
Pareto optimal multi-robot motion planning

Guoxiang Zhao, Minghui Zhu

Abstract— This paper studies a class of multi-robot coordi-
nation problems where a team of robots aim to reach their
goal regions with minimum time and avoid collisions with
obstacles and other robots. A novel numerical algorithm is
proposed to identify the Pareto optimal solutions where no robot
can unilaterally reduce its traveling time without extending
others’. The consistent approximation of the algorithm in
the epigraphical profile sense is guaranteed using set-valued
numerical analysis. Simulations show the anytime property and
increasing optimality of the proposed algorithm.

Index Terms— robotic motion planning, multi-robot
coordination, Pareto optimality

I. INTRODUCTION

Robotic motion planning is a fundamental problem where
a control sequence is found to steer a mobile robot from
an initial state to a goal set, while enforcing dynamic
constraints and environmental rules. It is well-known that
the problem is computationally challenging. For example,
the piano-mover problem is shown to be PSPACE-hard in
general [1]. Sampling-based algorithms are demonstrated
to be efficient in addressing robotic motion planning in
high-dimension spaces. The Rapidly-exploring Random Tree
(RRT) algorithm [2] and its variants are able to find feasible
paths quickly. However, the optimality of returned paths is
probably lost. In fact, computing optimal motion planners is
much more computationally challenging than finding feasible
motion planners [3]. It is shown that computing the shortest
path in R3 populated with obstacles is NP-hard in the number
of obstacles [3]. Recently, RRT* [4] and its variants are
shown to be both computationally efficient and asymptoti-
cally optimal.

Multi-robot optimal motion planning is even more com-
putationally challenging, because the worst-case computa-
tional complexity exponentially grows as the robot number.
Current multi-robot motion planning mainly falls into three
categories: centralized planning [5] [6], decoupled planning
[7] [8] and priority planning [9] [10]. Noticeably, none of
these multi-robot motion planners is able to guarantee the
optimality of returned solutions. Recent papers [11] and [12]
employ game theory to synthesize open-loop planners and
closed-loop controllers to coordinate multiple robots, respec-
tively. It is shown that the proposed algorithms converge
to Nash equilibrium [13] where no robot can benefit from
unilateral deviations. As RRTs, the algorithms in [11] and
[12] leverage incremental sampling and steering functions.
Steering functions require to solve two-point boundary value
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problems. There are only a very limited number of dynamic
systems, whose steering functions have known analytical
solutions, including single integrators, double integrators and
Dubins cars [14]. Heuristic methods are needed to compute
steering functions when dynamic systems are complicated.

In the control community, distributed coordination of
multi-robot systems has been extensively studied in last
decades [15] [16] [17]. A large number of algorithms have
been proposed to accomplish a variety of missions; e.g.,
rendezvous [18], formation control [15], vehicle routing [19]
and sensor deployment [20] [21]. This set of work is mainly
focused on the design and analysis of algorithms, which are
scalable with respect to network expansion. To achieve scala-
bility, most algorithms adopt gradient descent methodologies,
which are easy to implement. Their long-term behavior; e.g.,
asymptotic convergence, can be ensured but usually there
is no guarantee on transient performance; e.g., aggregate
costs, due to the myopic nature of the algorithms. Another
set of more relevant papers is about (distributed) receding-
horizon control or model predictive control for multi-robot
coordination. Representative works include [22] [23] on
formation stabilization, [24] [25] on vehicle platooning and
[26] on trajectory optimization. Receding-horizon control
has a unique capability to handle constraints on states and
inputs. However, it is inherently suboptimal because finite
computing horizons are used as approximations. In contrast,
multi-robot motion planning aims to find controllers which
can optimize certain cost functionals over entire missions;
e.g., finding collision-free paths with shortest distances or
minimum fuel consumption.

Differential games extend optimal control from single
players to multiple players. Linear-quadratic differential
games are the most basic, and their solutions can be
formulated as coupled Riccati equations [27]. For nonlin-
ear systems with state and input constraints, there are a
very limited number of differential games whose closed-
form solutions are known, and some examples include the
homicidal-chauffeur and the lady-in-the-lake games [27]
[28]. Otherwise, numerical algorithms are desired. Existing
numerical algorithms are mainly based on partial differential
equations [29] [30] [31] and viability theory [32] [33] [34].
Noticeably, this set of papers only considers zero-sum two-
player scenarios.

Contribution statement: This paper investigates a class
of multi-robot closed-loop motion planning problems where
multiple robots aim to reach their own goal regions as soon
as possible. The robots are restricted to complex dynamic
constraints and need to avoid the collisions with static
obstacles and other robots. Pareto optimality is used as the
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solution notion where no robot can reduce its own travelling
time without extending others’. A numerical algorithm is
proposed to identify the Pareto optimal solutions. It is
shown that, under mild regularity conditions, the algorithm
can consistently approximate the epigraph of the minimal
arrival time function. The proofs are based on set-valued
numerical analysis [32] [33] [34]. Simulations on unicycle
robots are conducted to demonstrate the anytime property
and increasing optimality of our algorithm; i.e., quickly
generating a feasible controller to safely steer the robots to
their goal regions and steadily reducing traveling times as
more computation time is given.

II. PROBLEM FORMULATION

Consider a team of mobile robots, labeled by V ,
{1, ..., N}. The dynamic of robot i is governed by:

ẋi(s) = fi(xi(s), ui(s)), ∀i ∈ V, (1)

where xi(s) ∈ Xi is the state of robot i and ui : [0,+∞)→
Ui is the control of robot i. Here, the state space and the
set of all possible control values for robot i are denoted by
Xi ⊆ Rdi and Ui ⊆ Rmi respectively. The obstacle region
and goal region for robot i ∈ V are deonoted by XO

i ⊆ Xi

and XG
i ⊆ Xi\XO

i respectively. Denote the minimum safety
distance between any two robots as σ > 0. The free region
for robot i is denoted by XF

i , {xi ∈ Xi \XO
i |‖xi−xj‖ ≥

σ, xj ∈ XG
j , i 6= j}. Let X ,

∏
i∈V Xi, XG ,

∏
i∈V X

G
i

and XF ,
∏
i∈V X

F
i . Assume ‖xi−xj‖ ≥ σ, ∀x ∈ XG, i 6=

j. Define the safety region as S , {x ∈ XF |‖xi − xj‖ ≥
σ, i 6= j}. Here ‖ · ‖ denotes the 2-norm.

The sets of state feedback control policies for robot i and
the whole robot team are defined as $i , {πi(·) : X→ Ui}
and $ , {

∏
i∈V πi(·)|πi(·) ∈ $i} respectively. Consider the

scenario where the robot team starts from x ∈ X and executes
policy π ∈ $. The induced minimal arrival time vector is
characterized as ϑ(x, π) , inf{t ∈ R̄N≥0|∀i ∈ V, xi(0) =
xi, ẋi(s) = fi(xi(s), πi(x(s))), x(s) ∈ S, xi(ti) ∈ XG

i , 0 ≤
s ≤ maxi∈V ti}, where the infimum uses the partial order in
footnote 1. The i-th element of ϑ(x, π) represents the first
time robot i reaches its goal region without collisions when
the robots start from initial state x and execute policy π. In
our multi-robot motion planning problem, the set of Pareto
optimal solutions is defined as U∗(x) , {π∗ ∈ $|@π ∈
$ s.t. ϑ(x, π) 6= ϑ(x, π∗) and ϑ(x, π) � ϑ(x, π∗)}. The
interpretation of Pareto optimal solutions is that no robot can
unilaterally reach its goal region earlier without extending
other robots’ travelling times. Denote the minimal arrival
time function by Θ∗(x) , {ϑ(x, π∗)|π∗ ∈ U∗(x)}. Note
that the elements of ϑ(x, π∗) could be infinite, indicating
that some robots cannot safely reach the goal regions.
Infinite time may cause numerical issuses. To tackle this,
transformed minimal arrival time function is defined as
v∗(x) , Ψ(Θ∗(x)), where Kruzhkov transform Ψ(t) ,
col(1− e−ti) for t ∈ R̄N≥0 normalizes [0,+∞] to [0, 1]. No-
tice that Kruzhkov transform is bijective and monotonically

increasing.
The obejctive of this paper is to identify optimal control

policies in U∗(x) and corresponding minimal arrival time
function Θ∗(x) (or equivalently v∗(x)).

III. ASSUMPTIONS AND NOTATIONS

This section summarizes the assumptions, notions and no-
tations used throughout the paper. Most notions and notations
on sets and set-valued maps follow the presentation of [35].

The multi-robot system (1) can be written in the differen-
tial inclusion form: ẋi(s) ∈ Fi(xi(s)),∀s ≥ 0, where the
set-valued map Fi : Xi ⇒ Rdi is defined as Fi(xi) ,
{fi(xi, ui)|ui ∈ Ui}. Let F (x) ,

∏
i∈V Fi(xi). The fol-

lowing assumptions are imposed.

Assumption III.1. The following properties hold for i ∈ V:
(A1) Xi and Ui are non-empty and compact;
(A2) fi(xi, ui) is continuous over both variables;
(A3) fi(xi, ui) is linear growth; i.e., ∃ci ≥ 0 s.t. ∀xi ∈ Xi

and ∀ui ∈ Ui, ‖fi(xi, ui)‖ ≤ ci(‖xi‖+ ‖ui‖+ 1);
(A4) For each xi ∈ Xi, Fi(xi) is convex;
(A5) Fi(xi) is Lipschitz with Lipschitz constant li.

Assumptions (A1) and (A2) imply that, for each i ∈
V,∃Mi > 0 s.t. supxi∈Xi,ui∈Ui

‖fi(xi, ui)‖ ≤ Mi. Define

M+ ,
√∑

i∈VM
2
i and l+ ,

√∑
i∈V l

2
i . Then F is

bounded by M+ and is l+-Lipschitz.

Remark III.1. One sufficient condition of Assumption (A4)
is fi(xi, ui) is linear with respect to ui and Ui is convex.
One sufficient condition of Assumption (A5) is fi(xi, ui) is
Lipschitz continuous with respect to both variables on Xi×
Ui. �

Define the distance from a point x ∈ X to a set A ⊆ X
as d(x,A) , inf{‖x − a‖|a ∈ A}. A closed unit ball
around x ∈ X in space X is denoted as x + BX , {y ∈
X |‖y − x‖ ≤ 1}. Similarly, the unit expansion of a set
A ⊆ X is defined as A + BX , {x ∈ X |d(x,A) ≤ 1}.
Specifically, we denote x + BN , {y ∈ RN |‖y − x‖ ≤
1} if x ∈ RN . Similar notation applies to a set A. The
subscript of closed unit ball may be omitted when there is no
ambiguity. The Hausdorff distance that measures the distance
of two sets A and B is defined by dH(A,B) , inf{δ ≥
0|A ⊆ B + δB, B ⊆ A + δB}. Kuratowski lower limit and
Kuratowski upper limit of sets {An} ⊆ X are denoted by
Liminfn→+∞An = {x ∈ X | limn→+∞ d(x,An) = 0} and
Limsupn→+∞An = {x ∈ X | lim infn→+∞ d(x,An) = 0}
respectively. If Liminfn→+∞An = Limsupn→+∞An, the
common limit is defined as Kuratowski limit Limn→+∞An.

The Pareto frontier of a nonempty set A ⊆ X is denoted
as E(A) , {t ∈ A|@t′ ∈ A s.t. t′ 6= t, t′ � t}. Let A +
B , {a + b|a ∈ A, b ∈ B} be the sum of two sets A and
B. Denote the n-fold Cartesian product of a set A by An.

1Throughout this paper, product order is imposed; i.e. two vectors a, b ∈
RN are said “a is less than b in the Pareto sense”, denoted by a � b, if
and only if ai ≤ bi, ∀i ∈ {1, · · · , N}. Similarly, strict inequality can be
defined by a ≺ b ⇐⇒ ai < bi,∀i ∈ {1, · · · , N}.
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Specifically, when A is an interval; e.g., A = [a, b], its n-
fold product is denoted by [a, b]n. When A is a singleton;
e.g., A = {a}, its n-fold product is written as {a}n. Let
A× {b} , {(a, b)|a ∈ A} be the Cartesian product of a set
A and a point b. Define Hadamard product for two vectors
a, b ∈ RN as a ◦ b ,

[
a1b1 · · · aNbN

]T
. Define a ◦B ,

{a ◦ b|b ∈ B} . Denote N -dimensional zero vector and all-
ones vector by 0N and 1N respectively. The subcript may
be omitted when there is no ambiguity. The cardinality of a
set is denoted as | · |.

Define the distance on two set-valued maps g, ḡ : X ⇒
[0, 1]N by dX(g, ḡ) , supx∈X dH(g(x), ḡ(x)).

Definition III.1 (Epigraph). The epigraph of Θ is defined
by Epi(Θ) , {(x, t) ∈ X × RN |∃t′ ∈ Θ(x) s.t t � t′}.

Definition III.2 (Epigraphical Profile). The epigraphical
profile of Θ is defined by EΘ(x) , Θ(x) + RN≥0.

Remark III.2. For a Kruzhkov transformed function v, we
define its epigraphical profile by Ev(x) , (v(x) + RN≥0) ∩
[0, 1]N . �

IV. ALGORITHM STATEMENT AND PERFORMANCE
GUARANTEE

In this section, we present our algorithmic solution and
summarize its convergence in Theorem IV.1.

A. Algorithm Statement

The proposed algorithm, Algorithm 1, is informally stated
as follows. The state space of each robot is discretized by a
sequence of finite grids {Xp

i } ⊆ Xi s.t. Xp
i ⊆ Xp+1

i ,∀p ≥
1, where p is the grid index and by convention X0

i = ∅. The
state space for the robot team is discretized by {Xp} ⊆ X
with decreasing spatial resolutions hp → 0, where Xp ,∏
i∈V X

p
i . On each grid Xp, Algorithm 1 chooses temporal

resolution εp > 2hp and discretizes S into Sp , (S+hpB)∩
Xp. Denote Rp≥0 as an integer lattice on R≥0 consisting of
segments of length hp, and (RN≥0)p as a lattice on RN≥0.

With these spatial and temporal discretization, Algorithm 1
partially solves a multi-robot optimal control problem on grid
Xp via value iterations. Denote the last estimate of minimal
arrival time function on Xp by vpn̄p

, where n̄p denotes the
total number of value iterations executed on Xp when they
terminate. When proceeding to grid Xp, Algorithm 1 first
uses vp−1

n̄p−1
to generate interpolated value function ṽp as line

5 to line 16 and then initializes value function vp0 as line 17
to line 22.

When some robots are considered in the goal regions, they
are not supposed to move and affect other robots’ motions.
Define the set of equivalent nodes Xp

E(x) of x ∈ Xp by

Xp
E(x) , {x′ ∈ Xp|xi = x′i,∀i ∈ V \ VGp (x),

d(x′i, X
G
i ) ≤Miεp + hp,∀i ∈ VGp (x)}.

(2)

Here, VGp (x) , {i ∈ V|d(xi, X
G
i ) ≤ Miεp + hp} denotes

the set of robots which are close to or already in the goal
regions. Then the values of the nodes on the new grid are
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7

ǫf(x, u)

α

x̃ ∈ X̃(x)
x

x+ ǫpf(x, u)

Fig. 1. Set-valued discretization of robot dynamics

initialized by vp0(x) =
⋃
x̃∈Xp

E(x) ṽ
p−1(x̃),∀x ∈ Xp \ Xp−1;

i.e., line 21 in Algorithm 1.
After initialization, as line 24 to 29, Algorithm 1 calls

Algorithm 2 to apply value iterations to the nodes in Xp,
which are close to or in the goal region. The value iterations
are executed for np times or until the fixed point is reached.
After that, Algorithm 1 refines the grid and begins a new
cycle of updates. Notice the total number of value iterations
n̄p may be less than np. In particular, Algorithm 2 constructs
the following set-valued dynamics to approximate system (1)
from lines 2 to 8:

X̃p
i (xi) =


xi + εpFi(xi) + αpBXi

,

if d(xi, X
G
i ) > Miεp + hp;

xi, otherwise,
(3)

and time dynamic ṫ = 1 is approximated by:

T̃ pi (xi) =

{
εp + 2hpB1, if d(xi, X

G
i ) > Miεp + hp;

0, otherwise,
(4)

where αp , 2hp + εphpl
+ + ε2pl

+M+. Let X̃p(x) ,∏
i∈V X̃

p
i (xi) ∩ Sp and T̃ p(x) ,

∏
i∈V T̃

p
i (xi) ∩ (RN≥0)p

as line 9 in Algorithm 2. The balls αpBXi
in (3) and

2hpB1 in (4) represent perturbations on the dynamics. The
perturbations ensure that the image set of any x is non-empty
and the set-valued dynamic is well-defined. See Figure 1
for an illustration of set-valued dynamics (3). Let εp → 0

and hp

εp
→ 0; i.e., the spatial resolutions diminish faster

than the temporal resolutions. It indicates that the set-valued
dynamics well approximate discrete-time systems on X when
εp is very small. For robots that d(xi, X

G
i ) ≤ Miεp + hp,

they are treated to be in the goal region, and hence they
could stay and their clocks stop counting time.

Given the above set-valued dynamics, Algorithm 2
searches for Pareto optimal solutions of minimal arrival time
vectors and stores values in vpn and the last controls in Up.
The Bellman operator in the Pareto sense is defined by

(TΘpn)(x) ,E({t̃+ t|t̃ ∈ T̃ p(x), x̃ ∈ X̃p(x), t ∈ Θpn(x̃)}),
(5)

where E functions as Pareto minimization and Θpn : Xp ⇒
R̄N≥0 is the estimate of Θ∗ on grid Xp after n value iterations.
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Since E(T̃ p(x)) is a singleton, t̃ = E(T̃ p(x)). Fix x ∈ X,
apply Kruzhkov transform on both sides of (5) and replace
Θpn with Ψ−1vpn. Then the transformed Bellman operator in
the Pareto sense is represented by:

(Gvpn)(x) =E({τ̃ + τ − τ̃ ◦ τ |τ̃ = Ψ(E(T̃ p(x))),

x̃ ∈ X̃p(x), τ ∈ vpn(x̃)}),
(6)

where G , ΨTΨ−1 is used in line 10 of Algorithm 2.
Let Up(x) be the set of controls which solve the last value
iteration vpn(x) = (Gvpn−1)(x) on grid Xp. It corresponds to
line 11 of Algorithm 2.

Algorithm 1 Pareto-based anytime computation algorithm
1: Input: System dynamics f , state space X, discretization

grids {Xp}Pp=1, the associated resolutions hp, εp and the
number of updates to be executed np.

2: for 1 ≤ p ≤ P do
Grid refinement

3: αp = 2hp + εphpl
+ + ε2pl

+M+;
4: Sp = (S + hpB) ∩ Xp;

Value function interpolation
5: for x ∈ Xp−1 do
6: ṽp−1(x) = vp−1

n̄p−1
(x);

7: end for
8: for x ∈ Xp \ Xp−1 do
9: for i ∈ V do

10: if d(xi, X
G
i ) ≤Miεp + hp then

11: ṽp−1
i (x) = 0;

12: else
13: ṽp−1

i (x) = 1;
14: end if
15: end for
16: end for

Value function initialization
17: for x ∈ Xp−1 do
18: vp0(x) = ṽp−1(x);
19: end for
20: for x ∈ Xp \ Xp−1 do
21: vp0(x) =

⋃
x̃∈Xp

E(x) ṽ
p−1(x̃);

22: end for
Value function update

23: n = 0;
24: while n ≤ np and vpn 6= vpn−1 do
25: n = n+ 1;
26: for x ∈ Xp \ (XG + (M+εp + hp)B) do
27: (vpn(x),Up(x)) = VI(x,Sp, vpn−1);
28: end for
29: end while
30: n̄p = n;
31: for x ∈ Xp ∩ (XG + (M+εp + hp)B) do
32: vpn̄p

(x) = ṽp−1(x);
33: end for
34: end for
35: Output: vpn̄p

, Up.

Algorithm 2 Pareto-based value iteration (VI)
1: Input:, x,Sp, vpn−1

2: for i ∈ V do
3: if d(xi, X

G
i ) > Miεp + hp then

4: T̃i = εp + 2hpB1; X̃i = xi + εpFi(xi) + αpBXi ;
5: else
6: T̃i = {0}; X̃i = {xi};
7: end if
8: end for
9: T̃ =

∏
i∈V T̃i ∩ (RN≥0)p; X̃ = (

∏
i∈V X̃i) ∩ Sp;

10: vpn(x) = E({τ + τ̃ − τ ◦ τ̃ |τ̃ = E(Ψ(T̃ )), x̃ ∈ X̃, τ ∈
vpn−1(x̃)})

11: Up(x) = {the solutions to u in the above step}
12: Output: vpn,Up

B. Performance Guarantee

Recall that np at line 24 of Algorithm 1 is the number
of value iterations to be executed on grid Xp. The choice of
np needs to satisfy the following assumption to ensure the
convergence of Algorthm 1.

Assumption IV.1. There is a subsequence {Dk} of the
grid index sequence {p} with D0 = 0 s.t. Dk −
Dk−1 ≤ D̄ for some constant D̄ and all k ≥ 0 and
exp(−

∑Dk

p=Dk−1+1 npκp) ≤ γ < 1 for every k ≥ 0, where
κp , (d εphp

e − 2)hp is the minimum running cost.

Assumption IV.1 implies that the distance between the
estimate and the fixed point on the Dk-th grid reduces
at least by γ ∈ [0, 1) over the update window length
{Dk−1 + 1, . . . , Dk}.

The choice of εp and hp should satisfy the following.

Assumption IV.2. The following hold for the sequences of
{εp} and {hp}:

(A6) εp > 2hp,∀p ≥ 1;
(A7) εp → 0 and hp

εp
→ 0 monotonically as p→ +∞;

(A8) 2hp + εphpl
+ + ε2pl

+M+ ≥ hp−1,∀p ≥ 1;
(A9) [XG

i + (σ +Miε1 + h1)B] ∩XF
j = ∅,∀i 6= j.

The consistent approximation of v∗ via Algorithm 1 in the
epigraphical profile sense is summarized in Theorem IV.1.

Theorem IV.1. Suppose Assumption III.1, IV.1 and IV.2 hold,
then the sequence {vpn̄p

} in Algorithm 1 converges to v∗ in
the epigraphical profile sense; i.e., for any x ∈ X,

Ev∗(x) = Lim
p→+∞

⋃
x̃∈(x+hpB)∩Xp

Evpn̄p
(x̃).

C. Discussion

For single robot scenrio, if D̄ = 1 and γ = 0 with only
Assumptions III.1, (A6) and (A7) are imposed, Algorithm 1
and Theorem IV.1 become Algorithm 3.2.4 and Corollary 3.7
in [32] correspondingly.

The progress towards v∗ slows down or even stops as more
value iterations are performed. A γ close to one ensures that
excessive value iterations are postponed to finer grids, and
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a longer update interval reduces each grid’s efforts to reach
the discount factor.

V. SIMULATION

This section presents the simulations conducted to as-
sess the performance of Algorithm 1. The environment of
the simulations is a four-way intersection with no signs
or signals. Each road consists of two lanes with opposite
directions. The width of each lane is 0.5. Each robot is a
disc of radius r = 0.2. In particular, each robot is a unicycle
and its dynamic is given by ṗxi = vi cos θi, ṗ

y
i = vi sin θi,

where xi = (pxi , p
y
i ) denotes the i-th robot’s position and

ui = (θi, vi) ∈ Ui = Uθi × Uvi is its control including
heading angle θi and speed vi. The goal for each robot is
to pass the crossroads and arrive at its goal region without
colliding with curbs or any other robot. The robots stop as
long as they have reached their goal regions.

In practice, the allowable computation times for the robots
are varying and uncertain. So it is desired to compute
control policies, which can safely steer the robots to their
goal regions, within a short time. This is referred to any-
time property. The first simulation examines the anytime
property of Algorithm 1 for multiple robots. We choose
εp =

√
hp. The constraint sets of controls are given as:

Uvi = [0, 0.25], Uθ1 = [−π,−π/2], Uθ2 = [−π/2, π/2] and
Uθ3 = [0, π]. The dimensions of state space is 6. For
the purpose of collision avoidance, we set the inter-robot
safety distance as 0.6 and ignore perturbations added to S
in line 4; i.e., we choose Sp = S ∩ Xp. Since Algorithm
1 only returns control policies on discrete grids, we need
to interpolate the control policies into the continuous state
space. In particular, to select one control from Up(x) for
x ∈ Sp, uniform sampling is used. For state x ∈ X \ Sp,
the control is interpolated by nearest neighbor method; i.e.,
we take u = sampling(Up(arg minx̂∈Sp ‖x̂ − x‖)), where
sampling(·) represents uniform sampling. Figure 2 shows
the trajectories of the robots when they apply the interpolated
control policies which are computed in 0.61s. Figure 3
shows the inter-robot distances over time corresponding to
Figure 2, indicating that no collision is caused throughout
the movement of robots. Figure 4 displays the linear speeds
of each robot over time. Between 0.7s and 1s, both robot 2
and robot 3 slow down such that robot 1 can first pass the
crossroads. Due to insufficient value iterations, the returned
control policies may not be optimal, and this is the reason
why both robot 2 and robot 3 stay still from 3s to 3.5s. The
results show that given short computation time; i.e., 0.61s,
the algorithm can already generate a feasible policy which
accomplishes the planning task without violating any hard
constraint.

The second set of simulations examines the increasing
optimality of Algorithm 1. The parameters are identical
to the previous simulation with the difference that robot
3 is excluded and safety distance is 0.4. The operating
region of the robot team is discretized by the sequence
of uniform square grids {Xp}4p=1 with decreasing resolu-
tions hp ∈ {0.2, 0.1, 0.05, 0.025}, each of which contains

Fig. 2. The trajectories of three robots when the computation time is 0.61s.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time/sec

0

0.5

1

1.5

In
te

r-
ro

b
o
t 
d
is

ta
n
c
e

Minimum safety distance

Robot 1 and 2

Robot 1 and 3

Robot 2 and 3

Fig. 3. Inter-robot distances over time.

145, 3403, 34344, 416689 nodes respectively. All the grids
are within the same update window. The benckmark v? is
the estimate of minimal arrival time function computed on
the finest grid X4 with resolution hp = 0.025. To measure
approximation errors, we use nearest neighbor method to
interpolate each estimate of minimal arrival time function
vp into v̂p so that both v̂p and v? share the finest grid as
their domains. Note that v̂p(x) , vp(arg minx̂∈Xp ‖x̂− x‖)
for every x ∈ X4, where Xp is the domain of vp. Then
approximation error of v̂p is measured by ‖v̂p−v?‖X4 . Figure
5 shows the approximation errors over time. The peaks at 1s,
20s and 600s are caused by grid refinements, where a number
of new nodes are added. These new nodes introduce large
approximation errors. Other than these, the approximation
errors are monotonically decreasing over time.

VI. CONCLUSION

In this paper, a numerical algorithm is proposed to find
the Pareto optimal solution of a class of multi-robot motion
planning problems. The consistent approximation of the
algorithm is guaranteed using set-valued analysis. A set of
simulations are conducted to assess the anytime property
and increasing optimality. There are a couple of interesting
problems to solve in the future. First, the proposed algorithm
is centralized. It is of interest to study distributed implemen-
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tation. Second, the simulations show that the approximation
error increases when the grid is refined. It is of interest to
study new grid refinement schemes to reduce the amplitudes
of error rebound.
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