediction in CLP, but not in
GLP. However this is not always the case. It could be that in some
cases, some sponsors have research areas that are very localized,
compared to the entire network. In these localized communities,
the sponsor’s connections may not reach outside the community,
thus a high RCc score would indicate that link prediction within
that community would be very accurate. But if a researcher has
connections outside the community, then a high RCc score won’t
indicate the accuracy level for link prediction.

In this study, we left out invalid communities. It is possible that
a sponsor may have a potential future link to a research area that is
only being studied by one or two sponsors. However, it would be
hard to use structural network based analysis alone to determine this.
Unpopular research areas would have to be linked to sponsors based
on node-content instead of network structure.

7 CONCLUSIONS
In this study, we proposed to study relationships between investiga-
tors/sponsors and research areas in infectious disease clinical trials
extracted from ClinicalTrials.gov. We argued that ClinicalTrials.gov
is a valuable, yet under utilized, data source. By using bipartite graph
to create infectious disease networks between sponsors and research
areas, our research studied characteristics of the networks, detected

communities from the network, and further proposed a community
based link prediction to recommend research areas for sponsors.
Experiments and validations confirmed that the proposed method is
much more accurate in recommending links for infectious disease
clinical trial research. The framework proposed in the paper (includ-
ing network analytics) can be generalised and extended to any other
clinical trial areas, such as heart disease.
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