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1. Introduction

Game theory provides a mathematically rigorous framework
for multiple players to reason about each other. In recent years,
game theoretic learning has been increasingly used to control
large-scale networked systems due to its inherent distributed
nature. In particular, the network-wide objective of interest is
encoded as a game whose Nash equilibria correspond to desired
network-wide configurations. Numerical algorithms are then syn-
thesized for the players to identify Nash equilibria via repeated
interactions. Multi-player games can be categorized into discrete
games and continuous games. In a discrete (resp. continuous)
game, each player has a finite (resp. an infinite) number of
action candidates. As for discrete games, learning algorithms
include best-response dynamics, better-response dynamics, fic-
titious play, regret matching, logit-based dynamics and replicator
dynamics. Please refer to Basar and Olsder (1999), Fudenberg

* 7. Hu and M. Zhu were partially supported by ARO, United States W911NF-
13-1-0421 (MURI), NSA, United States H98230-15-1-0289 and National Science
Foundation (NSF), United States ECCS-1710859. P. Chen and P. Liu were partially
supported by ARO, United States W911NF-13-1-0421 (MURI) and National
Science Foundation (NSF), United States CNS-1422594. The material in this paper
was partially presented at the First ACM Workshop on Moving Target Defense,
in conjunction with 2014 ACM Conference on Computer and Communications
Security, November 3, 2014, Scottsdale, Arizona, USA. This paper was recom-
mended for publication in revised form by Associate Editor Gurdal Arslan under
the direction of Editor Ian R. Petersen.

*  Corresponding author.

E-mail addresses: zxh128@psu.edu (Z. Hu), muz16@psu.edu (M. Zhu),
chenping19851@hotmail.com (P. Chen), pliu@ist.psu.edu (P. Liu).

https://doi.org/10.1016/j.automatica.2019.02.032
0005-1098/© 2019 Elsevier Ltd. All rights reserved.

and Levine (1998), Sandholm (2010) and Young (2001) for de-
tailed discussion. As an important class of continuous games,
generalized Nash games were first formulated in Arrow and
Debreu (1954), and see survey paper (Facchinei & Kanzow, 2007)
for a comprehensive exposition. A number of algorithms have
been proposed to compute generalized Nash equilibria, includ-
ing, to name a few, ODE-based methods (Rosen, 1965), non-
linear Gauss-Seidel-type approaches (Pang, Scutari, Facchinei,
& Wang, 2008), iterative primal-dual Tikhonov schemes (Yin,
Shanbhag, & Mehta, 2011), and best-response dynamics (Palomar
& Eldar, 2010). Game theory and its learning have found many
applications; e.g., traffic routing in Internet (Altman, Basar, &
Srikant, 2002), urban transportation (Roumboutsos & Kapros,
2008), mobile robot coordination (Arslan, Marden, & Shamma,
2007; Hatanaka, Wasa, Funada, Charalambides, & Fujita, 2016)
and power markets (Wang, Shanbhag, & Meyn, 2012; Zhu, 2014).

In many applications, players can only access limited informa-
tion about the game of interest. For example, each player may
not know the structure of its own utility function. Additionally,
during repeated interactions, each player may not be aware of
the actions of other players. These informational constraints mo-
tivate recent study on payoff-based or reinforcement learning
algorithms where the players adjust their actions only based
on their own previous actions and utility measurements. The
papers (Hatanaka et al., 2016; Marden, Young, Arslan, & Shamma,
2009; Zhu & Martinez, 2013) study discrete games, and their
approaches are based on stochastic stability (Foster & Young,
1990). As mentioned in Remark 3.2 of Zhu and Martinez (2013),
the paper (Marden et al., 2009) proposes an algorithm to find
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Nash equilibrium of weakly acyclic games with an arbitrarily
high probability by choosing an arbitrarily small and fixed ex-
ploration rate in advance. The analysis in Marden et al. (2009)
is based on homogeneous Markov chains and more specifically
the theory of resistance trees (Young, 1993). Zhu and Martinez
(2013) extend the results in Marden et al. (2009) by adopting
diminishing exploration rates and ensure convergence to Nash
equilibrium and global optima with probability one. The analysis
of Zhu and Martinez (2013) is based on strong ergodicity of
inhomogeneous Markov chains. As for continuous games, the pa-
pers (Frihauf, Krstic, & Basar, 2012; Liu & Krstic, 2011; Stankovic,
Johansson, & Stipanovic, 2012) employ extremum seeking and
the paper (Zhu & Frazzoli, 2016) uses finite-difference approxi-
mations to estimate unknown partial (sub)gradients. Notice that
all the aforementioned papers focus on asymptotic convergence
and none of them quantifies convergence rates.

Contribution: In this paper, we study a class of multi-player dis-
crete games where each player is unaware of the other players’
action sets, their deployed actions or the structures of its own or
the others’ utility functions. We propose a reinforcement learn-
ing algorithm where, at each iteration, each player, on the one
hand, exploits successful actions in recent history via comparing
received utility values, and on the other hand, randomly explores
any feasible action with a certain exploration rate. The algorithm
is proven to be convergent to the set of action profiles with max-
imum stochastic potential with probability one. Furthermore, an
upper bound on the convergence rate is derived and is minimized
when the exploration rates are restricted to p-series. When the
interactions of the players consist of a weakly acyclic game, the
convergence to the set of pure Nash equilibria is guaranteed.
The algorithm performance is verified using a case study in the
smart grid. A preliminary version of this paper was published
in Zhu, Hu, and Liu (2014) where convergence rates are not
discussed. Further, Zhu et al. (2014) focus on the application of
cyber security, and this paper focuses on the theory of learning in
games. The analysis of these two papers is significantly different.

2. Problem formulation and learning algorithm

In this section, we introduce a class of multi-player games
where the information each player accesses is limited. Then, we
present a learning algorithm under which the action profiles of
the players converge to the set of action profiles which have
maximum stochastic potential.

2.1. Game formulation

The interactions of N players are characterized as a non-
cooperative game. Each component of the game will be discussed
in the following paragraphs.

Players. We consider N players vV £ {1, ..., N} and each player
has a finite set of actions. Let .4; denote the action set of player
iand @ € .4; denote an action of player i. Denote S £ A;

- X Ay as the Cartesian product of the action sets, where s

(a',...,a") € S is denoted as an action profile of the players.

> X

Utility. Under the influence of an action profile, the system gener-
ates a utility value for each player. The utility function for player
i € Visdefined as u; : S — R. At the end of iteration t, the utility
value u;(t) = u;(s(t)) is measured and sent to player i.

Informational constraint. Each player does not know the other
players’ action sets or their deployed actions. Besides, each player
is unaware of the structure of its own or the others’ utility func-
tions. At iteration t, each player only knows its deployed actions
and its received utility values in the past; i.e., a'(0),...,ai(t —
1), u;(0), ..., u(t — 1).

The above informational constraint has been studied in sev-
eral recent papers. For example, the authors in Hatanaka et al.
(2016), Stankovic et al. (2012) and Zhu and Martinez (2013)
investigate coverage optimization problems for mobile sensor
networks where mobile sensors are unaware of environmental
distribution functions. The authors in Marden, Ruben, and Pao
(2013) study the problem of optimizing energy production in
wind farms where each turbine knows neither the functional
form of the power generated by the wind farm nor the choices of
other turbines. The authors in Frihauf et al. (2012) and Zhu and
Frazzoli (2016) consider convex games where each player cannot
access its game components.

2.2. Problem statement

Under the above informational constraint, we aim to synthe-
size a learning algorithm under which the action profiles of the
players converge to the set of action profiles with maximum
stochastic potential. We will quantify the convergence rate of
the proposed algorithm in contrast to asymptotic convergence in
existing work.

2.3. Learning algorithm

Inspired by Zhu and Martinez (2013), we propose a learning
algorithm called the RL algorithm, where each player updates
its actions only based on its previous actions and its received
utility values. On the one hand, each player chooses the most
successful action in recent history. It represents the exploitation
phase. However, the exploitation is not sufficient to guarantee
that the player can choose the best action given others’. So on
the other hand, the player uniformly chooses one action from its
action set. It represents the exploration phase. The specific update
rule is stated in the RL algorithm. At iterations t = 0 and t = 1,
each player uniformly chooses one action from its action set (Line
3). Starting from iteration t = 2, with probability 1 — &;(t), player
i chooses the action which generates a higher utility value in
last two iterations as current action (Lines 8-13). This represents
the exploitation where player i reinforces its previous successful
actions. With probability €;(t), player i uniformly selects an action
from its action set 4; (Line 14). This represents the exploration
and makes sure that each action profile is selected infinitely often.
Note that sample(.4;) in Line 14 represents uniformly choosing
one element from set A;.

Algorithm 1. Reinforcement learning (RL) algorithm
1: while0 <t <1do

2. forievVvdo

3: ai(t) < sample(4;);

4:  end for

5: end while

6: while t > 2 do

7. forieVvdo

8 With prob. (1 — &(t)),
9 if u;(t — 1) > u;(t — 2) then
10: ai(t) = ai(t — 1);

11: else

12: ai(t) = ai(t — 2);

13: end if

14: With prob. &(t), a(t) < sample(.4;);
15:  end for
16: end while

3. Analysis

In this section, we will present the analytical results of the RL
algorithm.
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3.1. Notations and assumptions

We first introduce the notations and assumptions used
throughout the paper. Denote by |V| the cardinality of player
set, |.A;| the cardinality of action set of player i and |A|,, £
max;cy |A4;| the maximum cardinality among all action sets. The
exploration rate for player i at iteration t is decomposed into two
parts; i.e., &(t) £ €(t) + e(t) € (0, 1], where €(t) = ye(t),
y; > 0, €(t) is common for all the players, y; represents the het-
erogeneity, and e;(t) represents the exploration deviation. Define
e(t) £ (ey(t),...,en(D)), &(t) & (&(t),...,&(t)) and e(t) 2
(e1(t), ..., en(t))'. And we define e.(t) 2 ||e(t)||’oVo/]_[,N=1 &(t).
Here we denote by |||« the infinity norm of a vector. In addition,
we also use || - || to represent the L'-norm of a vector, and ||P|| to
represent the 1-norm of a matrix.

Assumption 1. (1) For each i € V, €i(t) € (0, 1] is non-negative,
strictly decreasing, and lim;_ €i(t) = 0. (2) The sequences
{]_[?’=1 €i(t)} and {]_[fil &(t)} are not summable. (3) lim,_ o e-(t)
=0.

Assumption 1 indicates that the players can choose heteroge-
neous exploration rates. The exploration rates diminish slowly
enough and their deviations decrease in faster rates than the
common part. In the paper (Zhu & Martinez, 2013), it is assumed
that exploration rates ¢;(t) are identical for all i, diminishing
and not summable. Assumption 1 allows for heterogeneous ex-
ploration rates and includes homogeneous exploration rates in
the paper (Zhu & Martinez, 2013) as a special case. Actually,
papers (Koshal, Nedi¢, & Shanbhag, 2013; Yousefian, Nedi¢, &
Shanbhag, 2013) adopt heterogeneous step-sizes for distributed
optimization and game theory. They impose similar assumptions
on the step-sizes.

L

Markov chain induced by the RL algorithm. Denote by Z
S x S the state space, where each state z(t) £ (s(t),s(t + 1))
consists of the action profiles at iteration t and the next iteration.
And denote by diag(S x S) £ {(s, s)|s € S} the diagonal space of
Z. By the definition of z(t), the sequence {z(t)};>o forms a time-
inhomogeneous Markov chain which is denoted by M. We define
P as the transition matrix of Markov chain M at iteration t,
where each entry P€)(z’, z) represents the transition probability
from state z’ to z. Besides, denote by 7 (t) the distribution on 2
at iteration t.

z-tree of time-homogeneous Markov chain A¢. Given any two
distinct states z/ and z of Markov chain AM?¢, consider all paths
starting from z’ and ending at z. Denote by p,/, the probability of
the path from z’ to z. We define graph G(€) where each vertex of
G(€) is a state z of Markov chain M¢ and the probability on edge
(z',z) is py,. A z-tree on G(€) is a spanning tree rooted at z such
that from every vertex z’ # z, there is a unique path from z’ to
z. Denote by G¢(z) the set of all z-trees on G(€) rooted at z. The
total probability of a z-tree is the product of the probabilities of
its edges. The stochastic potential of the state z is the largest total
probability among all z-trees in G¢(z). Let A(€) be the states which
have maximum stochastic potential for a particular € € (0, 1]".
Denote the limit set A* £ lim;_,o A(€). And the elements in A*
are referred to as stochastically stable states.

Remark 1. The above notions are inspired by the resistance trees
theory (Young, 1993). However, the above notions are defined for
any € € (0, 1] instead of € — 0 in the resistance trees theory.
This allows us to characterize the transient performance of the
RL algorithm. O

3.2. Main analytical result

The following theorem is the main analytical result of this
paper. It shows that the state z(t) converges to the set of stochas-
tically stable states with probability one. Moreover, the conver-
gence rate is quantified using the distance between 7 (t) and the
limiting distribution 7 *; i.e., D(t) £ || (t)— 7 *||. The formal proof
of Theorem 1 will be given in Section 5.

Theorem 1. If Assumption 1 holds, the following properties hold
for the RL algorithm:

(P1) lim;_, o, Pr{z(t) € A*} = 1 and A* C diag(S x S);

(P2) there exist positive integer tn, and positive constant C such
that for any t* > tyi, and t > t* 4 1, the following is true:

D(t) = min{2, C([le(t)lloo + ll€(O)lloo + er(t™)

t—1 N t—1 N
+ exp(— Y [ Jeamlan+exp(= Y JTa@ram. )

T=t* i=1 T=t* i=1
4. Discussion
4.1. Weakly acyclic games

In this section, we study the special case where the interac-
tions of the players consist of a weakly acyclic game. A game
is called to be weakly acyclic if from every action profile, there
exists a finite best-response improvement path leading from the
action profile to a pure Nash equilibrium. And it is known that
any weakly acyclic game has at least one pure Nash equilib-
rium (Fabrikant, Jaggard, & Schapira, 2010; Milchtaich, 1996;
Young, 1993).

Definition 1 (Pure Nash equilibrium). An action profile s, £
(al,....d,,....dY)is a pure Nash equilibrium if Vi € V,Va' €

Ai, ui(se) > ui(d', a;t).

Denote the set of pure Nash equilibria of the game I" as N(I")
and diag(N(I') x N(IM)) £ {(s,s)ls € N(I')}. The following
corollary implies that the action profiles converge to A(I") with
probability one.

Corollary 1. If Assumption 1 holds and I" is a weakly acyclic game,
then it holds that lim,_, o, Pr{z(t) € diag(N(I") x N(I"))} = 1 for
the RL algorithm.

From Theorem 1, we have lim;_, o, Pr{z(t) € A*} = 1 and
A* C diag(S x S). Then following the proofs of Lemma 4.2 and
Claims 3-4 in Proposition 4.3 in Zhu and Martinez (2013), we can
get that A* C diag(N(I") x N(I")) if I" is weakly acyclic.

Remark 2. As shown in Marden et al. (2009) and Zhu and
Martinez (2013), when games are weakly acyclic, stochastically
stable states are contained in the set of pure Nash equilibrium. To
our best knowledge, weakly acyclic games are the most general
ones which have such property. When a game is not weakly
acyclic, stochastically stable states can still be used to characterize
where the algorithm converges. So, stochastically stable states are
of broader applicability than pure Nash equilibrium. O

4.2. Estimate of constant C in inequality (1)
The following corollary estimates constant C in inequality (1).

For presentation simplicity, denote |y |, £ Minicy ¥, Cnin
. 2 N|S[?
mln{('V'min/lAloo)le‘ ) 1}1 Cmax £ max{l, ”V”ool | }
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Corollary 2. If Assumption 1 holds and the exploration rates satisfy
that E(t)]loc < min{1/N(N + 157, Goin/2(N|S|ISTHN + 1S
2NHDISE2¢ Y for all t, then the constant C in inequality (1) can
be estimated as C = max{4", 64|8|‘S'2+42(N+”‘5|2/2?’1—{“}.

The proof of Corollary 2 will be given in Section 5.4. Clearly,
the constant C increases as N and |S| increase. In addition, as
|¥ |min decreases, Cpin decreases and C increases. Similarly, as
[l¥]loo increases, Cpqy increases and C increases. This indicates
that the heterogeneity of the exploration rates could slow down
the algorithm.

4.3. Optimal exploration rates

An interesting question is how to choose the exploration rates
to minimize the upper bound in inequality (1). This is an infinite-
dimension and non-convex optimization problem and hard to
solve in general. For analytical tractability, we restrict the ex-
ploration rates to be p-series which have been widely used in
stochastic approximation and convex optimization (Bertsekas,
2015; Hasminskii & Silver, 1972; Kushner & Yin, 2003). In par-
ticular, let e;(t) = 0 and €(t) = 1/(tPN|4]),p € (0,1],Vi €
V. This choice satisfies Assumption 1. We aim to choose p €
(0, 1] to minimize the upper bound of D(t). With such restriction,
inequality (1) becomes (here we ignore the trivial term 2 on the
right-hand side of (1)):

t—1

D(t) < C(2exp(— Y 1yy

P t*p/N
T=t*

t*—1 1 t—1 1 1 1
=1 =1

1 1
+W)

<C(2 1 [*_]161 [1d ! ! 2
< (exp(-i—l XT’X— IXTJX)-FW‘FW). (2)

The second inequality of (2) is a result of inequality (2) of Chle-

bus (2009). When1 p € (0, 1), inequality (2) becomes D(t) <
* —] 1=

Cexp(1 + U %y exp( =F) + 1/ PN) 4 1/(tPV)). Since

limeoo({=)/(2Int) = oo, we have lim; o exp(=")/
exp(—% Int) = 0. So the term tlﬁ dominates the term 2 exp(1+
(t*ﬂ)pl_p)exp( ’]‘:Jp) as t increases. When p = 1, inequality
(2) becomes D(t) < C(2exp(1 + In(t* — 1))} + —ixw + w)-

Analogously, we have limt_)oo(l)/(ﬁ) = 0. So the term 1/(t"/N
(

t
dominates the term 1/t as t increases. In both cases, 1/(tP/N

)
)
dominates the upper bound in (2). When p = 1, 1/(t?/N)
decreases fastest among p € (0, 1]. Therefore, €;(t) = 1/(t'/N|4;])
is optimal among p-series.

4.4. Explicit convergence rate

If the exploration rates and exploration deviations are given,
we can explicitly quantify how fast the algorithm will reach the
set A*. Assume the exploration rate for player i is 1/(t'/N|.4;),
and e;(t) = 0, Vi € V. Then we have:

t—1
1 1 1
D(t) < C(Zexp(— Z ;)‘F N + m)

T=t*
t

1 1 1
§C(2exp(]—/ *dX)-f‘m'f‘m)

k1 X

2e(t* — 1) 2

SO+ i) (3)

The second inequality of (3) follows the same steps of (2) by

replacing - with 1. Given any § > 0, D(t) < & for all t >

e(4C)N+1/8N+1 _ 4Ce/s. Roughly speaking, it takes O(1/8N*1)
iterations to reach error 8.

4.5. Memory and communication

The RL algorithm only requires each player to remember its
own utility values and actions in recent history. So the memory
cost is low. In addition, the communication cost is case depen-
dent. In Zhu and Martinez (2013), the utility function of each
robot only depends on the actions of its own and nearby robots.
The communication range of each robot is twice of its sensing
range. So the communication graphs are time-varying and usually
sparse. In Section 6, each customer can communicate with the
system operator. So the communication graph is a fixed star
graph.

5. Proofs
We will prove Theorem 1 and Corollary 2 in this section.
5.1. Analysis of the H-RL algorithm

For the sake of analysis, we introduce the H-RL algorithm,
which has time-homogeneous exploration rates; i.e., é€(t) = € €
(0, 11V, vt > 0 in the RL algorithm. Then {z(t)} in the H-RL
algorithm forms a time-homogeneous Markov chain AM¢ with the
transition matrix P¢. The analysis of the H-RL algorithm provides
preliminary results for that of the RL algorithm. The following
lemma studies the properties of the feasible transitions in the
Markov chain M€,

Lemma 1. Given any € € (0, 11, each nonzero entry in transition
matrix P is a polynomial of the variables {€;, 1 — €;}ic\. In addition,
the coefficients of the polynomials are independent of €.

Proof. Consider any two states x, y € Z that the transition from
x to y is feasible within one step. In particular, x = (s(0), s(1)) and
y = (s(1), s(2)), where s(t) = (a'(t), ..., aV(t)) for t € {0, 1, 2}.
And the transition probability is P(x,y) = [],.,, Pr{ai(2)|a'(0),
a'(1)}.

Given states x and y, the set of players can be partitioned into
two sets: Ver(x,y) £ {i € V]a(2) ¢ {a(0), (D}, Vulx, y) 2 {j €
VId/(2) = @/(arg max,c(o,1){u(s(t))})}. Forany i € Vir(x, y), Pr{a(2)
|d'(0), a'(1)} = €;/|Ail. For any j € Vex(x, y), @(2) can be achieved
by exploitation or exploration, and then Pr{d@/(2)|d/(0), (1)} =
(1 — €) + €/|A;j|. Then the transition probability can be written
as:

Pen= [T 5 T1 @a-a+70 (@)
J

i€Ver(x,y) ! J€Vex(x.y)

iey

It is clear that P(x,y) is a polynomial of {&,1 — &}icy with
coefficients independent of €. O

Given any € € (0, 1V, define stochastic vector 7*(€) as the
stationary distribution of the Markov chain M¢; i.e., T*(€)Pé =
7*(€)". In the H-RL algorithm, when a player performs explo-
ration, it can choose any element in its action set. One can see
that, for any pair of states x,y € Z, y can be reached from x
within finite steps, and Markov chain M¢ is ergodic. By Lemma
3.1in Chapter 6 of Freidlin, Sziics, and Wentzell (2012), 7*(€) can
be written as follows:

a(€) 2 [mh @) - w @], (5)

NG 2y — :
where 7'[;(6) = m,(fz(é) = ZTEG@(Z) n(l/,Z)GE(T) PE(Z”Z)

and E(T) is the edge set of tree T.
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5.2. Stationary distributions without exploration deviations

Now let us consider an auxiliary scenario where e;j(t) = 0
for all t and for all i € V. Then stochastic vector 7*(e(t)) such
that #*(e(t)) P€® = 7*(e(t))" has the same form of (5) with
exploration deviations being 0. For notational simplicity, we refer
to 7*(e(t)) as 7*(t). The following lemma shows that {7*(t)};>0
converges to a limiting distribution with a certain rate, and the
support of the limiting distribution is A*.

Lemma 2. If Assumption 1 holds and e;(t) = 0 for all t and all i,
then the sequence {7*(t)};>0 converges to the limiting distribution
* whose support is A* C diag(S x S). Moreover, the convergence
rate could be quantified as: |#*(t) — 7*| < Cclle(t)]oo for some
constant C, > 0.

Proof. The proof is divided into two claims.

Claim 1. The limiting distribution * £ lim,_, o, 7*(t) exists, and its
support is A* C diag(S x S).

Proof. By Lemma 1, for any €(t) € (0, 1]V, the non-zero entries
of P€) are polynomials of {¢(t), 1 — €(t)} since ej(t) = 0 for
all i € v with time-homogeneous coefficients. Then o,(e(t)) and
Y ez 0z(€(t)) are polynomials of {ei(t), 1 — €(t)} with time-
homogeneous coefficients. Recall that €;(t) = y;¢(t). For partic-
ular state z € Z, o,(e(t)) and ), - 0,/(¢(t)) are polynomials of
€(t), and 7 (e(t)) is a ratio of two polynomials of €°(t):

oz (€°(t))
Blec(t))’

where a(e(t)) = bie(t)" + b e (6} + - + bfe(t),
B(e(t)) = bre“(t) + bk+16 (t )"+1 + -+ bpe“(t)" and k > 0.
Without loss of generality, we assume that of b, is non-zero.
When €€(t) is sufficiently small, bie‘(t)" and bye(t)* dominate
o (€°(t))/B(e°(t)). Then the limit of the 7 (e(t)) can be repre-
sented as 7} = lim;_, o 7)(e(t)) = b}/by. Note that b} and by
are also time-homogeneous.

By the definition of A*, if b} is non-zero, then z € A*; And if
bi =0, then z ¢ A*. We know n} = b /by, therefore the support
of 7* is contained in A*.

For any €(t) € (0, 1]V Assume a state z = (s(0),s(1)) €
A(e(t)) but z ¢ diag(s x S), i.e, s(0) # s(1), where s(0) =
(a'(0),...,a"%(0)),s(1) = (al(1),...,a"(1)). Since z € A(e(t)),
then there is a tree T;,.x(€(t)) rooted at z such that it has largest
total probability. We construct a tree T’ by adding the follow-
ing path from z to zZ = (s(2),s(2)) through z = (s(1),s(2)):

e(t)(, 5 e(t)(5
I TR 2 where s(2) = (a'(2), .., a%(2)) and
a'(2) = d'(argmax;eqo 1j{ui(s())}), Vi. By Lemma 1 Vex(z z) =

#2(e(t) = (6)

Ve(2,2) = V. Ver(2,2) = Vel2,2) = @. So pett ( z) =
[Ticy (1 = () + €(t)/1Ail) and PEO(Z, 2') = [Ticy, (1 — (1))
+ei(t)/|Ail).

Let us consider the edge leaving z': z’ ey z"

(s(2), 5(3)), where s(3) = (a'(3),..., aN(3)) with at least one
player i such that d@'(3) # a'(2). That is |V (2, z”)] > 1. Then
the transition probability of the leaving edge satisfies:

[T %0 T @-aw+ 50

A,
jeVer(z 2") T ievez 2 Al

PO, 2") = ).

Then P<(0(z, 2), P<0)(Z, z’) and P<()(z’, z”) are dominated by their
lowest degree terms when €(t) is sufficiently small. In particular,
the lowest degree terms of P€()(z, 2) and P€(!)(2, z’) are constant

terms while the lowest degree term P<(")(z’, z") is at least first-
degree term. Then there exists some ¢, < (0, 1] such that
POz, P2, 2') > PU(Z',2"), Ve(t) € (0, ey). That is, the
total probability of T’ is larger than that of T (e(t)). We reach
a contradiction. Therefore, A* C diag(S x S) because A(e(t)) C
diag(S x S) holds for any sufficiently small €(t). O

Claim 2. |#%(t) — 7*| < Cclle(t)ll for some constant Cc > 0.

Proof. From Claim 1, we have lim;_, ., 7*(t) = =* and the
support of 7* is A*. Now study the convergence rate.

|25 @) = | = D 1R (et) — 7]
zeZ
e IAC0)

— 4 Y A (e() — 7]

zeA* zgA*

= Eiet) w4+ Y A

zeA* zgA*

=Y ) - +1= ) 7

zeA* zEA*
=Y AN — w4+ Y = #e)
zeA* ZEA* zZeA*

< ) 1A(e() ~

w4 Y IR (E(t) — )|

zeA* =
oy W e b
ZeA* bkec(t)k+...+bh6c(t)h bk
c(p)k+1 Crenh
oY) LZL((e6 c((tt))k , ;(t()?) )
zeA* s
L(1, €(t), ..., €(t)*1)
= 2€5(t 7
€ ( )Z§ L(], ec(t),.,_,ef(t)h—k) s ( )

where L, and L are linear functions, the constant term of L is non-
zero. And by Assumption 1-(1), for any z € A*, L,(1, €°(t), €4
(t)"*) and L(1, €°(t), €€(t)"~*=1) converge as t — oo because

lim; o €°(t) = 0. Also because A* contains finite elements,
Lo(1Le(8), e R [ o s
then2) ", _,. 0.0 ) ‘ is uniformly bounded. And we

L (LeS(t). .S *T)
L(1,€5(t). . e%r)h—k)

such that |7*(t) — 7*| < C.|le(t)]lo0o- It completes the proof of
Claim 2. O

can always choose a constant Cc > 2y, _ .

The following lemma shows that the sequence {||7*(t)—7*(t+
1)|l}¢>0 is summable and gives the explicit partial sums of the
sequence when t is large.

Lemma 3. IfAssumption 1 holds and e;(t) = 0 for all t and all i,
then Y120 |#*(r) — #*(t 4+ 1)|| < +o00. Moreover, there exists ¢
such thatZ i || )=+ < 27 () -7 | +2]|7*(t)—
|, vt > t'O and Vt > ti.

Proof. In this paper for any vector we choose the L!'-norm,
then Y/ %0 [7%(x) = A*(r + 1)| = X020 X,z 177 (e()) — ~j(e
(t+1))]. Then adaptmg the proofs of Clalm 6 in Zhu and Martinez
(2013), we can get that 3720 3", __ |72 (e(1)) — 7 (e(r + 1))| <
+o0. And there exists t;, such that the partial sum Y '_
|#*(x) = #*(x + 1)| with t' > o and t > t’ satlsfles 3
||ﬁ*() A4+ DI < 2 |7 — ot + 2| A) — 7.

rti




Z. Hu, M. Zhu, P. Chen et al. / Automatica 104 (2019) 90-101 95

5.3. Proof of Theorem 1

Lemma 2 shows that 7*(t) — 7* whose support is A*. Now
we proceed to finish the proofs of Theorem 1 by showing 7 (t) —
* and quantifying its convergence rate.

Proof. For any t > 2, it holds that,
|7(t) = *| < llm(t) = 7O + |17 (t) — 7*|. (8)

We want to prove that the two terms on the right-hand side of (8)
converge to 0 with certain rates.

Claim 3. lim;_.o |#(t)—7*| = 0 and there exists some t"
such that for any t3 > tYand t > tF + 1, |#(t) = 7%
Coexp(— Y i, 5 [T, (A + 4CNle(t)lloo + Celle(t)lloo for
some constants CE, Gy > 0.

Proof. For any t > 2, it holds that,
At 7 (t) = A5 (0)] + | 9)
where 7(t) is the distribution on Z at t when the exploration
deviations e;(t) = 0 for all i € V. Let x(t) £ ||#(t) — #*(t)| and
MOEESGES MR

Let us first consider x(t). Note that 7#*(t) P = 7*(¢)".
we have:

() — 7t

Then

£)= |#() - 7*(0)]

=|#@)—A* (-1 +a*(—1) o]

< Py At —1)—{PE “”} ( -1

+ |&* e = 1) =A%) . (10)

By (4) in the proof of Lemma 1, the nonzero entries in {P<(=D}T
can be represented as polynomials of {e;(t — 1), 1 — (t — 1)}
Taking the nonzero entry ]_[f’: 1 €t — 1)/].A4;], we can decompose
{(PE=D)T into (P<=D)T = (T, ei(t — 1)/|.4:)Q+R(t—1), where
Q is a | Z| x | Z| matrix with all entries that are 1. Because P<(‘=1 is
a transition matrix, then {P<‘="}T is a column stochastic matrix
where the sum of each column is the same and is equal to 1.
It follows that the sum of each column in (]_[, 1€t —1)/1ADQ
equals (]_[ €t — 1)/|ADIZ| = ]_[fvzle,»(t — 1)| 4| since |Z| =
(]_[l:] |4i|)%, and the sum of each column in R(t — 1) equals
c(t—1)=1-[[, &(t - 1>|A,-|.

By (1) in Assumption 1, ]_[1 1€ 1)|.A4;] strictly decreases to
0. Then there exists a t*! such that ]_[, L&t — 1) 4] < 1 for all
t > tAl which implies 0 < c(t — 1) < 1 for all t > I and
the column sums of c(t — 1)7'R(t — 1) equal 1. Let v(t — 1) &
|#*(t = 1) = #*(t)|. And consider t > ¢, then inequality (10)
becomes:

X(t )< P DY (A (e — 1) —
t—l R
=| ]_[ Q=1 -

+R(t—1)(ﬂ(t—1)—ﬂ*(t—1)) I +o(t — 1), (11)
where 7(t — 1) and 7*(t — 1) are both stochastic vectors whose
sum of elements is equal to one. And by the construction of Q, we
have Q(7(t — 1) — #*(t — 1)) = 0. Then inequality (11) becomes:
x(t) <c(t—1) [ c(t —1)"'R(t — 1)

x (At —=1)—a*(t—1)) | +v(t —1)

< c(t = Dlle(t = 1)7'R(E = 1)

x |zt —1)—a*{t— 1) +v(t—1)

=)+ vt = 1)

7t — 1)

=c(t—1x(t— 1)+ v(t — 1),

where c(t—1) € (0, 1) for all t > !4, With inequality log(1—x) <
—x,Vx € (0, 1), for any t > "I and t; > tI4!, we have :

x(t) <c(t—1x(t —1)+v(t—1)

t—1 t—2 t-1
< [ emxe)+ue =1+ > (] et

r:rg‘ r:t;‘ i=t+1
t—1
<x(t3) [ | exp(—(1 = c(x))) + v(t — 1)
t—2 t:l3
+ Y (] exp (=1 = c(i) v(r))
r:t;‘ i=t+1
t—1 t—1
< x(t)exp(— Y (1—c(r)+ Y _ (). (12)

ey ek
z'_t3 T_t3

Note that inequality (12) holds for any t; > ¢t And by
Lemma 3, v(t) is summable, we first take the limit of t and then
take the limit of t], by the summability of v(z), we can have
limg; o0 lime— o th:t; v(t) = 0. And for any t' > t and t > ti,
St IR (D)= R* (4 D] < 207+ 1) — || + 2|7 *(6) — 7.

Let t¥ 2 max({t, ti!}. Since Inequality (12) holds for any
t; > tM, we can take t; > tY. And 1 — () = [], &i(t)lAil,
for any t > tJ, inequality (12) becomes:

t—1 N
x(t) < x(t3)exp(— Y [ Je()lAl)

r:t;‘ i=1

+ 27t + 1) — 7|+ 2)|l7*(t — 1) — =¥
t—1 N

[Tetz

R
=ty i=1

= x(t3) exp(— NAD +2y(t5 + 1)+ 2yt — 1) (13)

Combining inequalities (9) and (13), for any 5 > t:

Z]‘[e )IAil)

rt3ll

+2y(t5 + 1)+ 2y(t — 1) + y(t). (14)

[#(t) — 7*| < x(t5) exp(—

By (2) in Assumption 1, ]_[fil €i(t)|A;| is not summable. Therefore,
for any t > tv, we have limy_ o0 X(t5)
exp(— ZT [* 1_[1 1 €i(T)IA;]) = 0. By Lemma 2, we have:

2y(t5 + 1)+ 2y(t — 1) + y(t)
< 2C ety 4+ Nlloe + 2Ccle(t — 1o
< 4C[l€(t)lloo + Celle(t)ll oo,

+ Celle(®)llo

where 2Cc [|€(t3)+ 1o +2Cc [le(t—T1)lloc < 4Cc[l€(t3)]loo since €;(t)
is strictly decreasing to 0. And there exists a positive constant (
such that x(tJ) < C,. Therefore, for any t; > tV and t > t3 + 1,
(14) becomes ||7#(t) — 7*| < Cpexp(— Y12, o T, eio)lAil) +

4C|l€(t3)lloc + Celle(t)llo- Therefore we reach’Claim 3 O

Claim 4. lim;_, o, |7 (t) — 7(t)]| = O and there exists some t°
such that for any ty > tc +land t > t;, ||=(t) — A@)| <

Cc exp(— Zr £ l_L 1€

T)Ail) + 4Ve.(t;) for some constant
C. > 0.
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Proof. Based on triangle inequality, for all t > 2,
| (t) = #(@0)] < Im(e) — PN (e — 1))
+ 1{P= ”} 7t —1)—A(0)]. (15)

With 7(t) = (P (t — 1) and 7 (t) = (P} 7 (t — 1), (15)
becomes:

[7(t)=2@)| < P (m(t = 1) =Rt — 1) |

+ ||({P€“ DT — (PR (e — 1) (16)

Based on Lemma 1, the nonzero entries in {P*‘~D}T can be
represented as polynomials of {¢;(t — 1), 1— €;(t — 1)}. Taking the
nonzero entry [\, &(t — 1)/|Ail, we can decompose {P¥(t~D}"
into the following: {Pt~1)7 = (TN, &(t — 1)/l A)Q + R(t —
1), where Q is a |Z| x |Z| matrix with all entries that are 1.
Because P!~V is a transition matrix, then the {P<C-NT is a
column stochastic matrix where each column sum is equal to 1.
It follows that the column sums of (]—[?’:1 &(t — 1)/]1A4i1Q equal
(TIY, &t — v/1AaD1zl = TV, &t — ])|A,| and the column
sums of R'(t — 1) equal c(t —-1)=1- I_L 1 &(E = 1Ay

Let x(t) = |7 (t) — #(t)|. And by the structure of Q and the
fact that 7 (t — 1) and n(t — 1) are both stochastic vectors whose

sum of elements is equal to 1, we have Q(w(t—1)—7(t—1)) = 0.
Then (16) becomes:

X(t) < IR'(t = 1)(z(t = 1) = 7(t — D)

+ [P — (P A (e — 1)

<t — 1x(t — 1)+ [P — Py (17)

By (4) in the proof of Lemma 1, any entry in P!~ can be repre-
sented as a summation of at most 2" polynomials. And each poly-
nomial is a product of N monomials; e.g., ]_[fV:l €(t — 1)/]A;l. And
the entries in P<‘~1) have the same form with &(t—1) = €;(t —1).
Then the difference of any pair of entries (Pg“ D(x, y), p<t=1
(x,y)) has at most 4" terms (for example, ]_[1 1€t = 1)/1A] =
]_[fil €i(t — 1)/|.A;] has 2V — 1 terms). And each term is less
than [T, fle(t — 1)llo/|-Ail, where [le(t)]loc = max{le!(t)],. ..,
leN(t)|}. Then any pair of entries (P~ V(x, y), P<t=1(x, y)) satisfy
that:

N
P, y) = P, )l < 4V T T et — 1lloo/ 1Al

i=1
Then (17) becomes:

N
x(t) < c(t — Dt = 1) + 4V le(t — DI [T 14l (18)
i=1
Let x(t) = x(t) — 4Ve,(t), where e.(t) = (lle(t)I, [T, l-4il)/
(1 — c(t)). Then from (18), we can get:
x(t) < c(t — Dx(t — 1) + 4V (t — 1) — 4Ve (t). (19)

2. Recall that &(t) €
1. By simple algebraic

Inequality (19) holds for any t
(0,1V,Vi e V,Vvt, then c(t — 1)
operations, we have c(t—1) > 1— ]_[1 i t 1)+]le(t—1)]l 0o )| Ail.
And by (1) and (3) in Assumption 1, ]_[ i(t—1)+ ||e(t —1)lo)
converges to 0. Therefore, there exists a t" such that ]_[,.21 i(t —
1)+ le(t —1)|lso)|Ail < 1,Vt > t°+1.Thenc(t—1) € (0, 1), Vt >
t® + 1. By manipulating inequality log(1 — x) < —x,Vx € (0, 1)
and exp(—x) < 1, Vx > 0, (19) can be rewritten for all t; > t° 41
and t > t; as follows:

<1_[c

z't4

=
S

x(t5) + 4Ve (t — 1) — aVe,(t)

+Z H e (er(7) — ex(z + 1)

T= t4j T+1

t—1
1)+ ) 4 el

t—1

< x(&)exp(= Yy ( )— et +1))
w1 h

hX(

< x(t)exp(— ) (1 —c(x)) + 4"(en(t7) — er(t)).

Plug x(t) = x(t) — 4Ve,(t) and c(t) = 1 — H &(t)|A;] in the

above inequality, and we have:
t—1 N

x(t) < x(t)exp(— Y [ Ta(lAl) + 4"en(t;).

rt411

By Assumption 1-(2), ]_[fv1 ( )IAll is not summable. Therefore,
limy_ o0 x(£) exp(— Y_\_} ; [TV, &()lAil) = 0. And by Assump-

tion 1-(3), limgx_, o 4Ner(t4) =0. We first take the limit of t and
then take the hmit of t;, we can have lim[;boo lim;_ x(t;)exp

ZT p ]_[1 L&A + 4Ve(t;) = 0. And there exists a

positive constant C. such that x(t;) < C.. Then for tf > t“ 4+ 1
and t > t}:

(0] <ccexp(—21"[e

rt4ll

ll(t) — Al + 4V e (65).

Therefore we reach Claim 4. O

Combining Claims 3 and 4, we get that for Markov chain M,
its state distribution {7 (t)} converges to limiting distribution 5 *.
Moreover, by triangle inequality, Claims 3 and 4, there exists
some tmi; = max{t”, t} and C > max{(,, 4C, C, 4N}, such that
for any t* > tmin and t>t + 1, D(t) < C(Ilf(t*)lloo + |I6(f)||oo
er(t*) + exp(— Zr £ l_L 1€(T)IAil) + exp(— Zr t* H: 1 €i(7)
|4;])). And it is easy to get that ||z(t)—n*| =
Ima(e() — 31 < Y, Ima(elt)
the proof of Theorem 1. O

z€Z
|+ 3,z Imf] < 2.1t completes

Remark 3. The paper (Mitra, Romeo, & Sangiovanni-Vincentelli,
1986) provides convergence rate analysis of strongly ergodic
Markov chains. Our analysis is different, and it leads to a tighter
upper bound and allows for a larger class of exploration rates. O

5.4. Proof of Corollary 2

Proof. From the last two paragraphs of Section 5.3, the constant
C in inequality (1) can be estimated as C > max({Cy, 4C, C, 4Ny,
Now we will prove that there exists a set of feasible constants
Cgs 4Ce, Cc such that max{4", 64||'%!| z[?20V+1I21/2 Gnax)

> max{Cy, 4C,, C, 4"}.

From Claim 3, C; can be any constant that satisfies C; >
|2 -7 )| = Yz Iu(e(t)) — AF(e(t5)]. Since
7,(e(t3)) € [0,1] and 7j(e(t5)) € [0,1], we have } ,
|722(€(t3)) — 7 (e(t3))] < ZZEZ |7t + X ez 177 (e8] =
Y ez Ta(e(t])) + Zzez 75(e(t3)) = 2. Then (4 can be C; =
2> ||7 () — 2*(t5)|.- And from Claim 4, C, can be any constant
such that > x(t) = ||7f)— A} — 4Ver(t]). Here,
| (e5) — A ( Z{ | = 4Ver(t;) < |m(e5) = R < X ,ezlmalel])
— 71z(e(t;))I< 2. Then C, can be C, = 2.
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From Claim 2, C. lca,rl be any constant that satisfies C. >
c h 1
2 e |M| = C.. And by (7), we have:

L(1,€€(t), ..., e (t)h—k

1
Ce=2 Z € (t)

bEeC(t) + - - - + bieS(t)t  bE

fonyret beC(E) + -+ bec(t)h by

Loy [l e

ZEA* bk bye€ t)k -+ bhec(t)h)
B bZ(bii1 € (0 + - - - + bpe(t)1)

bi(bre(t)k + - + buec(t)h)
<> Z( bl 4+ |b2|65(t)h—k—1
= bk + - - - + bec(t)hk

|brs| + - -+ + [bplec(£) !

) (20)

b + - - 4 bpec(t)ik

where we use bZ < 1 in the inequality. Based on equations (5)
and (6), we have the following relation:

biéc(t)k + e + bflec(t)h = Uz(é(t))

= Z 1_[ P<O(x, y). (21)

TeGe(1)(2) (x,y)eE(T)

By Lemma 1, we have

Vz H(1+(7/J

| W yee(r)). (22)
J€Vex(%,y)

Pe(t) X y |A|

i€Ver(x,y)

So P<)(x,y) is a polynomial of €°(t) and can be written as
PEO(x, y) = do(x, y)+di(x, y)e(t)+- - - +dn(x, y)e(t)V. Note that
some coefficient d;(x, y) could be 0. Denote by a(x, y) the coef-
ficient of the least degree term in P<((x, y). In fact, coefficients
bi,..., b}, by, ..., by consist of dy(x,y), wherem € {0, ...,N}.In
Claim 5, we will first find an upper bound of |d,(x, y)| and a lower
bound of |a(x, y)|. In Claims 6 and 7, we will estimate the last sum
in inequality (20) by finding an upper bound of |b R
and |by,1]+- - -+|bn| and a lower bound of |by + - - - + bhe (t)h= "|

Claim 5. For any x,y € Zand m € {0,...,N}, [dn(x,y)| <
2"2 max(1, |y|I%,). And for any x,y € 2, d(x Y) = min{(| | i/
|l )Y, 1)

Proof. Expanding the right-hand side of (22) yields the sum

of at most 2¥ monomials where each monomial is a product of

HiEVer(X,y) (yi€c(t))/1Ail, 1 and (_)’j+)/j/|Aj|)ec(t)- Then dp(x,y) =
{V/(x,y)gvex(xy)l\Ver(x,y)\ﬂV/(x.y)l=m}(niever(x y) vi/ 1Al njev/(xy

(=¥ + %/I4jl)). And there are (=¥l ) choices of V'(x,y).

m—|Ver(x,y)]
Since [Ve(x,y)| < N here we use the upper bound (m'fﬁ;i’:&')}',)l) <

(LNI\;ZJ) = 2T, 2)/(IN/2]!IN/2]1) < 2V/2 for presentation

simplicity, where |-] is the floor function. Note that |y |. =
Maxicy ¥, then yi/lAil < llylle and =y + (%/1A4D < |I7/||oo
Then for all m e {0,...,N}, it holds that |d,(x,y) < 2N/
(max{1, Iy o} < 242 max{1, [l |*.}. By equation (22), d(x, )
= [licvy ey (vi/1A4il) when Ve(x,y) # @ or d(x,y) = 1 when
Ver(X,y) = (. Note that, d(x y) > 0 for any x,y € Z. With
Vil 1A 2 1Y Inin/ | Al s A%, ¥) = min{([¥ | pin/ 1Al 1}, O

Claim 6. [b ||+ - -+ b |€“(¢)" ¥ and |bysq|+- - -+|byle(t)*1
are both upper bounded by 2|S|'Z!| 222N +DIZ172¢, . when [|€(t)]| o
< 1/N(N + 1)|Z1,

Proof. Notice that

[T POcy= [] @olx.y)+--+dnlx y)et))
(x.y)€E(T) (x,y)€E(T)
=fo + W+ + flpe M, (23)

where |T| is the number of edges of tree T. For the analytical
simplicity, denote the enumeration of edges in T as E(T)
{g1,82, ..., g} and denote by d,g( ) the coefficient of the [,-th
degree term in the polynomlal P<W)(x, y), where l; € {0,...,N}.
Then n(xy)eE dO(X y) + 4+ dN(X’ y)ec(t)N) = ?!gl(do(g) +
- 4dy(g)e(t ) ), which can be expanded as the sum of (N+1)/"!
monomials where each monomial is in the form of I—[?Qg] di, (8)e°
I T _ &|T|
(t)ys. Then f,;, = Z[zgl ,,,,, Iy llgy ++lgyr =m) 1 Le=g1 di, (g), where m €
{0, ..., NIT|}. Finding combinations of (lg,, ""lgm) such that
lyy + -+ + lg;, = m can be cast to the problem of obtaining
m points on |T| (N + 1)-sided dice (pages 23-24 in Uspensky
(1937)). The number of all possible combinatiohs equals the
coefficient of (t)™ in the polynomial (3"} ; €“(t)")"!. By gener-
alizing the solution of problem 13 m Uspensky (1937), we can
get the coefficient of e<(t)™ is Y i (— 1)’('”)(‘THﬁ_(S\I,\’J:])?"l).
And by multinomial theorem (Sectlon 24.1.2 in Abramowitz and

Stegun (1964), the summation of all coefficients in (Y"1, €(t)")"!

equals (N + 1), Combining Claim 5, we have |fT| < (N +
1T2N2 max{1, |y Ix,})T!. Note that any tree T € G)(z) is a
spanning tree of the graph G(e(t)) where each vertex is a state
z € Z.Then |T| = |Z| — 1 < |Z|. Therefore, |f]| < (N +
1)\2\2N\Z\/2Cmax

Now we consider the number of spanning trees of the directed
graph G(€) rooted at z; i.e., |G¢)(z)|. First let us introduce the
Laplacian matrix (Biggs, 1993) £(G) of G(€). Formally, £(G) £ © —
2, where © = diag(d,,, ..., dZZ‘) such that d, is the out degree
of vertex z; i.e., d, = |{z’ € Z|(z,Z’) € E(G)}|. Similar to E(T), E(G)
is the edges of graph G(€). And 2 is the adjacency matrix (Biggs,
1993) (a (0,1)-matrix with ones at places corresponding to entries
where the vertices are adjacent and zeros otherwise) of G(€).
Then we define £(G), as the matrix by removing the zth row
and column from £(G),. By Tutte’s Matrix-Tree Theorem (Tutte
& Nash-Williams, 2001), |G¢(y(z)] = det(£(G),). For the sake of
analysis, we use [; represent the ith column of £(G);. And by
Hadamard’s inequality (Bjelica, 1995), det(L£ ]_[lz‘ ! 1] 2.
Recall that each vertex in the graph is a state and each edge in
the graph is a transition from one state to another. Then by the RL
algorithm, for any state z = (s, s’), it has |S| out degree; i.e., d, =
|S|, Vz € Z. And the number of ones in one column is at most |S]|.
Then, [llll < v/2IS[%. And |Ge(2)] < (v2IS])Z1! < (V2I5))2.
For all m € {k,...,h}, it holds that |P?| < ZTEQ(”(Z) IFI <
|S|'ZI(N + 1)\Z|2(N+1 12172C,n

Denote by d(x,y) the coeff1c1er1t of the second least degree
term in PC(x, y), then f,, = D )BT BT = ITI-1) [Tgeir d@)
Hg T eETNET )d( g’). And there are |T| choices of E(T) So [fk+1| <
IT|2Y12V2Crax and [b, | < |8]'1| 22N DIZ2Cg

Based on equations (5), (6) and (21), we have:

biet(0) + -+ bye’(t)! = ) oale
zeZ
=) B () 4+ > be(e). (24)
zeZ zeZ

Therefore, |bp| < Y, IP%] < [S|"#|Z|(N + 1)Z20N+DIZI2C,
vm e {k, ..., h} and |be| < Y, 5 IDE, | < |S[/Z!z|220N+D) 2172
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Cmax- By equation (23) and |T| < |Z|, the largest degree of
[Teeyyeer PO, y) is less than N|2|, hence h < N|Z|. Then
|bf 5 l€°(E) 4 - -+Ib51€(£)" " and |byya|€“(¢)+ - -+-|bnle ()"
have less than N|Z| terms. When [|&(t)lcc < 1/N(N + 1)/Z,
D% leC(t) 4+ DElec() T < |s|1Zl 222N T DIZI2C o, Simi-
larly, [bial€“(t) + - - -+ |byle ()1 < | 5|2l z[22NHDIZI2C, g,
Then we reach Claim 6. O

Claim 7. by + byy1€S(t) + - -+ + bpeS(6)"™*| = 1 Cpnin when [|€()ll
< Gmin/2(N|Z?|S|FI(N + 1)IZ2NFDIZ120 ),

Proof. Now let us consider the magnitude of the coefficient of the
least degree term in o,(e(t)); i.e., [bf]. Denote byfT the coefficient
of the least degree term in ]_[(xy EE(T)P 9(x, y). From equation

= ]_[(xy)eE d(x,y). By Claim 5, for any T € G)(2),
fT > mm{l‘[(meg (Iylmm/lAloo)”, 1} > Cpin because |T| < |Z].

Then bj, >f > Cpin-
From equation (24), we have b, = } ,_ . bi. Since b is

=< Cmin/z(l\”gl2 |S||Z|(N +

positive, by > bf. When [|€(t)]l«
1)/ ZI20N+DI21/2

Cmax)v |bk+1éc(t)+' '+bhec(t)h7’<| < Cmin/2 and |bk + -+
bret ()" ¥|> Cin/2. O

Combining Claims 6 and 7, (20) becomes C. < C.. And with
|Z| = |S|%, we can reach Corollary 2. O

6. Case study

We will evaluate the RL algorithm using the application of
demand allocation market in Zhu (2014).

6.1. System components

Customers. We consider N customers V = {1,..., N} and each
customer i € V has power demands x; > 0 and wants to
allocate its demands in one time slot within 4; = {1, 2, ..., | 4;|}.
The action a' € 4; is the time slot chosen by customer i. Each
customer wants to satisfy its demands as soon as possible so it
punishes late allocation. The cost function ¢; : A; — R is not
decreasing; i.e., ¢i(a') < ¢(@') if & > d'.

System operator. The system operator charges each customer
some price based on demand distributions. In particular, given
an action profile s = (a', ..., a"), the total demand allocated in
time slot a’ is Z,(s) 2 Zjev 1(4—q)%j, Where 17 is an indicator
function: 1y7y = 1if IT is true and 1;;7y = 0 if IT is false. The
system operator charges customer i the price pg(Z,i(s)).

Utility. The utility of customer i is the negative of the cost and
price: ui(s) = —ci(@') — pa(E4i(s)).

Informational constraint. Each customer is unwilling to share its
cost function ¢; and private action a’ with other customers and
the system operator. And the system operator does not want to
disclose the pricing policy to the customers and only agrees to
publicize the price value p,(s) given s. Therefore, each customer
only knows its own utility values instead of the structure of the
utility function.

6.2. Evaluation

Evaluation setup. In this section, we use Matlab simulations to
evaluate the performance of the RL algorithm. Similar to the
setup in Zhu (2014), we consider 100 customers and they have
identical action sets consisting of 10 time slots. The demands of

60 ,
——sloti
—slot2
50 slot3
——slot4
——slot5
sloté
40 -slot7 b
—
slo
30 ——slot10]| ]
20

1500

500 1000
Iterations

2000

Fig. 1. Temporal aggregate demands allocated at ten time slots with diminishing
exploration rate €(t) = llot’ﬂﬁ.

all customers are 1; i.e,, x; = 1 for any i € V. The cost function
for customer i is set as ¢j(a') = 3¢ . And the pricing mechanism
is pa(E4i(s)) = Eils).

Nash equlllbrlum. By Lemma 2.1 in Zhu (2014), we know that
the demand allocation game under the above setup is a poten-
tial game, and then a weakly acyclic game (Monderer & Shap-
ley, 1996). Therefore the existence of pure Nash equilibrium is
guaranteed.

Simulation results with diminishing exploration rates. Based
on the evaluation setup, we simulate the interactions of the
customers and system operator in Matlab. The exploration rates
are chosen as €;(t) = 1 ot W and the exploration deviations
are chosen as ej(t) = 9/(1Ot2) for all i € V. The duration of

the simulation is 2000 iterations. From the above simulation, we
observe that the action profiles converge to s, in which there are
43 customers selecting slot 1, 37 customers selecting slot 2 and
20 customers selecting slot 3. The induced utility value is —46 for
those choosing slot 1 and slot 2. Also, the induced utility value is
—47 for those choosing slot 3. Moreover, no customer can benefit
by unilateral deviations from s,. From Definition 1, s, is a pure
Nash equilibrium. The simulation results in Fig. 1 confirm the
convergence of the action profiles in Theorem 1.

We now proceed to use simulations to verify the optimal
exploration rates. As discussed in Section 4.3, we restrict the
exploration rates to be p-series. In particular, Fig. 2 compares
the convergence of the01§L algorithm for three1 cases €(t) =
tTT00, €(t) = s5t7100 and €(t) = 5t 0 (the optimal
one), respectively. For ease of comparison, we only compare the
temporal aggregate demands allocated at time slot 1 and only
focus on the ﬁrst 750 iterations. When the exploration rates are
€(t) = 1 ot 100 the convergence is fastest. It is consistent with
the dlscussmn in Section 4.3.

Simulation results with measurement noises. In this part, we
assume the utility values received by player i are subject to
measurement noises; i.e., i;(t) 2 u(t) + wi(t), where w(t)
is the measurement noise. The exploration rates are chosen as
€(t) = f—ot’ﬂ% and the exploration deviations are chosen as
ei(t) = 9/(10t?). The measurement noises are chosen as uni-
formly distributed over two different intervals [—10, 10] and
[—20, 20], respectively. Compared with Fig. 1, Figs. 3-4 show that
the action profiles oscillate and the convergence slows down as
the noise magnitude increases. In addition, we also evaluate the
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200 400 600
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Fig. 2. Comparison of temporal aggregate demands allocated at time slot 1 with
diminishing different exploration rates ¢;(t) = %t’l%o.
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Fig. 3. Temporal aggregate demands allocated at ten time slots with uniformly
distributed measurement noises in the interval [—10, 10].

performance of the RL algorithm where the measurement noises
are time-dependent. In particular, w;(t) is uniformly distributed
over the interval [—101In(t), 10In(t)]. The result shown in Fig. 5
implies that the action profiles do not converge anymore.

Matlab simulation results with fixed exploration rates. Fig. 6
shows the evaluation of the RL algorithm with fixed exploration
1

rates €i(t) = %_m. The exploration deviations are chosen as
ei(t) = 9/(10t?). The comparison of Figs. 1 and 6 shows that fixed
exploration rates cause larger oscillations in steady state.

7. Conclusion

This paper investigates a class of multi-player discrete games
where each player aims to maximize its own utility function
with limited information about the game of interest. We propose
the RL algorithm which converges to the set of action profiles
which have maximal stochastic potential with probability one.
The convergence rate of the proposed algorithm is analytically
quantified. Moreover, the performance of the algorithm is verified
by a case study in the smart grid. A future work is to study
the scenario that the measurements of utility values are subject
to non-stationary noises. In addition, the derived upper bound

60
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—_— s:otg
L slot

50 ——slot4

——slot5

slot6

——slot7

——slot8
slot9 X

——slot10

40}

30+

500 1000 1500 2000
Iterations

Fig. 4. Temporal aggregate demands allocated at ten time slots with uniformly
distributed measurement noises in the interval [—20, 20].

60
50}
40+
30}
20+
10 .
0 LT AN St IOCAL
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Fig. 5. Temporal aggregate demands allocated at ten time slots with uniformly
distributed measurement noises in the interval [—101In(t), 10In(t)].
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Fig. 6. Temporal aggregate demands allocated at ten time slots with fixed
1

exploration rates (t) = 5 ™.

(1) could be conservative. Especially, the constant C could be large
when N and |S| are large. Another future work is to find a tighter
upper bound of the RL algorithm or improve the convergence rate
by modifying the algorithm.
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